xref: /openbmc/qemu/hw/arm/mps2-tz.c (revision 54fa79b7)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *  "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20  *
21  * Links to the TRM for the board itself and to the various Application
22  * Notes which document the FPGA images can be found here:
23  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
24  *
25  * Board TRM:
26  * https://developer.arm.com/documentation/100112/latest/
27  * Application Note AN505:
28  * https://developer.arm.com/documentation/dai0505/latest/
29  * Application Note AN521:
30  * https://developer.arm.com/documentation/dai0521/latest/
31  * Application Note AN524:
32  * https://developer.arm.com/documentation/dai0524/latest/
33  *
34  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
35  * (ARM ECM0601256) for the details of some of the device layout:
36  *  https://developer.arm.com/documentation/ecm0601256/latest
37  * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
38  * most of the device layout:
39  *  https://developer.arm.com/documentation/101104/latest/
40  */
41 
42 #include "qemu/osdep.h"
43 #include "qemu/units.h"
44 #include "qemu/cutils.h"
45 #include "qapi/error.h"
46 #include "qemu/error-report.h"
47 #include "hw/arm/boot.h"
48 #include "hw/arm/armv7m.h"
49 #include "hw/or-irq.h"
50 #include "hw/boards.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/sysemu.h"
53 #include "hw/misc/unimp.h"
54 #include "hw/char/cmsdk-apb-uart.h"
55 #include "hw/timer/cmsdk-apb-timer.h"
56 #include "hw/misc/mps2-scc.h"
57 #include "hw/misc/mps2-fpgaio.h"
58 #include "hw/misc/tz-mpc.h"
59 #include "hw/misc/tz-msc.h"
60 #include "hw/arm/armsse.h"
61 #include "hw/dma/pl080.h"
62 #include "hw/rtc/pl031.h"
63 #include "hw/ssi/pl022.h"
64 #include "hw/i2c/arm_sbcon_i2c.h"
65 #include "hw/net/lan9118.h"
66 #include "net/net.h"
67 #include "hw/core/split-irq.h"
68 #include "hw/qdev-clock.h"
69 #include "qom/object.h"
70 
71 #define MPS2TZ_NUMIRQ_MAX 95
72 #define MPS2TZ_RAM_MAX 4
73 
74 typedef enum MPS2TZFPGAType {
75     FPGA_AN505,
76     FPGA_AN521,
77     FPGA_AN524,
78 } MPS2TZFPGAType;
79 
80 /*
81  * Define the layout of RAM in a board, including which parts are
82  * behind which MPCs.
83  * mrindex specifies the index into mms->ram[] to use for the backing RAM;
84  * -1 means "use the system RAM".
85  */
86 typedef struct RAMInfo {
87     const char *name;
88     uint32_t base;
89     uint32_t size;
90     int mpc; /* MPC number, -1 for "not behind an MPC" */
91     int mrindex;
92     int flags;
93 } RAMInfo;
94 
95 /*
96  * Flag values:
97  *  IS_ALIAS: this RAM area is an alias to the upstream end of the
98  *    MPC specified by its .mpc value
99  *  IS_ROM: this RAM area is read-only
100  */
101 #define IS_ALIAS 1
102 #define IS_ROM 2
103 
104 struct MPS2TZMachineClass {
105     MachineClass parent;
106     MPS2TZFPGAType fpga_type;
107     uint32_t scc_id;
108     uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
109     uint32_t len_oscclk;
110     const uint32_t *oscclk;
111     uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
112     bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
113     int numirq; /* Number of external interrupts */
114     const RAMInfo *raminfo;
115     const char *armsse_type;
116 };
117 
118 struct MPS2TZMachineState {
119     MachineState parent;
120 
121     ARMSSE iotkit;
122     MemoryRegion ram[MPS2TZ_RAM_MAX];
123     MemoryRegion eth_usb_container;
124 
125     MPS2SCC scc;
126     MPS2FPGAIO fpgaio;
127     TZPPC ppc[5];
128     TZMPC mpc[3];
129     PL022State spi[5];
130     ArmSbconI2CState i2c[5];
131     UnimplementedDeviceState i2s_audio;
132     UnimplementedDeviceState gpio[4];
133     UnimplementedDeviceState gfx;
134     UnimplementedDeviceState cldc;
135     UnimplementedDeviceState usb;
136     PL031State rtc;
137     PL080State dma[4];
138     TZMSC msc[4];
139     CMSDKAPBUART uart[6];
140     SplitIRQ sec_resp_splitter;
141     qemu_or_irq uart_irq_orgate;
142     DeviceState *lan9118;
143     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
144     Clock *sysclk;
145     Clock *s32kclk;
146 };
147 
148 #define TYPE_MPS2TZ_MACHINE "mps2tz"
149 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
150 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
151 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
152 
153 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
154 
155 /* Slow 32Khz S32KCLK frequency in Hz */
156 #define S32KCLK_FRQ (32 * 1000)
157 
158 /*
159  * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
160  * emulation of that much guest RAM, so artificially make it smaller.
161  */
162 #if HOST_LONG_BITS == 32
163 #define MPS3_DDR_SIZE (1 * GiB)
164 #else
165 #define MPS3_DDR_SIZE (2 * GiB)
166 #endif
167 
168 static const uint32_t an505_oscclk[] = {
169     40000000,
170     24580000,
171     25000000,
172 };
173 
174 static const uint32_t an524_oscclk[] = {
175     24000000,
176     32000000,
177     50000000,
178     50000000,
179     24576000,
180     23750000,
181 };
182 
183 static const RAMInfo an505_raminfo[] = { {
184         .name = "ssram-0",
185         .base = 0x00000000,
186         .size = 0x00400000,
187         .mpc = 0,
188         .mrindex = 0,
189     }, {
190         .name = "ssram-1",
191         .base = 0x28000000,
192         .size = 0x00200000,
193         .mpc = 1,
194         .mrindex = 1,
195     }, {
196         .name = "ssram-2",
197         .base = 0x28200000,
198         .size = 0x00200000,
199         .mpc = 2,
200         .mrindex = 2,
201     }, {
202         .name = "ssram-0-alias",
203         .base = 0x00400000,
204         .size = 0x00400000,
205         .mpc = 0,
206         .mrindex = 3,
207         .flags = IS_ALIAS,
208     }, {
209         /* Use the largest bit of contiguous RAM as our "system memory" */
210         .name = "mps.ram",
211         .base = 0x80000000,
212         .size = 16 * MiB,
213         .mpc = -1,
214         .mrindex = -1,
215     }, {
216         .name = NULL,
217     },
218 };
219 
220 static const RAMInfo an524_raminfo[] = { {
221         .name = "bram",
222         .base = 0x00000000,
223         .size = 512 * KiB,
224         .mpc = 0,
225         .mrindex = 0,
226     }, {
227         .name = "sram",
228         .base = 0x20000000,
229         .size = 32 * 4 * KiB,
230         .mpc = 1,
231         .mrindex = 1,
232     }, {
233         /* We don't model QSPI flash yet; for now expose it as simple ROM */
234         .name = "QSPI",
235         .base = 0x28000000,
236         .size = 8 * MiB,
237         .mpc = 1,
238         .mrindex = 2,
239         .flags = IS_ROM,
240     }, {
241         .name = "DDR",
242         .base = 0x60000000,
243         .size = MPS3_DDR_SIZE,
244         .mpc = 2,
245         .mrindex = -1,
246     }, {
247         .name = NULL,
248     },
249 };
250 
251 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
252 {
253     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
254     const RAMInfo *p;
255 
256     for (p = mmc->raminfo; p->name; p++) {
257         if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
258             return p;
259         }
260     }
261     /* if raminfo array doesn't have an entry for each MPC this is a bug */
262     g_assert_not_reached();
263 }
264 
265 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
266                                     const RAMInfo *raminfo)
267 {
268     /* Return an initialized MemoryRegion for the RAMInfo. */
269     MemoryRegion *ram;
270 
271     if (raminfo->mrindex < 0) {
272         /* Means this RAMInfo is for QEMU's "system memory" */
273         MachineState *machine = MACHINE(mms);
274         assert(!(raminfo->flags & IS_ROM));
275         return machine->ram;
276     }
277 
278     assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
279     ram = &mms->ram[raminfo->mrindex];
280 
281     memory_region_init_ram(ram, NULL, raminfo->name,
282                            raminfo->size, &error_fatal);
283     if (raminfo->flags & IS_ROM) {
284         memory_region_set_readonly(ram, true);
285     }
286     return ram;
287 }
288 
289 /* Create an alias of an entire original MemoryRegion @orig
290  * located at @base in the memory map.
291  */
292 static void make_ram_alias(MemoryRegion *mr, const char *name,
293                            MemoryRegion *orig, hwaddr base)
294 {
295     memory_region_init_alias(mr, NULL, name, orig, 0,
296                              memory_region_size(orig));
297     memory_region_add_subregion(get_system_memory(), base, mr);
298 }
299 
300 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
301 {
302     /*
303      * Return a qemu_irq which will signal IRQ n to all CPUs in the
304      * SSE.  The irqno should be as the CPU sees it, so the first
305      * external-to-the-SSE interrupt is 32.
306      */
307     MachineClass *mc = MACHINE_GET_CLASS(mms);
308     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
309 
310     assert(irqno >= 32 && irqno < (mmc->numirq + 32));
311 
312     /*
313      * Convert from "CPU irq number" (as listed in the FPGA image
314      * documentation) to the SSE external-interrupt number.
315      */
316     irqno -= 32;
317 
318     if (mc->max_cpus > 1) {
319         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
320     } else {
321         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
322     }
323 }
324 
325 /* Most of the devices in the AN505 FPGA image sit behind
326  * Peripheral Protection Controllers. These data structures
327  * define the layout of which devices sit behind which PPCs.
328  * The devfn for each port is a function which creates, configures
329  * and initializes the device, returning the MemoryRegion which
330  * needs to be plugged into the downstream end of the PPC port.
331  */
332 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
333                                 const char *name, hwaddr size,
334                                 const int *irqs);
335 
336 typedef struct PPCPortInfo {
337     const char *name;
338     MakeDevFn *devfn;
339     void *opaque;
340     hwaddr addr;
341     hwaddr size;
342     int irqs[3]; /* currently no device needs more IRQ lines than this */
343 } PPCPortInfo;
344 
345 typedef struct PPCInfo {
346     const char *name;
347     PPCPortInfo ports[TZ_NUM_PORTS];
348 } PPCInfo;
349 
350 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
351                                     void *opaque,
352                                     const char *name, hwaddr size,
353                                     const int *irqs)
354 {
355     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
356      * and return a pointer to its MemoryRegion.
357      */
358     UnimplementedDeviceState *uds = opaque;
359 
360     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
361     qdev_prop_set_string(DEVICE(uds), "name", name);
362     qdev_prop_set_uint64(DEVICE(uds), "size", size);
363     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
364     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
365 }
366 
367 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
368                                const char *name, hwaddr size,
369                                const int *irqs)
370 {
371     /* The irq[] array is tx, rx, combined, in that order */
372     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
373     CMSDKAPBUART *uart = opaque;
374     int i = uart - &mms->uart[0];
375     SysBusDevice *s;
376     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
377 
378     object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
379     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
380     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->sysclk_frq);
381     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
382     s = SYS_BUS_DEVICE(uart);
383     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
384     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
385     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
386     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
387     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
388     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
389 }
390 
391 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
392                               const char *name, hwaddr size,
393                               const int *irqs)
394 {
395     MPS2SCC *scc = opaque;
396     DeviceState *sccdev;
397     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
398     uint32_t i;
399 
400     object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
401     sccdev = DEVICE(scc);
402     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
403     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
404     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
405     qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
406     for (i = 0; i < mmc->len_oscclk; i++) {
407         g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
408         qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
409     }
410     sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
411     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
412 }
413 
414 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
415                                  const char *name, hwaddr size,
416                                  const int *irqs)
417 {
418     MPS2FPGAIO *fpgaio = opaque;
419     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
420 
421     object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
422     qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
423     qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
424     sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
425     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
426 }
427 
428 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
429                                   const char *name, hwaddr size,
430                                   const int *irqs)
431 {
432     SysBusDevice *s;
433     NICInfo *nd = &nd_table[0];
434 
435     /* In hardware this is a LAN9220; the LAN9118 is software compatible
436      * except that it doesn't support the checksum-offload feature.
437      */
438     qemu_check_nic_model(nd, "lan9118");
439     mms->lan9118 = qdev_new(TYPE_LAN9118);
440     qdev_set_nic_properties(mms->lan9118, nd);
441 
442     s = SYS_BUS_DEVICE(mms->lan9118);
443     sysbus_realize_and_unref(s, &error_fatal);
444     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
445     return sysbus_mmio_get_region(s, 0);
446 }
447 
448 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
449                                   const char *name, hwaddr size,
450                                   const int *irqs)
451 {
452     /*
453      * The AN524 makes the ethernet and USB share a PPC port.
454      * irqs[] is the ethernet IRQ.
455      */
456     SysBusDevice *s;
457     NICInfo *nd = &nd_table[0];
458 
459     memory_region_init(&mms->eth_usb_container, OBJECT(mms),
460                        "mps2-tz-eth-usb-container", 0x200000);
461 
462     /*
463      * In hardware this is a LAN9220; the LAN9118 is software compatible
464      * except that it doesn't support the checksum-offload feature.
465      */
466     qemu_check_nic_model(nd, "lan9118");
467     mms->lan9118 = qdev_new(TYPE_LAN9118);
468     qdev_set_nic_properties(mms->lan9118, nd);
469 
470     s = SYS_BUS_DEVICE(mms->lan9118);
471     sysbus_realize_and_unref(s, &error_fatal);
472     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
473 
474     memory_region_add_subregion(&mms->eth_usb_container,
475                                 0, sysbus_mmio_get_region(s, 0));
476 
477     /* The USB OTG controller is an ISP1763; we don't have a model of it. */
478     object_initialize_child(OBJECT(mms), "usb-otg",
479                             &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
480     qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
481     qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
482     s = SYS_BUS_DEVICE(&mms->usb);
483     sysbus_realize(s, &error_fatal);
484 
485     memory_region_add_subregion(&mms->eth_usb_container,
486                                 0x100000, sysbus_mmio_get_region(s, 0));
487 
488     return &mms->eth_usb_container;
489 }
490 
491 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
492                               const char *name, hwaddr size,
493                               const int *irqs)
494 {
495     TZMPC *mpc = opaque;
496     int i = mpc - &mms->mpc[0];
497     MemoryRegion *upstream;
498     const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
499     MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
500 
501     object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
502     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
503                              &error_fatal);
504     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
505     /* Map the upstream end of the MPC into system memory */
506     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
507     memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
508     /* and connect its interrupt to the IoTKit */
509     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
510                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
511                                                        "mpcexp_status", i));
512 
513     /* Return the register interface MR for our caller to map behind the PPC */
514     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
515 }
516 
517 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
518                               const char *name, hwaddr size,
519                               const int *irqs)
520 {
521     /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
522     PL080State *dma = opaque;
523     int i = dma - &mms->dma[0];
524     SysBusDevice *s;
525     char *mscname = g_strdup_printf("%s-msc", name);
526     TZMSC *msc = &mms->msc[i];
527     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
528     MemoryRegion *msc_upstream;
529     MemoryRegion *msc_downstream;
530 
531     /*
532      * Each DMA device is a PL081 whose transaction master interface
533      * is guarded by a Master Security Controller. The downstream end of
534      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
535      * DMA devices can see all devices and memory that the CPU does.
536      */
537     object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
538     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
539     object_property_set_link(OBJECT(msc), "downstream",
540                              OBJECT(msc_downstream), &error_fatal);
541     object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
542     sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
543 
544     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
545                                 qdev_get_gpio_in_named(iotkitdev,
546                                                        "mscexp_status", i));
547     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
548                                 qdev_get_gpio_in_named(DEVICE(msc),
549                                                        "irq_clear", 0));
550     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
551                                 qdev_get_gpio_in_named(DEVICE(msc),
552                                                        "cfg_nonsec", 0));
553     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
554                           ARRAY_SIZE(mms->ppc) + i,
555                           qdev_get_gpio_in_named(DEVICE(msc),
556                                                  "cfg_sec_resp", 0));
557     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
558 
559     object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
560     object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
561                              &error_fatal);
562     sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
563 
564     s = SYS_BUS_DEVICE(dma);
565     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
566     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
567     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
568     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
569 
570     g_free(mscname);
571     return sysbus_mmio_get_region(s, 0);
572 }
573 
574 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
575                               const char *name, hwaddr size,
576                               const int *irqs)
577 {
578     /*
579      * The AN505 has five PL022 SPI controllers.
580      * One of these should have the LCD controller behind it; the others
581      * are connected only to the FPGA's "general purpose SPI connector"
582      * or "shield" expansion connectors.
583      * Note that if we do implement devices behind SPI, the chip select
584      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
585      */
586     PL022State *spi = opaque;
587     SysBusDevice *s;
588 
589     object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
590     sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
591     s = SYS_BUS_DEVICE(spi);
592     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
593     return sysbus_mmio_get_region(s, 0);
594 }
595 
596 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
597                               const char *name, hwaddr size,
598                               const int *irqs)
599 {
600     ArmSbconI2CState *i2c = opaque;
601     SysBusDevice *s;
602 
603     object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
604     s = SYS_BUS_DEVICE(i2c);
605     sysbus_realize(s, &error_fatal);
606     return sysbus_mmio_get_region(s, 0);
607 }
608 
609 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
610                               const char *name, hwaddr size,
611                               const int *irqs)
612 {
613     PL031State *pl031 = opaque;
614     SysBusDevice *s;
615 
616     object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
617     s = SYS_BUS_DEVICE(pl031);
618     sysbus_realize(s, &error_fatal);
619     /*
620      * The board docs don't give an IRQ number for the PL031, so
621      * presumably it is not connected.
622      */
623     return sysbus_mmio_get_region(s, 0);
624 }
625 
626 static void create_non_mpc_ram(MPS2TZMachineState *mms)
627 {
628     /*
629      * Handle the RAMs which are either not behind MPCs or which are
630      * aliases to another MPC.
631      */
632     const RAMInfo *p;
633     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
634 
635     for (p = mmc->raminfo; p->name; p++) {
636         if (p->flags & IS_ALIAS) {
637             SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
638             MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
639             make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
640         } else if (p->mpc == -1) {
641             /* RAM not behind an MPC */
642             MemoryRegion *mr = mr_for_raminfo(mms, p);
643             memory_region_add_subregion(get_system_memory(), p->base, mr);
644         }
645     }
646 }
647 
648 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
649 {
650     /* Return the size of the RAM block at guest address zero */
651     const RAMInfo *p;
652     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
653 
654     for (p = mmc->raminfo; p->name; p++) {
655         if (p->base == 0) {
656             return p->size;
657         }
658     }
659     g_assert_not_reached();
660 }
661 
662 static void mps2tz_common_init(MachineState *machine)
663 {
664     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
665     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
666     MachineClass *mc = MACHINE_GET_CLASS(machine);
667     MemoryRegion *system_memory = get_system_memory();
668     DeviceState *iotkitdev;
669     DeviceState *dev_splitter;
670     const PPCInfo *ppcs;
671     int num_ppcs;
672     int i;
673 
674     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
675         error_report("This board can only be used with CPU %s",
676                      mc->default_cpu_type);
677         exit(1);
678     }
679 
680     if (machine->ram_size != mc->default_ram_size) {
681         char *sz = size_to_str(mc->default_ram_size);
682         error_report("Invalid RAM size, should be %s", sz);
683         g_free(sz);
684         exit(EXIT_FAILURE);
685     }
686 
687     /* These clocks don't need migration because they are fixed-frequency */
688     mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
689     clock_set_hz(mms->sysclk, mmc->sysclk_frq);
690     mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
691     clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
692 
693     object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
694                             mmc->armsse_type);
695     iotkitdev = DEVICE(&mms->iotkit);
696     object_property_set_link(OBJECT(&mms->iotkit), "memory",
697                              OBJECT(system_memory), &error_abort);
698     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
699     qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
700     qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
701     sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
702 
703     /*
704      * If this board has more than one CPU, then we need to create splitters
705      * to feed the IRQ inputs for each CPU in the SSE from each device in the
706      * board. If there is only one CPU, we can just wire the device IRQ
707      * directly to the SSE's IRQ input.
708      */
709     assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
710     if (mc->max_cpus > 1) {
711         for (i = 0; i < mmc->numirq; i++) {
712             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
713             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
714 
715             object_initialize_child_with_props(OBJECT(machine), name,
716                                                splitter, sizeof(*splitter),
717                                                TYPE_SPLIT_IRQ, &error_fatal,
718                                                NULL);
719             g_free(name);
720 
721             object_property_set_int(OBJECT(splitter), "num-lines", 2,
722                                     &error_fatal);
723             qdev_realize(DEVICE(splitter), NULL, &error_fatal);
724             qdev_connect_gpio_out(DEVICE(splitter), 0,
725                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
726                                                          "EXP_IRQ", i));
727             qdev_connect_gpio_out(DEVICE(splitter), 1,
728                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
729                                                          "EXP_CPU1_IRQ", i));
730         }
731     }
732 
733     /* The sec_resp_cfg output from the IoTKit must be split into multiple
734      * lines, one for each of the PPCs we create here, plus one per MSC.
735      */
736     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
737                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
738     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
739                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
740                             &error_fatal);
741     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
742     dev_splitter = DEVICE(&mms->sec_resp_splitter);
743     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
744                                 qdev_get_gpio_in(dev_splitter, 0));
745 
746     /*
747      * The IoTKit sets up much of the memory layout, including
748      * the aliases between secure and non-secure regions in the
749      * address space, and also most of the devices in the system.
750      * The FPGA itself contains various RAMs and some additional devices.
751      * The FPGA images have an odd combination of different RAMs,
752      * because in hardware they are different implementations and
753      * connected to different buses, giving varying performance/size
754      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
755      * call the largest lump our "system memory".
756      */
757 
758     /*
759      * The overflow IRQs for all UARTs are ORed together.
760      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
761      * Create the OR gate for this: it has one input for the TX overflow
762      * and one for the RX overflow for each UART we might have.
763      * (If the board has fewer than the maximum possible number of UARTs
764      * those inputs are never wired up and are treated as always-zero.)
765      */
766     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
767                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
768     object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
769                             2 * ARRAY_SIZE(mms->uart),
770                             &error_fatal);
771     qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
772     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
773                           get_sse_irq_in(mms, 47));
774 
775     /* Most of the devices in the FPGA are behind Peripheral Protection
776      * Controllers. The required order for initializing things is:
777      *  + initialize the PPC
778      *  + initialize, configure and realize downstream devices
779      *  + connect downstream device MemoryRegions to the PPC
780      *  + realize the PPC
781      *  + map the PPC's MemoryRegions to the places in the address map
782      *    where the downstream devices should appear
783      *  + wire up the PPC's control lines to the IoTKit object
784      */
785 
786     const PPCInfo an505_ppcs[] = { {
787             .name = "apb_ppcexp0",
788             .ports = {
789                 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
790                 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
791                 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
792             },
793         }, {
794             .name = "apb_ppcexp1",
795             .ports = {
796                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
797                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
798                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
799                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
800                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
801                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
802                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
803                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
804                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
805                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
806                 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
807                 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
808                 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
809                 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
810             },
811         }, {
812             .name = "apb_ppcexp2",
813             .ports = {
814                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
815                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
816                   0x40301000, 0x1000 },
817                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
818             },
819         }, {
820             .name = "ahb_ppcexp0",
821             .ports = {
822                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
823                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
824                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
825                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
826                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
827                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
828             },
829         }, {
830             .name = "ahb_ppcexp1",
831             .ports = {
832                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
833                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
834                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
835                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
836             },
837         },
838     };
839 
840     const PPCInfo an524_ppcs[] = { {
841             .name = "apb_ppcexp0",
842             .ports = {
843                 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
844                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
845                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
846             },
847         }, {
848             .name = "apb_ppcexp1",
849             .ports = {
850                 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000 },
851                 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000 },
852                 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
853                 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
854                 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
855                 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000 },
856                 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000 },
857                 { /* port 7 reserved */ },
858                 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000 },
859             },
860         }, {
861             .name = "apb_ppcexp2",
862             .ports = {
863                 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
864                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
865                   0x41301000, 0x1000 },
866                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
867                 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
868                 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
869                 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
870                 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
871                 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
872                 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
873 
874                 { /* port 9 reserved */ },
875                 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
876                 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
877             },
878         }, {
879             .name = "ahb_ppcexp0",
880             .ports = {
881                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
882                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
883                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
884                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
885                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
886             },
887         },
888     };
889 
890     switch (mmc->fpga_type) {
891     case FPGA_AN505:
892     case FPGA_AN521:
893         ppcs = an505_ppcs;
894         num_ppcs = ARRAY_SIZE(an505_ppcs);
895         break;
896     case FPGA_AN524:
897         ppcs = an524_ppcs;
898         num_ppcs = ARRAY_SIZE(an524_ppcs);
899         break;
900     default:
901         g_assert_not_reached();
902     }
903 
904     for (i = 0; i < num_ppcs; i++) {
905         const PPCInfo *ppcinfo = &ppcs[i];
906         TZPPC *ppc = &mms->ppc[i];
907         DeviceState *ppcdev;
908         int port;
909         char *gpioname;
910 
911         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
912                                 TYPE_TZ_PPC);
913         ppcdev = DEVICE(ppc);
914 
915         for (port = 0; port < TZ_NUM_PORTS; port++) {
916             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
917             MemoryRegion *mr;
918             char *portname;
919 
920             if (!pinfo->devfn) {
921                 continue;
922             }
923 
924             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
925                               pinfo->irqs);
926             portname = g_strdup_printf("port[%d]", port);
927             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
928                                      &error_fatal);
929             g_free(portname);
930         }
931 
932         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
933 
934         for (port = 0; port < TZ_NUM_PORTS; port++) {
935             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
936 
937             if (!pinfo->devfn) {
938                 continue;
939             }
940             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
941 
942             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
943             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
944                                         qdev_get_gpio_in_named(ppcdev,
945                                                                "cfg_nonsec",
946                                                                port));
947             g_free(gpioname);
948             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
949             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
950                                         qdev_get_gpio_in_named(ppcdev,
951                                                                "cfg_ap", port));
952             g_free(gpioname);
953         }
954 
955         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
956         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
957                                     qdev_get_gpio_in_named(ppcdev,
958                                                            "irq_enable", 0));
959         g_free(gpioname);
960         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
961         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
962                                     qdev_get_gpio_in_named(ppcdev,
963                                                            "irq_clear", 0));
964         g_free(gpioname);
965         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
966         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
967                                     qdev_get_gpio_in_named(iotkitdev,
968                                                            gpioname, 0));
969         g_free(gpioname);
970 
971         qdev_connect_gpio_out(dev_splitter, i,
972                               qdev_get_gpio_in_named(ppcdev,
973                                                      "cfg_sec_resp", 0));
974     }
975 
976     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
977 
978     create_non_mpc_ram(mms);
979 
980     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
981                        boot_ram_size(mms));
982 }
983 
984 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
985                                int *iregion, bool *exempt, bool *ns, bool *nsc)
986 {
987     /*
988      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
989      * the Master Security Controllers. Thes have the same logic as
990      * is used by the IoTKit for the IDAU connected to the CPU, except
991      * that MSCs don't care about the NSC attribute.
992      */
993     int region = extract32(address, 28, 4);
994 
995     *ns = !(region & 1);
996     *nsc = false;
997     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
998     *exempt = (address & 0xeff00000) == 0xe0000000;
999     *iregion = region;
1000 }
1001 
1002 static void mps2tz_class_init(ObjectClass *oc, void *data)
1003 {
1004     MachineClass *mc = MACHINE_CLASS(oc);
1005     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1006 
1007     mc->init = mps2tz_common_init;
1008     iic->check = mps2_tz_idau_check;
1009 }
1010 
1011 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1012 {
1013     /*
1014      * Set mc->default_ram_size and default_ram_id from the
1015      * information in mmc->raminfo.
1016      */
1017     MachineClass *mc = MACHINE_CLASS(mmc);
1018     const RAMInfo *p;
1019 
1020     for (p = mmc->raminfo; p->name; p++) {
1021         if (p->mrindex < 0) {
1022             /* Found the entry for "system memory" */
1023             mc->default_ram_size = p->size;
1024             mc->default_ram_id = p->name;
1025             return;
1026         }
1027     }
1028     g_assert_not_reached();
1029 }
1030 
1031 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1032 {
1033     MachineClass *mc = MACHINE_CLASS(oc);
1034     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1035 
1036     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1037     mc->default_cpus = 1;
1038     mc->min_cpus = mc->default_cpus;
1039     mc->max_cpus = mc->default_cpus;
1040     mmc->fpga_type = FPGA_AN505;
1041     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1042     mmc->scc_id = 0x41045050;
1043     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1044     mmc->oscclk = an505_oscclk;
1045     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1046     mmc->fpgaio_num_leds = 2;
1047     mmc->fpgaio_has_switches = false;
1048     mmc->numirq = 92;
1049     mmc->raminfo = an505_raminfo;
1050     mmc->armsse_type = TYPE_IOTKIT;
1051     mps2tz_set_default_ram_info(mmc);
1052 }
1053 
1054 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1055 {
1056     MachineClass *mc = MACHINE_CLASS(oc);
1057     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1058 
1059     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1060     mc->default_cpus = 2;
1061     mc->min_cpus = mc->default_cpus;
1062     mc->max_cpus = mc->default_cpus;
1063     mmc->fpga_type = FPGA_AN521;
1064     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1065     mmc->scc_id = 0x41045210;
1066     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1067     mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1068     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1069     mmc->fpgaio_num_leds = 2;
1070     mmc->fpgaio_has_switches = false;
1071     mmc->numirq = 92;
1072     mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1073     mmc->armsse_type = TYPE_SSE200;
1074     mps2tz_set_default_ram_info(mmc);
1075 }
1076 
1077 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1078 {
1079     MachineClass *mc = MACHINE_CLASS(oc);
1080     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1081 
1082     mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1083     mc->default_cpus = 2;
1084     mc->min_cpus = mc->default_cpus;
1085     mc->max_cpus = mc->default_cpus;
1086     mmc->fpga_type = FPGA_AN524;
1087     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1088     mmc->scc_id = 0x41045240;
1089     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1090     mmc->oscclk = an524_oscclk;
1091     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1092     mmc->fpgaio_num_leds = 10;
1093     mmc->fpgaio_has_switches = true;
1094     mmc->numirq = 95;
1095     mmc->raminfo = an524_raminfo;
1096     mmc->armsse_type = TYPE_SSE200;
1097     mps2tz_set_default_ram_info(mmc);
1098 }
1099 
1100 static const TypeInfo mps2tz_info = {
1101     .name = TYPE_MPS2TZ_MACHINE,
1102     .parent = TYPE_MACHINE,
1103     .abstract = true,
1104     .instance_size = sizeof(MPS2TZMachineState),
1105     .class_size = sizeof(MPS2TZMachineClass),
1106     .class_init = mps2tz_class_init,
1107     .interfaces = (InterfaceInfo[]) {
1108         { TYPE_IDAU_INTERFACE },
1109         { }
1110     },
1111 };
1112 
1113 static const TypeInfo mps2tz_an505_info = {
1114     .name = TYPE_MPS2TZ_AN505_MACHINE,
1115     .parent = TYPE_MPS2TZ_MACHINE,
1116     .class_init = mps2tz_an505_class_init,
1117 };
1118 
1119 static const TypeInfo mps2tz_an521_info = {
1120     .name = TYPE_MPS2TZ_AN521_MACHINE,
1121     .parent = TYPE_MPS2TZ_MACHINE,
1122     .class_init = mps2tz_an521_class_init,
1123 };
1124 
1125 static const TypeInfo mps3tz_an524_info = {
1126     .name = TYPE_MPS3TZ_AN524_MACHINE,
1127     .parent = TYPE_MPS2TZ_MACHINE,
1128     .class_init = mps3tz_an524_class_init,
1129 };
1130 
1131 static void mps2tz_machine_init(void)
1132 {
1133     type_register_static(&mps2tz_info);
1134     type_register_static(&mps2tz_an505_info);
1135     type_register_static(&mps2tz_an521_info);
1136     type_register_static(&mps3tz_an524_info);
1137 }
1138 
1139 type_init(mps2tz_machine_init);
1140