xref: /openbmc/qemu/hw/arm/mps2-tz.c (revision 2a53cff4)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *
20  * Links to the TRM for the board itself and to the various Application
21  * Notes which document the FPGA images can be found here:
22  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
23  *
24  * Board TRM:
25  * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26  * Application Note AN505:
27  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28  * Application Note AN521:
29  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
30  *
31  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32  * (ARM ECM0601256) for the details of some of the device layout:
33  *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34  * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35  * most of the device layout:
36  *  http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
37  *
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qapi/error.h"
42 #include "qemu/error-report.h"
43 #include "hw/arm/arm.h"
44 #include "hw/arm/armv7m.h"
45 #include "hw/or-irq.h"
46 #include "hw/boards.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/sysemu.h"
49 #include "hw/misc/unimp.h"
50 #include "hw/char/cmsdk-apb-uart.h"
51 #include "hw/timer/cmsdk-apb-timer.h"
52 #include "hw/misc/mps2-scc.h"
53 #include "hw/misc/mps2-fpgaio.h"
54 #include "hw/misc/tz-mpc.h"
55 #include "hw/misc/tz-msc.h"
56 #include "hw/arm/armsse.h"
57 #include "hw/dma/pl080.h"
58 #include "hw/ssi/pl022.h"
59 #include "net/net.h"
60 #include "hw/core/split-irq.h"
61 
62 #define MPS2TZ_NUMIRQ 92
63 
64 typedef enum MPS2TZFPGAType {
65     FPGA_AN505,
66     FPGA_AN521,
67 } MPS2TZFPGAType;
68 
69 typedef struct {
70     MachineClass parent;
71     MPS2TZFPGAType fpga_type;
72     uint32_t scc_id;
73     const char *armsse_type;
74 } MPS2TZMachineClass;
75 
76 typedef struct {
77     MachineState parent;
78 
79     ARMSSE iotkit;
80     MemoryRegion psram;
81     MemoryRegion ssram[3];
82     MemoryRegion ssram1_m;
83     MPS2SCC scc;
84     MPS2FPGAIO fpgaio;
85     TZPPC ppc[5];
86     TZMPC ssram_mpc[3];
87     PL022State spi[5];
88     UnimplementedDeviceState i2c[4];
89     UnimplementedDeviceState i2s_audio;
90     UnimplementedDeviceState gpio[4];
91     UnimplementedDeviceState gfx;
92     PL080State dma[4];
93     TZMSC msc[4];
94     CMSDKAPBUART uart[5];
95     SplitIRQ sec_resp_splitter;
96     qemu_or_irq uart_irq_orgate;
97     DeviceState *lan9118;
98     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
99 } MPS2TZMachineState;
100 
101 #define TYPE_MPS2TZ_MACHINE "mps2tz"
102 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
103 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
104 
105 #define MPS2TZ_MACHINE(obj) \
106     OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
107 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
108     OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
109 #define MPS2TZ_MACHINE_CLASS(klass) \
110     OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
111 
112 /* Main SYSCLK frequency in Hz */
113 #define SYSCLK_FRQ 20000000
114 
115 /* Create an alias of an entire original MemoryRegion @orig
116  * located at @base in the memory map.
117  */
118 static void make_ram_alias(MemoryRegion *mr, const char *name,
119                            MemoryRegion *orig, hwaddr base)
120 {
121     memory_region_init_alias(mr, NULL, name, orig, 0,
122                              memory_region_size(orig));
123     memory_region_add_subregion(get_system_memory(), base, mr);
124 }
125 
126 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
127 {
128     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
129     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
130 
131     assert(irqno < MPS2TZ_NUMIRQ);
132 
133     switch (mmc->fpga_type) {
134     case FPGA_AN505:
135         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
136     case FPGA_AN521:
137         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
138     default:
139         g_assert_not_reached();
140     }
141 }
142 
143 /* Most of the devices in the AN505 FPGA image sit behind
144  * Peripheral Protection Controllers. These data structures
145  * define the layout of which devices sit behind which PPCs.
146  * The devfn for each port is a function which creates, configures
147  * and initializes the device, returning the MemoryRegion which
148  * needs to be plugged into the downstream end of the PPC port.
149  */
150 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
151                                 const char *name, hwaddr size);
152 
153 typedef struct PPCPortInfo {
154     const char *name;
155     MakeDevFn *devfn;
156     void *opaque;
157     hwaddr addr;
158     hwaddr size;
159 } PPCPortInfo;
160 
161 typedef struct PPCInfo {
162     const char *name;
163     PPCPortInfo ports[TZ_NUM_PORTS];
164 } PPCInfo;
165 
166 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
167                                        void *opaque,
168                                        const char *name, hwaddr size)
169 {
170     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
171      * and return a pointer to its MemoryRegion.
172      */
173     UnimplementedDeviceState *uds = opaque;
174 
175     sysbus_init_child_obj(OBJECT(mms), name, uds,
176                           sizeof(UnimplementedDeviceState),
177                           TYPE_UNIMPLEMENTED_DEVICE);
178     qdev_prop_set_string(DEVICE(uds), "name", name);
179     qdev_prop_set_uint64(DEVICE(uds), "size", size);
180     object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
181     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
182 }
183 
184 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
185                                const char *name, hwaddr size)
186 {
187     CMSDKAPBUART *uart = opaque;
188     int i = uart - &mms->uart[0];
189     int rxirqno = i * 2;
190     int txirqno = i * 2 + 1;
191     int combirqno = i + 10;
192     SysBusDevice *s;
193     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
194 
195     sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
196                           TYPE_CMSDK_APB_UART);
197     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
198     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
199     object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
200     s = SYS_BUS_DEVICE(uart);
201     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
202     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
203     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
204     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
205     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
206     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
207 }
208 
209 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
210                               const char *name, hwaddr size)
211 {
212     MPS2SCC *scc = opaque;
213     DeviceState *sccdev;
214     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
215 
216     object_initialize(scc, sizeof(mms->scc), TYPE_MPS2_SCC);
217     sccdev = DEVICE(scc);
218     qdev_set_parent_bus(sccdev, sysbus_get_default());
219     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
220     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
221     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
222     object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
223     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
224 }
225 
226 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
227                                  const char *name, hwaddr size)
228 {
229     MPS2FPGAIO *fpgaio = opaque;
230 
231     object_initialize(fpgaio, sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
232     qdev_set_parent_bus(DEVICE(fpgaio), sysbus_get_default());
233     object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
234     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
235 }
236 
237 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
238                                   const char *name, hwaddr size)
239 {
240     SysBusDevice *s;
241     NICInfo *nd = &nd_table[0];
242 
243     /* In hardware this is a LAN9220; the LAN9118 is software compatible
244      * except that it doesn't support the checksum-offload feature.
245      */
246     qemu_check_nic_model(nd, "lan9118");
247     mms->lan9118 = qdev_create(NULL, "lan9118");
248     qdev_set_nic_properties(mms->lan9118, nd);
249     qdev_init_nofail(mms->lan9118);
250 
251     s = SYS_BUS_DEVICE(mms->lan9118);
252     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
253     return sysbus_mmio_get_region(s, 0);
254 }
255 
256 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
257                               const char *name, hwaddr size)
258 {
259     TZMPC *mpc = opaque;
260     int i = mpc - &mms->ssram_mpc[0];
261     MemoryRegion *ssram = &mms->ssram[i];
262     MemoryRegion *upstream;
263     char *mpcname = g_strdup_printf("%s-mpc", name);
264     static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
265     static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
266 
267     memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
268 
269     sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]),
270                           TYPE_TZ_MPC);
271     object_property_set_link(OBJECT(mpc), OBJECT(ssram),
272                              "downstream", &error_fatal);
273     object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
274     /* Map the upstream end of the MPC into system memory */
275     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
276     memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
277     /* and connect its interrupt to the IoTKit */
278     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
279                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
280                                                        "mpcexp_status", i));
281 
282     /* The first SSRAM is a special case as it has an alias; accesses to
283      * the alias region at 0x00400000 must also go to the MPC upstream.
284      */
285     if (i == 0) {
286         make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
287     }
288 
289     g_free(mpcname);
290     /* Return the register interface MR for our caller to map behind the PPC */
291     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
292 }
293 
294 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
295                               const char *name, hwaddr size)
296 {
297     PL080State *dma = opaque;
298     int i = dma - &mms->dma[0];
299     SysBusDevice *s;
300     char *mscname = g_strdup_printf("%s-msc", name);
301     TZMSC *msc = &mms->msc[i];
302     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
303     MemoryRegion *msc_upstream;
304     MemoryRegion *msc_downstream;
305 
306     /*
307      * Each DMA device is a PL081 whose transaction master interface
308      * is guarded by a Master Security Controller. The downstream end of
309      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
310      * DMA devices can see all devices and memory that the CPU does.
311      */
312     sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC);
313     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
314     object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
315                              "downstream", &error_fatal);
316     object_property_set_link(OBJECT(msc), OBJECT(mms),
317                              "idau", &error_fatal);
318     object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal);
319 
320     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
321                                 qdev_get_gpio_in_named(iotkitdev,
322                                                        "mscexp_status", i));
323     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
324                                 qdev_get_gpio_in_named(DEVICE(msc),
325                                                        "irq_clear", 0));
326     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
327                                 qdev_get_gpio_in_named(DEVICE(msc),
328                                                        "cfg_nonsec", 0));
329     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
330                           ARRAY_SIZE(mms->ppc) + i,
331                           qdev_get_gpio_in_named(DEVICE(msc),
332                                                  "cfg_sec_resp", 0));
333     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
334 
335     sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081);
336     object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
337                              "downstream", &error_fatal);
338     object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal);
339 
340     s = SYS_BUS_DEVICE(dma);
341     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
342     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
343     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
344     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
345 
346     g_free(mscname);
347     return sysbus_mmio_get_region(s, 0);
348 }
349 
350 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
351                               const char *name, hwaddr size)
352 {
353     /*
354      * The AN505 has five PL022 SPI controllers.
355      * One of these should have the LCD controller behind it; the others
356      * are connected only to the FPGA's "general purpose SPI connector"
357      * or "shield" expansion connectors.
358      * Note that if we do implement devices behind SPI, the chip select
359      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
360      */
361     PL022State *spi = opaque;
362     int i = spi - &mms->spi[0];
363     SysBusDevice *s;
364 
365     sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(mms->spi[0]),
366                           TYPE_PL022);
367     object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal);
368     s = SYS_BUS_DEVICE(spi);
369     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
370     return sysbus_mmio_get_region(s, 0);
371 }
372 
373 static void mps2tz_common_init(MachineState *machine)
374 {
375     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
376     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
377     MachineClass *mc = MACHINE_GET_CLASS(machine);
378     MemoryRegion *system_memory = get_system_memory();
379     DeviceState *iotkitdev;
380     DeviceState *dev_splitter;
381     int i;
382 
383     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
384         error_report("This board can only be used with CPU %s",
385                      mc->default_cpu_type);
386         exit(1);
387     }
388 
389     sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit,
390                           sizeof(mms->iotkit), mmc->armsse_type);
391     iotkitdev = DEVICE(&mms->iotkit);
392     object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
393                              "memory", &error_abort);
394     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
395     qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
396     object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
397                              &error_fatal);
398 
399     /*
400      * The AN521 needs us to create splitters to feed the IRQ inputs
401      * for each CPU in the SSE-200 from each device in the board.
402      */
403     if (mmc->fpga_type == FPGA_AN521) {
404         for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
405             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
406             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
407 
408             object_initialize_child(OBJECT(machine), name,
409                                     splitter, sizeof(*splitter),
410                                     TYPE_SPLIT_IRQ, &error_fatal, NULL);
411             g_free(name);
412 
413             object_property_set_int(OBJECT(splitter), 2, "num-lines",
414                                     &error_fatal);
415             object_property_set_bool(OBJECT(splitter), true, "realized",
416                                      &error_fatal);
417             qdev_connect_gpio_out(DEVICE(splitter), 0,
418                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
419                                                          "EXP_IRQ", i));
420             qdev_connect_gpio_out(DEVICE(splitter), 1,
421                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
422                                                          "EXP_CPU1_IRQ", i));
423         }
424     }
425 
426     /* The sec_resp_cfg output from the IoTKit must be split into multiple
427      * lines, one for each of the PPCs we create here, plus one per MSC.
428      */
429     object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter),
430                       TYPE_SPLIT_IRQ);
431     object_property_add_child(OBJECT(machine), "sec-resp-splitter",
432                               OBJECT(&mms->sec_resp_splitter), &error_abort);
433     object_property_set_int(OBJECT(&mms->sec_resp_splitter),
434                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
435                             "num-lines", &error_fatal);
436     object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
437                              "realized", &error_fatal);
438     dev_splitter = DEVICE(&mms->sec_resp_splitter);
439     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
440                                 qdev_get_gpio_in(dev_splitter, 0));
441 
442     /* The IoTKit sets up much of the memory layout, including
443      * the aliases between secure and non-secure regions in the
444      * address space. The FPGA itself contains:
445      *
446      * 0x00000000..0x003fffff  SSRAM1
447      * 0x00400000..0x007fffff  alias of SSRAM1
448      * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
449      * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
450      * 0x80000000..0x80ffffff  16MB PSRAM
451      */
452 
453     /* The FPGA images have an odd combination of different RAMs,
454      * because in hardware they are different implementations and
455      * connected to different buses, giving varying performance/size
456      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
457      * call the 16MB our "system memory", as it's the largest lump.
458      */
459     memory_region_allocate_system_memory(&mms->psram,
460                                          NULL, "mps.ram", 0x01000000);
461     memory_region_add_subregion(system_memory, 0x80000000, &mms->psram);
462 
463     /* The overflow IRQs for all UARTs are ORed together.
464      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
465      * Create the OR gate for this.
466      */
467     object_initialize(&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
468                       TYPE_OR_IRQ);
469     object_property_add_child(OBJECT(mms), "uart-irq-orgate",
470                               OBJECT(&mms->uart_irq_orgate), &error_abort);
471     object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
472                             &error_fatal);
473     object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
474                              "realized", &error_fatal);
475     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
476                           get_sse_irq_in(mms, 15));
477 
478     /* Most of the devices in the FPGA are behind Peripheral Protection
479      * Controllers. The required order for initializing things is:
480      *  + initialize the PPC
481      *  + initialize, configure and realize downstream devices
482      *  + connect downstream device MemoryRegions to the PPC
483      *  + realize the PPC
484      *  + map the PPC's MemoryRegions to the places in the address map
485      *    where the downstream devices should appear
486      *  + wire up the PPC's control lines to the IoTKit object
487      */
488 
489     const PPCInfo ppcs[] = { {
490             .name = "apb_ppcexp0",
491             .ports = {
492                 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
493                 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
494                 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
495             },
496         }, {
497             .name = "apb_ppcexp1",
498             .ports = {
499                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
500                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
501                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
502                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
503                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
504                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
505                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
506                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
507                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
508                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
509                 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
510                 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
511                 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
512                 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
513             },
514         }, {
515             .name = "apb_ppcexp2",
516             .ports = {
517                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
518                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
519                   0x40301000, 0x1000 },
520                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
521             },
522         }, {
523             .name = "ahb_ppcexp0",
524             .ports = {
525                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
526                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
527                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
528                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
529                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
530                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
531             },
532         }, {
533             .name = "ahb_ppcexp1",
534             .ports = {
535                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
536                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
537                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
538                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
539             },
540         },
541     };
542 
543     for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
544         const PPCInfo *ppcinfo = &ppcs[i];
545         TZPPC *ppc = &mms->ppc[i];
546         DeviceState *ppcdev;
547         int port;
548         char *gpioname;
549 
550         sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
551                               sizeof(TZPPC), TYPE_TZ_PPC);
552         ppcdev = DEVICE(ppc);
553 
554         for (port = 0; port < TZ_NUM_PORTS; port++) {
555             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
556             MemoryRegion *mr;
557             char *portname;
558 
559             if (!pinfo->devfn) {
560                 continue;
561             }
562 
563             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
564             portname = g_strdup_printf("port[%d]", port);
565             object_property_set_link(OBJECT(ppc), OBJECT(mr),
566                                      portname, &error_fatal);
567             g_free(portname);
568         }
569 
570         object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
571 
572         for (port = 0; port < TZ_NUM_PORTS; port++) {
573             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
574 
575             if (!pinfo->devfn) {
576                 continue;
577             }
578             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
579 
580             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
581             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
582                                         qdev_get_gpio_in_named(ppcdev,
583                                                                "cfg_nonsec",
584                                                                port));
585             g_free(gpioname);
586             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
587             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
588                                         qdev_get_gpio_in_named(ppcdev,
589                                                                "cfg_ap", port));
590             g_free(gpioname);
591         }
592 
593         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
594         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
595                                     qdev_get_gpio_in_named(ppcdev,
596                                                            "irq_enable", 0));
597         g_free(gpioname);
598         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
599         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
600                                     qdev_get_gpio_in_named(ppcdev,
601                                                            "irq_clear", 0));
602         g_free(gpioname);
603         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
604         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
605                                     qdev_get_gpio_in_named(iotkitdev,
606                                                            gpioname, 0));
607         g_free(gpioname);
608 
609         qdev_connect_gpio_out(dev_splitter, i,
610                               qdev_get_gpio_in_named(ppcdev,
611                                                      "cfg_sec_resp", 0));
612     }
613 
614     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
615 
616     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
617 }
618 
619 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
620                                int *iregion, bool *exempt, bool *ns, bool *nsc)
621 {
622     /*
623      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
624      * the Master Security Controllers. Thes have the same logic as
625      * is used by the IoTKit for the IDAU connected to the CPU, except
626      * that MSCs don't care about the NSC attribute.
627      */
628     int region = extract32(address, 28, 4);
629 
630     *ns = !(region & 1);
631     *nsc = false;
632     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
633     *exempt = (address & 0xeff00000) == 0xe0000000;
634     *iregion = region;
635 }
636 
637 static void mps2tz_class_init(ObjectClass *oc, void *data)
638 {
639     MachineClass *mc = MACHINE_CLASS(oc);
640     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
641 
642     mc->init = mps2tz_common_init;
643     iic->check = mps2_tz_idau_check;
644 }
645 
646 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
647 {
648     MachineClass *mc = MACHINE_CLASS(oc);
649     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
650 
651     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
652     mc->default_cpus = 1;
653     mc->min_cpus = mc->default_cpus;
654     mc->max_cpus = mc->default_cpus;
655     mmc->fpga_type = FPGA_AN505;
656     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
657     mmc->scc_id = 0x41045050;
658     mmc->armsse_type = TYPE_IOTKIT;
659 }
660 
661 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
662 {
663     MachineClass *mc = MACHINE_CLASS(oc);
664     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
665 
666     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
667     mc->default_cpus = 2;
668     mc->min_cpus = mc->default_cpus;
669     mc->max_cpus = mc->default_cpus;
670     mmc->fpga_type = FPGA_AN521;
671     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
672     mmc->scc_id = 0x41045210;
673     mmc->armsse_type = TYPE_SSE200;
674 }
675 
676 static const TypeInfo mps2tz_info = {
677     .name = TYPE_MPS2TZ_MACHINE,
678     .parent = TYPE_MACHINE,
679     .abstract = true,
680     .instance_size = sizeof(MPS2TZMachineState),
681     .class_size = sizeof(MPS2TZMachineClass),
682     .class_init = mps2tz_class_init,
683     .interfaces = (InterfaceInfo[]) {
684         { TYPE_IDAU_INTERFACE },
685         { }
686     },
687 };
688 
689 static const TypeInfo mps2tz_an505_info = {
690     .name = TYPE_MPS2TZ_AN505_MACHINE,
691     .parent = TYPE_MPS2TZ_MACHINE,
692     .class_init = mps2tz_an505_class_init,
693 };
694 
695 static const TypeInfo mps2tz_an521_info = {
696     .name = TYPE_MPS2TZ_AN521_MACHINE,
697     .parent = TYPE_MPS2TZ_MACHINE,
698     .class_init = mps2tz_an521_class_init,
699 };
700 
701 static void mps2tz_machine_init(void)
702 {
703     type_register_static(&mps2tz_info);
704     type_register_static(&mps2tz_an505_info);
705     type_register_static(&mps2tz_an521_info);
706 }
707 
708 type_init(mps2tz_machine_init);
709