xref: /openbmc/qemu/hw/arm/boot.c (revision e7bbc9b1)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/error-report.h"
12 #include "qapi/error.h"
13 #include <libfdt.h>
14 #include "hw/hw.h"
15 #include "hw/arm/arm.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "hw/loader.h"
22 #include "elf.h"
23 #include "sysemu/device_tree.h"
24 #include "qemu/config-file.h"
25 #include "qemu/option.h"
26 #include "exec/address-spaces.h"
27 #include "qemu/units.h"
28 
29 /* Kernel boot protocol is specified in the kernel docs
30  * Documentation/arm/Booting and Documentation/arm64/booting.txt
31  * They have different preferred image load offsets from system RAM base.
32  */
33 #define KERNEL_ARGS_ADDR   0x100
34 #define KERNEL_NOLOAD_ADDR 0x02000000
35 #define KERNEL_LOAD_ADDR   0x00010000
36 #define KERNEL64_LOAD_ADDR 0x00080000
37 
38 #define ARM64_TEXT_OFFSET_OFFSET    8
39 #define ARM64_MAGIC_OFFSET          56
40 
41 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
42 
43 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
44                                      const struct arm_boot_info *info)
45 {
46     /* Return the address space to use for bootloader reads and writes.
47      * We prefer the secure address space if the CPU has it and we're
48      * going to boot the guest into it.
49      */
50     int asidx;
51     CPUState *cs = CPU(cpu);
52 
53     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
54         asidx = ARMASIdx_S;
55     } else {
56         asidx = ARMASIdx_NS;
57     }
58 
59     return cpu_get_address_space(cs, asidx);
60 }
61 
62 typedef enum {
63     FIXUP_NONE = 0,     /* do nothing */
64     FIXUP_TERMINATOR,   /* end of insns */
65     FIXUP_BOARDID,      /* overwrite with board ID number */
66     FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
67     FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
68     FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
69     FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
70     FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
71     FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
72     FIXUP_BOOTREG,      /* overwrite with boot register address */
73     FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
74     FIXUP_MAX,
75 } FixupType;
76 
77 typedef struct ARMInsnFixup {
78     uint32_t insn;
79     FixupType fixup;
80 } ARMInsnFixup;
81 
82 static const ARMInsnFixup bootloader_aarch64[] = {
83     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
84     { 0xaa1f03e1 }, /* mov x1, xzr */
85     { 0xaa1f03e2 }, /* mov x2, xzr */
86     { 0xaa1f03e3 }, /* mov x3, xzr */
87     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
88     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
89     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
90     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
91     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
92     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
93     { 0, FIXUP_TERMINATOR }
94 };
95 
96 /* A very small bootloader: call the board-setup code (if needed),
97  * set r0-r2, then jump to the kernel.
98  * If we're not calling boot setup code then we don't copy across
99  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
100  */
101 
102 static const ARMInsnFixup bootloader[] = {
103     { 0xe28fe004 }, /* add     lr, pc, #4 */
104     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
105     { 0, FIXUP_BOARD_SETUP },
106 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
107     { 0xe3a00000 }, /* mov     r0, #0 */
108     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
109     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
110     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
111     { 0, FIXUP_BOARDID },
112     { 0, FIXUP_ARGPTR_LO },
113     { 0, FIXUP_ENTRYPOINT_LO },
114     { 0, FIXUP_TERMINATOR }
115 };
116 
117 /* Handling for secondary CPU boot in a multicore system.
118  * Unlike the uniprocessor/primary CPU boot, this is platform
119  * dependent. The default code here is based on the secondary
120  * CPU boot protocol used on realview/vexpress boards, with
121  * some parameterisation to increase its flexibility.
122  * QEMU platform models for which this code is not appropriate
123  * should override write_secondary_boot and secondary_cpu_reset_hook
124  * instead.
125  *
126  * This code enables the interrupt controllers for the secondary
127  * CPUs and then puts all the secondary CPUs into a loop waiting
128  * for an interprocessor interrupt and polling a configurable
129  * location for the kernel secondary CPU entry point.
130  */
131 #define DSB_INSN 0xf57ff04f
132 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
133 
134 static const ARMInsnFixup smpboot[] = {
135     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
136     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
137     { 0xe3a01001 }, /* mov r1, #1 */
138     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
139     { 0xe3a010ff }, /* mov r1, #0xff */
140     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
141     { 0, FIXUP_DSB },   /* dsb */
142     { 0xe320f003 }, /* wfi */
143     { 0xe5901000 }, /* ldr     r1, [r0] */
144     { 0xe1110001 }, /* tst     r1, r1 */
145     { 0x0afffffb }, /* beq     <wfi> */
146     { 0xe12fff11 }, /* bx      r1 */
147     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
148     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
149     { 0, FIXUP_TERMINATOR }
150 };
151 
152 static void write_bootloader(const char *name, hwaddr addr,
153                              const ARMInsnFixup *insns, uint32_t *fixupcontext,
154                              AddressSpace *as)
155 {
156     /* Fix up the specified bootloader fragment and write it into
157      * guest memory using rom_add_blob_fixed(). fixupcontext is
158      * an array giving the values to write in for the fixup types
159      * which write a value into the code array.
160      */
161     int i, len;
162     uint32_t *code;
163 
164     len = 0;
165     while (insns[len].fixup != FIXUP_TERMINATOR) {
166         len++;
167     }
168 
169     code = g_new0(uint32_t, len);
170 
171     for (i = 0; i < len; i++) {
172         uint32_t insn = insns[i].insn;
173         FixupType fixup = insns[i].fixup;
174 
175         switch (fixup) {
176         case FIXUP_NONE:
177             break;
178         case FIXUP_BOARDID:
179         case FIXUP_BOARD_SETUP:
180         case FIXUP_ARGPTR_LO:
181         case FIXUP_ARGPTR_HI:
182         case FIXUP_ENTRYPOINT_LO:
183         case FIXUP_ENTRYPOINT_HI:
184         case FIXUP_GIC_CPU_IF:
185         case FIXUP_BOOTREG:
186         case FIXUP_DSB:
187             insn = fixupcontext[fixup];
188             break;
189         default:
190             abort();
191         }
192         code[i] = tswap32(insn);
193     }
194 
195     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
196 
197     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
198 
199     g_free(code);
200 }
201 
202 static void default_write_secondary(ARMCPU *cpu,
203                                     const struct arm_boot_info *info)
204 {
205     uint32_t fixupcontext[FIXUP_MAX];
206     AddressSpace *as = arm_boot_address_space(cpu, info);
207 
208     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
209     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
210     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
211         fixupcontext[FIXUP_DSB] = DSB_INSN;
212     } else {
213         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
214     }
215 
216     write_bootloader("smpboot", info->smp_loader_start,
217                      smpboot, fixupcontext, as);
218 }
219 
220 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
221                                             const struct arm_boot_info *info,
222                                             hwaddr mvbar_addr)
223 {
224     AddressSpace *as = arm_boot_address_space(cpu, info);
225     int n;
226     uint32_t mvbar_blob[] = {
227         /* mvbar_addr: secure monitor vectors
228          * Default unimplemented and unused vectors to spin. Makes it
229          * easier to debug (as opposed to the CPU running away).
230          */
231         0xeafffffe, /* (spin) */
232         0xeafffffe, /* (spin) */
233         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
234         0xeafffffe, /* (spin) */
235         0xeafffffe, /* (spin) */
236         0xeafffffe, /* (spin) */
237         0xeafffffe, /* (spin) */
238         0xeafffffe, /* (spin) */
239     };
240     uint32_t board_setup_blob[] = {
241         /* board setup addr */
242         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
243         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
244         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
245         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
246         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
247         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
248         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
249         0xe1a0f001, /* mov     pc, r1                 ;return */
250     };
251 
252     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
253     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
254 
255     /* check that these blobs don't overlap */
256     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
257           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
258 
259     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
260         mvbar_blob[n] = tswap32(mvbar_blob[n]);
261     }
262     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
263                           mvbar_addr, as);
264 
265     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
266         board_setup_blob[n] = tswap32(board_setup_blob[n]);
267     }
268     rom_add_blob_fixed_as("board-setup", board_setup_blob,
269                           sizeof(board_setup_blob), info->board_setup_addr, as);
270 }
271 
272 static void default_reset_secondary(ARMCPU *cpu,
273                                     const struct arm_boot_info *info)
274 {
275     AddressSpace *as = arm_boot_address_space(cpu, info);
276     CPUState *cs = CPU(cpu);
277 
278     address_space_stl_notdirty(as, info->smp_bootreg_addr,
279                                0, MEMTXATTRS_UNSPECIFIED, NULL);
280     cpu_set_pc(cs, info->smp_loader_start);
281 }
282 
283 static inline bool have_dtb(const struct arm_boot_info *info)
284 {
285     return info->dtb_filename || info->get_dtb;
286 }
287 
288 #define WRITE_WORD(p, value) do { \
289     address_space_stl_notdirty(as, p, value, \
290                                MEMTXATTRS_UNSPECIFIED, NULL);  \
291     p += 4;                       \
292 } while (0)
293 
294 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
295 {
296     int initrd_size = info->initrd_size;
297     hwaddr base = info->loader_start;
298     hwaddr p;
299 
300     p = base + KERNEL_ARGS_ADDR;
301     /* ATAG_CORE */
302     WRITE_WORD(p, 5);
303     WRITE_WORD(p, 0x54410001);
304     WRITE_WORD(p, 1);
305     WRITE_WORD(p, 0x1000);
306     WRITE_WORD(p, 0);
307     /* ATAG_MEM */
308     /* TODO: handle multiple chips on one ATAG list */
309     WRITE_WORD(p, 4);
310     WRITE_WORD(p, 0x54410002);
311     WRITE_WORD(p, info->ram_size);
312     WRITE_WORD(p, info->loader_start);
313     if (initrd_size) {
314         /* ATAG_INITRD2 */
315         WRITE_WORD(p, 4);
316         WRITE_WORD(p, 0x54420005);
317         WRITE_WORD(p, info->initrd_start);
318         WRITE_WORD(p, initrd_size);
319     }
320     if (info->kernel_cmdline && *info->kernel_cmdline) {
321         /* ATAG_CMDLINE */
322         int cmdline_size;
323 
324         cmdline_size = strlen(info->kernel_cmdline);
325         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
326                             (const uint8_t *)info->kernel_cmdline,
327                             cmdline_size + 1);
328         cmdline_size = (cmdline_size >> 2) + 1;
329         WRITE_WORD(p, cmdline_size + 2);
330         WRITE_WORD(p, 0x54410009);
331         p += cmdline_size * 4;
332     }
333     if (info->atag_board) {
334         /* ATAG_BOARD */
335         int atag_board_len;
336         uint8_t atag_board_buf[0x1000];
337 
338         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
339         WRITE_WORD(p, (atag_board_len + 8) >> 2);
340         WRITE_WORD(p, 0x414f4d50);
341         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
342                             atag_board_buf, atag_board_len);
343         p += atag_board_len;
344     }
345     /* ATAG_END */
346     WRITE_WORD(p, 0);
347     WRITE_WORD(p, 0);
348 }
349 
350 static void set_kernel_args_old(const struct arm_boot_info *info,
351                                 AddressSpace *as)
352 {
353     hwaddr p;
354     const char *s;
355     int initrd_size = info->initrd_size;
356     hwaddr base = info->loader_start;
357 
358     /* see linux/include/asm-arm/setup.h */
359     p = base + KERNEL_ARGS_ADDR;
360     /* page_size */
361     WRITE_WORD(p, 4096);
362     /* nr_pages */
363     WRITE_WORD(p, info->ram_size / 4096);
364     /* ramdisk_size */
365     WRITE_WORD(p, 0);
366 #define FLAG_READONLY	1
367 #define FLAG_RDLOAD	4
368 #define FLAG_RDPROMPT	8
369     /* flags */
370     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
371     /* rootdev */
372     WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
373     /* video_num_cols */
374     WRITE_WORD(p, 0);
375     /* video_num_rows */
376     WRITE_WORD(p, 0);
377     /* video_x */
378     WRITE_WORD(p, 0);
379     /* video_y */
380     WRITE_WORD(p, 0);
381     /* memc_control_reg */
382     WRITE_WORD(p, 0);
383     /* unsigned char sounddefault */
384     /* unsigned char adfsdrives */
385     /* unsigned char bytes_per_char_h */
386     /* unsigned char bytes_per_char_v */
387     WRITE_WORD(p, 0);
388     /* pages_in_bank[4] */
389     WRITE_WORD(p, 0);
390     WRITE_WORD(p, 0);
391     WRITE_WORD(p, 0);
392     WRITE_WORD(p, 0);
393     /* pages_in_vram */
394     WRITE_WORD(p, 0);
395     /* initrd_start */
396     if (initrd_size) {
397         WRITE_WORD(p, info->initrd_start);
398     } else {
399         WRITE_WORD(p, 0);
400     }
401     /* initrd_size */
402     WRITE_WORD(p, initrd_size);
403     /* rd_start */
404     WRITE_WORD(p, 0);
405     /* system_rev */
406     WRITE_WORD(p, 0);
407     /* system_serial_low */
408     WRITE_WORD(p, 0);
409     /* system_serial_high */
410     WRITE_WORD(p, 0);
411     /* mem_fclk_21285 */
412     WRITE_WORD(p, 0);
413     /* zero unused fields */
414     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
415         WRITE_WORD(p, 0);
416     }
417     s = info->kernel_cmdline;
418     if (s) {
419         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
420                             (const uint8_t *)s, strlen(s) + 1);
421     } else {
422         WRITE_WORD(p, 0);
423     }
424 }
425 
426 static void fdt_add_psci_node(void *fdt)
427 {
428     uint32_t cpu_suspend_fn;
429     uint32_t cpu_off_fn;
430     uint32_t cpu_on_fn;
431     uint32_t migrate_fn;
432     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
433     const char *psci_method;
434     int64_t psci_conduit;
435     int rc;
436 
437     psci_conduit = object_property_get_int(OBJECT(armcpu),
438                                            "psci-conduit",
439                                            &error_abort);
440     switch (psci_conduit) {
441     case QEMU_PSCI_CONDUIT_DISABLED:
442         return;
443     case QEMU_PSCI_CONDUIT_HVC:
444         psci_method = "hvc";
445         break;
446     case QEMU_PSCI_CONDUIT_SMC:
447         psci_method = "smc";
448         break;
449     default:
450         g_assert_not_reached();
451     }
452 
453     /*
454      * If /psci node is present in provided DTB, assume that no fixup
455      * is necessary and all PSCI configuration should be taken as-is
456      */
457     rc = fdt_path_offset(fdt, "/psci");
458     if (rc >= 0) {
459         return;
460     }
461 
462     qemu_fdt_add_subnode(fdt, "/psci");
463     if (armcpu->psci_version == 2) {
464         const char comp[] = "arm,psci-0.2\0arm,psci";
465         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
466 
467         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
468         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
469             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
470             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
471             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
472         } else {
473             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
474             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
475             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
476         }
477     } else {
478         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
479 
480         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
481         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
482         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
483         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
484     }
485 
486     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
487      * to the instruction that should be used to invoke PSCI functions.
488      * However, the device tree binding uses 'method' instead, so that is
489      * what we should use here.
490      */
491     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
492 
493     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
494     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
495     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
496     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
497 }
498 
499 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
500                  hwaddr addr_limit, AddressSpace *as)
501 {
502     void *fdt = NULL;
503     int size, rc, n = 0;
504     uint32_t acells, scells;
505     char *nodename;
506     unsigned int i;
507     hwaddr mem_base, mem_len;
508     char **node_path;
509     Error *err = NULL;
510 
511     if (binfo->dtb_filename) {
512         char *filename;
513         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
514         if (!filename) {
515             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
516             goto fail;
517         }
518 
519         fdt = load_device_tree(filename, &size);
520         if (!fdt) {
521             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
522             g_free(filename);
523             goto fail;
524         }
525         g_free(filename);
526     } else {
527         fdt = binfo->get_dtb(binfo, &size);
528         if (!fdt) {
529             fprintf(stderr, "Board was unable to create a dtb blob\n");
530             goto fail;
531         }
532     }
533 
534     if (addr_limit > addr && size > (addr_limit - addr)) {
535         /* Installing the device tree blob at addr would exceed addr_limit.
536          * Whether this constitutes failure is up to the caller to decide,
537          * so just return 0 as size, i.e., no error.
538          */
539         g_free(fdt);
540         return 0;
541     }
542 
543     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
544                                    NULL, &error_fatal);
545     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
546                                    NULL, &error_fatal);
547     if (acells == 0 || scells == 0) {
548         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
549         goto fail;
550     }
551 
552     if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
553         /* This is user error so deserves a friendlier error message
554          * than the failure of setprop_sized_cells would provide
555          */
556         fprintf(stderr, "qemu: dtb file not compatible with "
557                 "RAM size > 4GB\n");
558         goto fail;
559     }
560 
561     /* nop all root nodes matching /memory or /memory@unit-address */
562     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
563     if (err) {
564         error_report_err(err);
565         goto fail;
566     }
567     while (node_path[n]) {
568         if (g_str_has_prefix(node_path[n], "/memory")) {
569             qemu_fdt_nop_node(fdt, node_path[n]);
570         }
571         n++;
572     }
573     g_strfreev(node_path);
574 
575     if (nb_numa_nodes > 0) {
576         mem_base = binfo->loader_start;
577         for (i = 0; i < nb_numa_nodes; i++) {
578             mem_len = numa_info[i].node_mem;
579             nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
580             qemu_fdt_add_subnode(fdt, nodename);
581             qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
582             rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
583                                               acells, mem_base,
584                                               scells, mem_len);
585             if (rc < 0) {
586                 fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
587                         i);
588                 goto fail;
589             }
590 
591             qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
592             mem_base += mem_len;
593             g_free(nodename);
594         }
595     } else {
596         nodename = g_strdup_printf("/memory@%" PRIx64, binfo->loader_start);
597         qemu_fdt_add_subnode(fdt, nodename);
598         qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
599 
600         rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
601                                           acells, binfo->loader_start,
602                                           scells, binfo->ram_size);
603         if (rc < 0) {
604             fprintf(stderr, "couldn't set %s reg\n", nodename);
605             goto fail;
606         }
607         g_free(nodename);
608     }
609 
610     rc = fdt_path_offset(fdt, "/chosen");
611     if (rc < 0) {
612         qemu_fdt_add_subnode(fdt, "/chosen");
613     }
614 
615     if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
616         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
617                                      binfo->kernel_cmdline);
618         if (rc < 0) {
619             fprintf(stderr, "couldn't set /chosen/bootargs\n");
620             goto fail;
621         }
622     }
623 
624     if (binfo->initrd_size) {
625         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
626                                    binfo->initrd_start);
627         if (rc < 0) {
628             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
629             goto fail;
630         }
631 
632         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
633                                    binfo->initrd_start + binfo->initrd_size);
634         if (rc < 0) {
635             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
636             goto fail;
637         }
638     }
639 
640     fdt_add_psci_node(fdt);
641 
642     if (binfo->modify_dtb) {
643         binfo->modify_dtb(binfo, fdt);
644     }
645 
646     qemu_fdt_dumpdtb(fdt, size);
647 
648     /* Put the DTB into the memory map as a ROM image: this will ensure
649      * the DTB is copied again upon reset, even if addr points into RAM.
650      */
651     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
652 
653     g_free(fdt);
654 
655     return size;
656 
657 fail:
658     g_free(fdt);
659     return -1;
660 }
661 
662 static void do_cpu_reset(void *opaque)
663 {
664     ARMCPU *cpu = opaque;
665     CPUState *cs = CPU(cpu);
666     CPUARMState *env = &cpu->env;
667     const struct arm_boot_info *info = env->boot_info;
668 
669     cpu_reset(cs);
670     if (info) {
671         if (!info->is_linux) {
672             int i;
673             /* Jump to the entry point.  */
674             uint64_t entry = info->entry;
675 
676             switch (info->endianness) {
677             case ARM_ENDIANNESS_LE:
678                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
679                 for (i = 1; i < 4; ++i) {
680                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
681                 }
682                 env->uncached_cpsr &= ~CPSR_E;
683                 break;
684             case ARM_ENDIANNESS_BE8:
685                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
686                 for (i = 1; i < 4; ++i) {
687                     env->cp15.sctlr_el[i] |= SCTLR_EE;
688                 }
689                 env->uncached_cpsr |= CPSR_E;
690                 break;
691             case ARM_ENDIANNESS_BE32:
692                 env->cp15.sctlr_el[1] |= SCTLR_B;
693                 break;
694             case ARM_ENDIANNESS_UNKNOWN:
695                 break; /* Board's decision */
696             default:
697                 g_assert_not_reached();
698             }
699 
700             cpu_set_pc(cs, entry);
701         } else {
702             /* If we are booting Linux then we need to check whether we are
703              * booting into secure or non-secure state and adjust the state
704              * accordingly.  Out of reset, ARM is defined to be in secure state
705              * (SCR.NS = 0), we change that here if non-secure boot has been
706              * requested.
707              */
708             if (arm_feature(env, ARM_FEATURE_EL3)) {
709                 /* AArch64 is defined to come out of reset into EL3 if enabled.
710                  * If we are booting Linux then we need to adjust our EL as
711                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
712                  * SVC, which Linux expects, so no privilege/exception level to
713                  * adjust.
714                  */
715                 if (env->aarch64) {
716                     env->cp15.scr_el3 |= SCR_RW;
717                     if (arm_feature(env, ARM_FEATURE_EL2)) {
718                         env->cp15.hcr_el2 |= HCR_RW;
719                         env->pstate = PSTATE_MODE_EL2h;
720                     } else {
721                         env->pstate = PSTATE_MODE_EL1h;
722                     }
723                     /* AArch64 kernels never boot in secure mode */
724                     assert(!info->secure_boot);
725                     /* This hook is only supported for AArch32 currently:
726                      * bootloader_aarch64[] will not call the hook, and
727                      * the code above has already dropped us into EL2 or EL1.
728                      */
729                     assert(!info->secure_board_setup);
730                 }
731 
732                 if (arm_feature(env, ARM_FEATURE_EL2)) {
733                     /* If we have EL2 then Linux expects the HVC insn to work */
734                     env->cp15.scr_el3 |= SCR_HCE;
735                 }
736 
737                 /* Set to non-secure if not a secure boot */
738                 if (!info->secure_boot &&
739                     (cs != first_cpu || !info->secure_board_setup)) {
740                     /* Linux expects non-secure state */
741                     env->cp15.scr_el3 |= SCR_NS;
742                 }
743             }
744 
745             if (!env->aarch64 && !info->secure_boot &&
746                 arm_feature(env, ARM_FEATURE_EL2)) {
747                 /*
748                  * This is an AArch32 boot not to Secure state, and
749                  * we have Hyp mode available, so boot the kernel into
750                  * Hyp mode. This is not how the CPU comes out of reset,
751                  * so we need to manually put it there.
752                  */
753                 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
754             }
755 
756             if (cs == first_cpu) {
757                 AddressSpace *as = arm_boot_address_space(cpu, info);
758 
759                 cpu_set_pc(cs, info->loader_start);
760 
761                 if (!have_dtb(info)) {
762                     if (old_param) {
763                         set_kernel_args_old(info, as);
764                     } else {
765                         set_kernel_args(info, as);
766                     }
767                 }
768             } else {
769                 info->secondary_cpu_reset_hook(cpu, info);
770             }
771         }
772     }
773 }
774 
775 /**
776  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
777  *                          by key.
778  * @fw_cfg:         The firmware config instance to store the data in.
779  * @size_key:       The firmware config key to store the size of the loaded
780  *                  data under, with fw_cfg_add_i32().
781  * @data_key:       The firmware config key to store the loaded data under,
782  *                  with fw_cfg_add_bytes().
783  * @image_name:     The name of the image file to load. If it is NULL, the
784  *                  function returns without doing anything.
785  * @try_decompress: Whether the image should be decompressed (gunzipped) before
786  *                  adding it to fw_cfg. If decompression fails, the image is
787  *                  loaded as-is.
788  *
789  * In case of failure, the function prints an error message to stderr and the
790  * process exits with status 1.
791  */
792 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
793                                  uint16_t data_key, const char *image_name,
794                                  bool try_decompress)
795 {
796     size_t size = -1;
797     uint8_t *data;
798 
799     if (image_name == NULL) {
800         return;
801     }
802 
803     if (try_decompress) {
804         size = load_image_gzipped_buffer(image_name,
805                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
806     }
807 
808     if (size == (size_t)-1) {
809         gchar *contents;
810         gsize length;
811 
812         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
813             error_report("failed to load \"%s\"", image_name);
814             exit(1);
815         }
816         size = length;
817         data = (uint8_t *)contents;
818     }
819 
820     fw_cfg_add_i32(fw_cfg, size_key, size);
821     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
822 }
823 
824 static int do_arm_linux_init(Object *obj, void *opaque)
825 {
826     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
827         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
828         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
829         struct arm_boot_info *info = opaque;
830 
831         if (albifc->arm_linux_init) {
832             albifc->arm_linux_init(albif, info->secure_boot);
833         }
834     }
835     return 0;
836 }
837 
838 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
839                             uint64_t *lowaddr, uint64_t *highaddr,
840                             int elf_machine, AddressSpace *as)
841 {
842     bool elf_is64;
843     union {
844         Elf32_Ehdr h32;
845         Elf64_Ehdr h64;
846     } elf_header;
847     int data_swab = 0;
848     bool big_endian;
849     int64_t ret = -1;
850     Error *err = NULL;
851 
852 
853     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
854     if (err) {
855         error_free(err);
856         return ret;
857     }
858 
859     if (elf_is64) {
860         big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
861         info->endianness = big_endian ? ARM_ENDIANNESS_BE8
862                                       : ARM_ENDIANNESS_LE;
863     } else {
864         big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
865         if (big_endian) {
866             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
867                 info->endianness = ARM_ENDIANNESS_BE8;
868             } else {
869                 info->endianness = ARM_ENDIANNESS_BE32;
870                 /* In BE32, the CPU has a different view of the per-byte
871                  * address map than the rest of the system. BE32 ELF files
872                  * are organised such that they can be programmed through
873                  * the CPU's per-word byte-reversed view of the world. QEMU
874                  * however loads ELF files independently of the CPU. So
875                  * tell the ELF loader to byte reverse the data for us.
876                  */
877                 data_swab = 2;
878             }
879         } else {
880             info->endianness = ARM_ENDIANNESS_LE;
881         }
882     }
883 
884     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
885                       pentry, lowaddr, highaddr, big_endian, elf_machine,
886                       1, data_swab, as);
887     if (ret <= 0) {
888         /* The header loaded but the image didn't */
889         exit(1);
890     }
891 
892     return ret;
893 }
894 
895 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
896                                    hwaddr *entry, AddressSpace *as)
897 {
898     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
899     uint8_t *buffer;
900     int size;
901 
902     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
903     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
904                                      &buffer);
905 
906     if (size < 0) {
907         gsize len;
908 
909         /* Load as raw file otherwise */
910         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
911             return -1;
912         }
913         size = len;
914     }
915 
916     /* check the arm64 magic header value -- very old kernels may not have it */
917     if (size > ARM64_MAGIC_OFFSET + 4 &&
918         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
919         uint64_t hdrvals[2];
920 
921         /* The arm64 Image header has text_offset and image_size fields at 8 and
922          * 16 bytes into the Image header, respectively. The text_offset field
923          * is only valid if the image_size is non-zero.
924          */
925         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
926         if (hdrvals[1] != 0) {
927             kernel_load_offset = le64_to_cpu(hdrvals[0]);
928 
929             /*
930              * We write our startup "bootloader" at the very bottom of RAM,
931              * so that bit can't be used for the image. Luckily the Image
932              * format specification is that the image requests only an offset
933              * from a 2MB boundary, not an absolute load address. So if the
934              * image requests an offset that might mean it overlaps with the
935              * bootloader, we can just load it starting at 2MB+offset rather
936              * than 0MB + offset.
937              */
938             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
939                 kernel_load_offset += 2 * MiB;
940             }
941         }
942     }
943 
944     *entry = mem_base + kernel_load_offset;
945     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
946 
947     g_free(buffer);
948 
949     return size;
950 }
951 
952 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
953                                          struct arm_boot_info *info)
954 {
955     /* Set up for a direct boot of a kernel image file. */
956     CPUState *cs;
957     AddressSpace *as = arm_boot_address_space(cpu, info);
958     int kernel_size;
959     int initrd_size;
960     int is_linux = 0;
961     uint64_t elf_entry, elf_low_addr, elf_high_addr;
962     int elf_machine;
963     hwaddr entry;
964     static const ARMInsnFixup *primary_loader;
965 
966     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
967         primary_loader = bootloader_aarch64;
968         elf_machine = EM_AARCH64;
969     } else {
970         primary_loader = bootloader;
971         if (!info->write_board_setup) {
972             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
973         }
974         elf_machine = EM_ARM;
975     }
976 
977     if (!info->secondary_cpu_reset_hook) {
978         info->secondary_cpu_reset_hook = default_reset_secondary;
979     }
980     if (!info->write_secondary_boot) {
981         info->write_secondary_boot = default_write_secondary;
982     }
983 
984     if (info->nb_cpus == 0)
985         info->nb_cpus = 1;
986 
987     /*
988      * We want to put the initrd far enough into RAM that when the
989      * kernel is uncompressed it will not clobber the initrd. However
990      * on boards without much RAM we must ensure that we still leave
991      * enough room for a decent sized initrd, and on boards with large
992      * amounts of RAM we must avoid the initrd being so far up in RAM
993      * that it is outside lowmem and inaccessible to the kernel.
994      * So for boards with less  than 256MB of RAM we put the initrd
995      * halfway into RAM, and for boards with 256MB of RAM or more we put
996      * the initrd at 128MB.
997      */
998     info->initrd_start = info->loader_start +
999         MIN(info->ram_size / 2, 128 * 1024 * 1024);
1000 
1001     /* Assume that raw images are linux kernels, and ELF images are not.  */
1002     kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
1003                                &elf_high_addr, elf_machine, as);
1004     if (kernel_size > 0 && have_dtb(info)) {
1005         /*
1006          * If there is still some room left at the base of RAM, try and put
1007          * the DTB there like we do for images loaded with -bios or -pflash.
1008          */
1009         if (elf_low_addr > info->loader_start
1010             || elf_high_addr < info->loader_start) {
1011             /*
1012              * Set elf_low_addr as address limit for arm_load_dtb if it may be
1013              * pointing into RAM, otherwise pass '0' (no limit)
1014              */
1015             if (elf_low_addr < info->loader_start) {
1016                 elf_low_addr = 0;
1017             }
1018             info->dtb_start = info->loader_start;
1019             info->dtb_limit = elf_low_addr;
1020         }
1021     }
1022     entry = elf_entry;
1023     if (kernel_size < 0) {
1024         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1025         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1026                                      &is_linux, NULL, NULL, as);
1027     }
1028     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1029         kernel_size = load_aarch64_image(info->kernel_filename,
1030                                          info->loader_start, &entry, as);
1031         is_linux = 1;
1032     } else if (kernel_size < 0) {
1033         /* 32-bit ARM */
1034         entry = info->loader_start + KERNEL_LOAD_ADDR;
1035         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1036                                              info->ram_size - KERNEL_LOAD_ADDR,
1037                                              as);
1038         is_linux = 1;
1039     }
1040     if (kernel_size < 0) {
1041         error_report("could not load kernel '%s'", info->kernel_filename);
1042         exit(1);
1043     }
1044     info->entry = entry;
1045     if (is_linux) {
1046         uint32_t fixupcontext[FIXUP_MAX];
1047 
1048         if (info->initrd_filename) {
1049             initrd_size = load_ramdisk_as(info->initrd_filename,
1050                                           info->initrd_start,
1051                                           info->ram_size - info->initrd_start,
1052                                           as);
1053             if (initrd_size < 0) {
1054                 initrd_size = load_image_targphys_as(info->initrd_filename,
1055                                                      info->initrd_start,
1056                                                      info->ram_size -
1057                                                      info->initrd_start,
1058                                                      as);
1059             }
1060             if (initrd_size < 0) {
1061                 error_report("could not load initrd '%s'",
1062                              info->initrd_filename);
1063                 exit(1);
1064             }
1065         } else {
1066             initrd_size = 0;
1067         }
1068         info->initrd_size = initrd_size;
1069 
1070         fixupcontext[FIXUP_BOARDID] = info->board_id;
1071         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1072 
1073         /*
1074          * for device tree boot, we pass the DTB directly in r2. Otherwise
1075          * we point to the kernel args.
1076          */
1077         if (have_dtb(info)) {
1078             hwaddr align;
1079 
1080             if (elf_machine == EM_AARCH64) {
1081                 /*
1082                  * Some AArch64 kernels on early bootup map the fdt region as
1083                  *
1084                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1085                  *
1086                  * Let's play safe and prealign it to 2MB to give us some space.
1087                  */
1088                 align = 2 * 1024 * 1024;
1089             } else {
1090                 /*
1091                  * Some 32bit kernels will trash anything in the 4K page the
1092                  * initrd ends in, so make sure the DTB isn't caught up in that.
1093                  */
1094                 align = 4096;
1095             }
1096 
1097             /* Place the DTB after the initrd in memory with alignment. */
1098             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1099                                            align);
1100             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1101             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1102         } else {
1103             fixupcontext[FIXUP_ARGPTR_LO] =
1104                 info->loader_start + KERNEL_ARGS_ADDR;
1105             fixupcontext[FIXUP_ARGPTR_HI] =
1106                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1107             if (info->ram_size >= (1ULL << 32)) {
1108                 error_report("RAM size must be less than 4GB to boot"
1109                              " Linux kernel using ATAGS (try passing a device tree"
1110                              " using -dtb)");
1111                 exit(1);
1112             }
1113         }
1114         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1115         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1116 
1117         write_bootloader("bootloader", info->loader_start,
1118                          primary_loader, fixupcontext, as);
1119 
1120         if (info->nb_cpus > 1) {
1121             info->write_secondary_boot(cpu, info);
1122         }
1123         if (info->write_board_setup) {
1124             info->write_board_setup(cpu, info);
1125         }
1126 
1127         /*
1128          * Notify devices which need to fake up firmware initialization
1129          * that we're doing a direct kernel boot.
1130          */
1131         object_child_foreach_recursive(object_get_root(),
1132                                        do_arm_linux_init, info);
1133     }
1134     info->is_linux = is_linux;
1135 
1136     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1137         ARM_CPU(cs)->env.boot_info = info;
1138     }
1139 }
1140 
1141 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1142 {
1143     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1144 
1145     if (have_dtb(info)) {
1146         /*
1147          * If we have a device tree blob, but no kernel to supply it to (or
1148          * the kernel is supposed to be loaded by the bootloader), copy the
1149          * DTB to the base of RAM for the bootloader to pick up.
1150          */
1151         info->dtb_start = info->loader_start;
1152     }
1153 
1154     if (info->kernel_filename) {
1155         FWCfgState *fw_cfg;
1156         bool try_decompressing_kernel;
1157 
1158         fw_cfg = fw_cfg_find();
1159         try_decompressing_kernel = arm_feature(&cpu->env,
1160                                                ARM_FEATURE_AARCH64);
1161 
1162         /*
1163          * Expose the kernel, the command line, and the initrd in fw_cfg.
1164          * We don't process them here at all, it's all left to the
1165          * firmware.
1166          */
1167         load_image_to_fw_cfg(fw_cfg,
1168                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1169                              info->kernel_filename,
1170                              try_decompressing_kernel);
1171         load_image_to_fw_cfg(fw_cfg,
1172                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1173                              info->initrd_filename, false);
1174 
1175         if (info->kernel_cmdline) {
1176             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1177                            strlen(info->kernel_cmdline) + 1);
1178             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1179                               info->kernel_cmdline);
1180         }
1181     }
1182 
1183     /*
1184      * We will start from address 0 (typically a boot ROM image) in the
1185      * same way as hardware. Leave env->boot_info NULL, so that
1186      * do_cpu_reset() knows it does not need to alter the PC on reset.
1187      */
1188 }
1189 
1190 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1191 {
1192     CPUState *cs;
1193     AddressSpace *as = arm_boot_address_space(cpu, info);
1194 
1195     /*
1196      * CPU objects (unlike devices) are not automatically reset on system
1197      * reset, so we must always register a handler to do so. If we're
1198      * actually loading a kernel, the handler is also responsible for
1199      * arranging that we start it correctly.
1200      */
1201     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1202         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1203     }
1204 
1205     /*
1206      * The board code is not supposed to set secure_board_setup unless
1207      * running its code in secure mode is actually possible, and KVM
1208      * doesn't support secure.
1209      */
1210     assert(!(info->secure_board_setup && kvm_enabled()));
1211 
1212     info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
1213     info->dtb_limit = 0;
1214 
1215     /* Load the kernel.  */
1216     if (!info->kernel_filename || info->firmware_loaded) {
1217         arm_setup_firmware_boot(cpu, info);
1218     } else {
1219         arm_setup_direct_kernel_boot(cpu, info);
1220     }
1221 
1222     if (!info->skip_dtb_autoload && have_dtb(info)) {
1223         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1224             exit(1);
1225         }
1226     }
1227 }
1228 
1229 static const TypeInfo arm_linux_boot_if_info = {
1230     .name = TYPE_ARM_LINUX_BOOT_IF,
1231     .parent = TYPE_INTERFACE,
1232     .class_size = sizeof(ARMLinuxBootIfClass),
1233 };
1234 
1235 static void arm_linux_boot_register_types(void)
1236 {
1237     type_register_static(&arm_linux_boot_if_info);
1238 }
1239 
1240 type_init(arm_linux_boot_register_types)
1241