xref: /openbmc/qemu/hw/arm/mps2-tz.c (revision 354908ce)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *
20  * Links to the TRM for the board itself and to the various Application
21  * Notes which document the FPGA images can be found here:
22  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
23  *
24  * Board TRM:
25  * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26  * Application Note AN505:
27  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28  * Application Note AN521:
29  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
30  *
31  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32  * (ARM ECM0601256) for the details of some of the device layout:
33  *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34  * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35  * most of the device layout:
36  *  http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
37  *
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/net/lan9118.h"
62 #include "net/net.h"
63 #include "hw/core/split-irq.h"
64 
65 #define MPS2TZ_NUMIRQ 92
66 
67 typedef enum MPS2TZFPGAType {
68     FPGA_AN505,
69     FPGA_AN521,
70 } MPS2TZFPGAType;
71 
72 typedef struct {
73     MachineClass parent;
74     MPS2TZFPGAType fpga_type;
75     uint32_t scc_id;
76     const char *armsse_type;
77 } MPS2TZMachineClass;
78 
79 typedef struct {
80     MachineState parent;
81 
82     ARMSSE iotkit;
83     MemoryRegion ssram[3];
84     MemoryRegion ssram1_m;
85     MPS2SCC scc;
86     MPS2FPGAIO fpgaio;
87     TZPPC ppc[5];
88     TZMPC ssram_mpc[3];
89     PL022State spi[5];
90     UnimplementedDeviceState i2c[4];
91     UnimplementedDeviceState i2s_audio;
92     UnimplementedDeviceState gpio[4];
93     UnimplementedDeviceState gfx;
94     PL080State dma[4];
95     TZMSC msc[4];
96     CMSDKAPBUART uart[5];
97     SplitIRQ sec_resp_splitter;
98     qemu_or_irq uart_irq_orgate;
99     DeviceState *lan9118;
100     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
101 } MPS2TZMachineState;
102 
103 #define TYPE_MPS2TZ_MACHINE "mps2tz"
104 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
105 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
106 
107 #define MPS2TZ_MACHINE(obj) \
108     OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
109 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
110     OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
111 #define MPS2TZ_MACHINE_CLASS(klass) \
112     OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
113 
114 /* Main SYSCLK frequency in Hz */
115 #define SYSCLK_FRQ 20000000
116 
117 /* Create an alias of an entire original MemoryRegion @orig
118  * located at @base in the memory map.
119  */
120 static void make_ram_alias(MemoryRegion *mr, const char *name,
121                            MemoryRegion *orig, hwaddr base)
122 {
123     memory_region_init_alias(mr, NULL, name, orig, 0,
124                              memory_region_size(orig));
125     memory_region_add_subregion(get_system_memory(), base, mr);
126 }
127 
128 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
129 {
130     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
131     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
132 
133     assert(irqno < MPS2TZ_NUMIRQ);
134 
135     switch (mmc->fpga_type) {
136     case FPGA_AN505:
137         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
138     case FPGA_AN521:
139         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
140     default:
141         g_assert_not_reached();
142     }
143 }
144 
145 /* Most of the devices in the AN505 FPGA image sit behind
146  * Peripheral Protection Controllers. These data structures
147  * define the layout of which devices sit behind which PPCs.
148  * The devfn for each port is a function which creates, configures
149  * and initializes the device, returning the MemoryRegion which
150  * needs to be plugged into the downstream end of the PPC port.
151  */
152 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
153                                 const char *name, hwaddr size);
154 
155 typedef struct PPCPortInfo {
156     const char *name;
157     MakeDevFn *devfn;
158     void *opaque;
159     hwaddr addr;
160     hwaddr size;
161 } PPCPortInfo;
162 
163 typedef struct PPCInfo {
164     const char *name;
165     PPCPortInfo ports[TZ_NUM_PORTS];
166 } PPCInfo;
167 
168 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
169                                        void *opaque,
170                                        const char *name, hwaddr size)
171 {
172     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
173      * and return a pointer to its MemoryRegion.
174      */
175     UnimplementedDeviceState *uds = opaque;
176 
177     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
178     qdev_prop_set_string(DEVICE(uds), "name", name);
179     qdev_prop_set_uint64(DEVICE(uds), "size", size);
180     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
181     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
182 }
183 
184 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
185                                const char *name, hwaddr size)
186 {
187     CMSDKAPBUART *uart = opaque;
188     int i = uart - &mms->uart[0];
189     int rxirqno = i * 2;
190     int txirqno = i * 2 + 1;
191     int combirqno = i + 10;
192     SysBusDevice *s;
193     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
194 
195     object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
196     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
197     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
198     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
199     s = SYS_BUS_DEVICE(uart);
200     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
201     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
202     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
203     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
204     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
205     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
206 }
207 
208 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
209                               const char *name, hwaddr size)
210 {
211     MPS2SCC *scc = opaque;
212     DeviceState *sccdev;
213     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
214 
215     object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
216     sccdev = DEVICE(scc);
217     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
218     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
219     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
220     sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
221     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
222 }
223 
224 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
225                                  const char *name, hwaddr size)
226 {
227     MPS2FPGAIO *fpgaio = opaque;
228 
229     object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
230     sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
231     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
232 }
233 
234 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
235                                   const char *name, hwaddr size)
236 {
237     SysBusDevice *s;
238     NICInfo *nd = &nd_table[0];
239 
240     /* In hardware this is a LAN9220; the LAN9118 is software compatible
241      * except that it doesn't support the checksum-offload feature.
242      */
243     qemu_check_nic_model(nd, "lan9118");
244     mms->lan9118 = qdev_new(TYPE_LAN9118);
245     qdev_set_nic_properties(mms->lan9118, nd);
246 
247     s = SYS_BUS_DEVICE(mms->lan9118);
248     sysbus_realize_and_unref(s, &error_fatal);
249     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
250     return sysbus_mmio_get_region(s, 0);
251 }
252 
253 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
254                               const char *name, hwaddr size)
255 {
256     TZMPC *mpc = opaque;
257     int i = mpc - &mms->ssram_mpc[0];
258     MemoryRegion *ssram = &mms->ssram[i];
259     MemoryRegion *upstream;
260     char *mpcname = g_strdup_printf("%s-mpc", name);
261     static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
262     static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
263 
264     memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
265 
266     object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
267     object_property_set_link(OBJECT(mpc), OBJECT(ssram),
268                              "downstream", &error_fatal);
269     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
270     /* Map the upstream end of the MPC into system memory */
271     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
272     memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
273     /* and connect its interrupt to the IoTKit */
274     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
275                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
276                                                        "mpcexp_status", i));
277 
278     /* The first SSRAM is a special case as it has an alias; accesses to
279      * the alias region at 0x00400000 must also go to the MPC upstream.
280      */
281     if (i == 0) {
282         make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
283     }
284 
285     g_free(mpcname);
286     /* Return the register interface MR for our caller to map behind the PPC */
287     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
288 }
289 
290 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
291                               const char *name, hwaddr size)
292 {
293     PL080State *dma = opaque;
294     int i = dma - &mms->dma[0];
295     SysBusDevice *s;
296     char *mscname = g_strdup_printf("%s-msc", name);
297     TZMSC *msc = &mms->msc[i];
298     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
299     MemoryRegion *msc_upstream;
300     MemoryRegion *msc_downstream;
301 
302     /*
303      * Each DMA device is a PL081 whose transaction master interface
304      * is guarded by a Master Security Controller. The downstream end of
305      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
306      * DMA devices can see all devices and memory that the CPU does.
307      */
308     object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
309     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
310     object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
311                              "downstream", &error_fatal);
312     object_property_set_link(OBJECT(msc), OBJECT(mms),
313                              "idau", &error_fatal);
314     sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
315 
316     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
317                                 qdev_get_gpio_in_named(iotkitdev,
318                                                        "mscexp_status", i));
319     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
320                                 qdev_get_gpio_in_named(DEVICE(msc),
321                                                        "irq_clear", 0));
322     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
323                                 qdev_get_gpio_in_named(DEVICE(msc),
324                                                        "cfg_nonsec", 0));
325     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
326                           ARRAY_SIZE(mms->ppc) + i,
327                           qdev_get_gpio_in_named(DEVICE(msc),
328                                                  "cfg_sec_resp", 0));
329     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
330 
331     object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
332     object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
333                              "downstream", &error_fatal);
334     sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
335 
336     s = SYS_BUS_DEVICE(dma);
337     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
338     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
339     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
340     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
341 
342     g_free(mscname);
343     return sysbus_mmio_get_region(s, 0);
344 }
345 
346 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
347                               const char *name, hwaddr size)
348 {
349     /*
350      * The AN505 has five PL022 SPI controllers.
351      * One of these should have the LCD controller behind it; the others
352      * are connected only to the FPGA's "general purpose SPI connector"
353      * or "shield" expansion connectors.
354      * Note that if we do implement devices behind SPI, the chip select
355      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
356      */
357     PL022State *spi = opaque;
358     int i = spi - &mms->spi[0];
359     SysBusDevice *s;
360 
361     object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
362     sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
363     s = SYS_BUS_DEVICE(spi);
364     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
365     return sysbus_mmio_get_region(s, 0);
366 }
367 
368 static void mps2tz_common_init(MachineState *machine)
369 {
370     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
371     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
372     MachineClass *mc = MACHINE_GET_CLASS(machine);
373     MemoryRegion *system_memory = get_system_memory();
374     DeviceState *iotkitdev;
375     DeviceState *dev_splitter;
376     int i;
377 
378     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
379         error_report("This board can only be used with CPU %s",
380                      mc->default_cpu_type);
381         exit(1);
382     }
383 
384     if (machine->ram_size != mc->default_ram_size) {
385         char *sz = size_to_str(mc->default_ram_size);
386         error_report("Invalid RAM size, should be %s", sz);
387         g_free(sz);
388         exit(EXIT_FAILURE);
389     }
390 
391     object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
392                             mmc->armsse_type);
393     iotkitdev = DEVICE(&mms->iotkit);
394     object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
395                              "memory", &error_abort);
396     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
397     qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
398     sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
399 
400     /*
401      * The AN521 needs us to create splitters to feed the IRQ inputs
402      * for each CPU in the SSE-200 from each device in the board.
403      */
404     if (mmc->fpga_type == FPGA_AN521) {
405         for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
406             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
407             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
408 
409             object_initialize_child_with_props(OBJECT(machine), name,
410                                                splitter, sizeof(*splitter),
411                                                TYPE_SPLIT_IRQ, &error_fatal,
412                                                NULL);
413             g_free(name);
414 
415             object_property_set_int(OBJECT(splitter), 2, "num-lines",
416                                     &error_fatal);
417             qdev_realize(DEVICE(splitter), NULL, &error_fatal);
418             qdev_connect_gpio_out(DEVICE(splitter), 0,
419                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
420                                                          "EXP_IRQ", i));
421             qdev_connect_gpio_out(DEVICE(splitter), 1,
422                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
423                                                          "EXP_CPU1_IRQ", i));
424         }
425     }
426 
427     /* The sec_resp_cfg output from the IoTKit must be split into multiple
428      * lines, one for each of the PPCs we create here, plus one per MSC.
429      */
430     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
431                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
432     object_property_set_int(OBJECT(&mms->sec_resp_splitter),
433                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
434                             "num-lines", &error_fatal);
435     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
436     dev_splitter = DEVICE(&mms->sec_resp_splitter);
437     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
438                                 qdev_get_gpio_in(dev_splitter, 0));
439 
440     /* The IoTKit sets up much of the memory layout, including
441      * the aliases between secure and non-secure regions in the
442      * address space. The FPGA itself contains:
443      *
444      * 0x00000000..0x003fffff  SSRAM1
445      * 0x00400000..0x007fffff  alias of SSRAM1
446      * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
447      * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
448      * 0x80000000..0x80ffffff  16MB PSRAM
449      */
450 
451     /* The FPGA images have an odd combination of different RAMs,
452      * because in hardware they are different implementations and
453      * connected to different buses, giving varying performance/size
454      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
455      * call the 16MB our "system memory", as it's the largest lump.
456      */
457     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
458 
459     /* The overflow IRQs for all UARTs are ORed together.
460      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
461      * Create the OR gate for this.
462      */
463     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
464                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
465     object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
466                             &error_fatal);
467     qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
468     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
469                           get_sse_irq_in(mms, 15));
470 
471     /* Most of the devices in the FPGA are behind Peripheral Protection
472      * Controllers. The required order for initializing things is:
473      *  + initialize the PPC
474      *  + initialize, configure and realize downstream devices
475      *  + connect downstream device MemoryRegions to the PPC
476      *  + realize the PPC
477      *  + map the PPC's MemoryRegions to the places in the address map
478      *    where the downstream devices should appear
479      *  + wire up the PPC's control lines to the IoTKit object
480      */
481 
482     const PPCInfo ppcs[] = { {
483             .name = "apb_ppcexp0",
484             .ports = {
485                 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
486                 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
487                 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
488             },
489         }, {
490             .name = "apb_ppcexp1",
491             .ports = {
492                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
493                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
494                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
495                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
496                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
497                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
498                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
499                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
500                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
501                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
502                 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
503                 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
504                 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
505                 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
506             },
507         }, {
508             .name = "apb_ppcexp2",
509             .ports = {
510                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
511                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
512                   0x40301000, 0x1000 },
513                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
514             },
515         }, {
516             .name = "ahb_ppcexp0",
517             .ports = {
518                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
519                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
520                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
521                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
522                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
523                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
524             },
525         }, {
526             .name = "ahb_ppcexp1",
527             .ports = {
528                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
529                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
530                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
531                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
532             },
533         },
534     };
535 
536     for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
537         const PPCInfo *ppcinfo = &ppcs[i];
538         TZPPC *ppc = &mms->ppc[i];
539         DeviceState *ppcdev;
540         int port;
541         char *gpioname;
542 
543         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
544                                 TYPE_TZ_PPC);
545         ppcdev = DEVICE(ppc);
546 
547         for (port = 0; port < TZ_NUM_PORTS; port++) {
548             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
549             MemoryRegion *mr;
550             char *portname;
551 
552             if (!pinfo->devfn) {
553                 continue;
554             }
555 
556             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
557             portname = g_strdup_printf("port[%d]", port);
558             object_property_set_link(OBJECT(ppc), OBJECT(mr),
559                                      portname, &error_fatal);
560             g_free(portname);
561         }
562 
563         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
564 
565         for (port = 0; port < TZ_NUM_PORTS; port++) {
566             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
567 
568             if (!pinfo->devfn) {
569                 continue;
570             }
571             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
572 
573             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
574             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
575                                         qdev_get_gpio_in_named(ppcdev,
576                                                                "cfg_nonsec",
577                                                                port));
578             g_free(gpioname);
579             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
580             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
581                                         qdev_get_gpio_in_named(ppcdev,
582                                                                "cfg_ap", port));
583             g_free(gpioname);
584         }
585 
586         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
587         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
588                                     qdev_get_gpio_in_named(ppcdev,
589                                                            "irq_enable", 0));
590         g_free(gpioname);
591         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
592         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
593                                     qdev_get_gpio_in_named(ppcdev,
594                                                            "irq_clear", 0));
595         g_free(gpioname);
596         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
597         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
598                                     qdev_get_gpio_in_named(iotkitdev,
599                                                            gpioname, 0));
600         g_free(gpioname);
601 
602         qdev_connect_gpio_out(dev_splitter, i,
603                               qdev_get_gpio_in_named(ppcdev,
604                                                      "cfg_sec_resp", 0));
605     }
606 
607     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
608 
609     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
610 }
611 
612 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
613                                int *iregion, bool *exempt, bool *ns, bool *nsc)
614 {
615     /*
616      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
617      * the Master Security Controllers. Thes have the same logic as
618      * is used by the IoTKit for the IDAU connected to the CPU, except
619      * that MSCs don't care about the NSC attribute.
620      */
621     int region = extract32(address, 28, 4);
622 
623     *ns = !(region & 1);
624     *nsc = false;
625     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
626     *exempt = (address & 0xeff00000) == 0xe0000000;
627     *iregion = region;
628 }
629 
630 static void mps2tz_class_init(ObjectClass *oc, void *data)
631 {
632     MachineClass *mc = MACHINE_CLASS(oc);
633     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
634 
635     mc->init = mps2tz_common_init;
636     iic->check = mps2_tz_idau_check;
637     mc->default_ram_size = 16 * MiB;
638     mc->default_ram_id = "mps.ram";
639 }
640 
641 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
642 {
643     MachineClass *mc = MACHINE_CLASS(oc);
644     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
645 
646     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
647     mc->default_cpus = 1;
648     mc->min_cpus = mc->default_cpus;
649     mc->max_cpus = mc->default_cpus;
650     mmc->fpga_type = FPGA_AN505;
651     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
652     mmc->scc_id = 0x41045050;
653     mmc->armsse_type = TYPE_IOTKIT;
654 }
655 
656 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
657 {
658     MachineClass *mc = MACHINE_CLASS(oc);
659     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
660 
661     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
662     mc->default_cpus = 2;
663     mc->min_cpus = mc->default_cpus;
664     mc->max_cpus = mc->default_cpus;
665     mmc->fpga_type = FPGA_AN521;
666     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
667     mmc->scc_id = 0x41045210;
668     mmc->armsse_type = TYPE_SSE200;
669 }
670 
671 static const TypeInfo mps2tz_info = {
672     .name = TYPE_MPS2TZ_MACHINE,
673     .parent = TYPE_MACHINE,
674     .abstract = true,
675     .instance_size = sizeof(MPS2TZMachineState),
676     .class_size = sizeof(MPS2TZMachineClass),
677     .class_init = mps2tz_class_init,
678     .interfaces = (InterfaceInfo[]) {
679         { TYPE_IDAU_INTERFACE },
680         { }
681     },
682 };
683 
684 static const TypeInfo mps2tz_an505_info = {
685     .name = TYPE_MPS2TZ_AN505_MACHINE,
686     .parent = TYPE_MPS2TZ_MACHINE,
687     .class_init = mps2tz_an505_class_init,
688 };
689 
690 static const TypeInfo mps2tz_an521_info = {
691     .name = TYPE_MPS2TZ_AN521_MACHINE,
692     .parent = TYPE_MPS2TZ_MACHINE,
693     .class_init = mps2tz_an521_class_init,
694 };
695 
696 static void mps2tz_machine_init(void)
697 {
698     type_register_static(&mps2tz_info);
699     type_register_static(&mps2tz_an505_info);
700     type_register_static(&mps2tz_an521_info);
701 }
702 
703 type_init(mps2tz_machine_init);
704