xref: /openbmc/qemu/hw/arm/boot.c (revision dd9fe29c)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "config.h"
11 #include "hw/hw.h"
12 #include "hw/arm/arm.h"
13 #include "sysemu/sysemu.h"
14 #include "hw/boards.h"
15 #include "hw/loader.h"
16 #include "elf.h"
17 #include "sysemu/device_tree.h"
18 #include "qemu/config-file.h"
19 #include "exec/address-spaces.h"
20 
21 /* Kernel boot protocol is specified in the kernel docs
22  * Documentation/arm/Booting and Documentation/arm64/booting.txt
23  * They have different preferred image load offsets from system RAM base.
24  */
25 #define KERNEL_ARGS_ADDR 0x100
26 #define KERNEL_LOAD_ADDR 0x00010000
27 #define KERNEL64_LOAD_ADDR 0x00080000
28 
29 typedef enum {
30     FIXUP_NONE = 0,   /* do nothing */
31     FIXUP_TERMINATOR, /* end of insns */
32     FIXUP_BOARDID,    /* overwrite with board ID number */
33     FIXUP_ARGPTR,     /* overwrite with pointer to kernel args */
34     FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
35     FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
36     FIXUP_BOOTREG,    /* overwrite with boot register address */
37     FIXUP_DSB,        /* overwrite with correct DSB insn for cpu */
38     FIXUP_MAX,
39 } FixupType;
40 
41 typedef struct ARMInsnFixup {
42     uint32_t insn;
43     FixupType fixup;
44 } ARMInsnFixup;
45 
46 static const ARMInsnFixup bootloader_aarch64[] = {
47     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
48     { 0xaa1f03e1 }, /* mov x1, xzr */
49     { 0xaa1f03e2 }, /* mov x2, xzr */
50     { 0xaa1f03e3 }, /* mov x3, xzr */
51     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
52     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
53     { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
54     { 0 }, /* .word @DTB Higher 32-bits */
55     { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
56     { 0 }, /* .word @Kernel Entry Higher 32-bits */
57     { 0, FIXUP_TERMINATOR }
58 };
59 
60 /* The worlds second smallest bootloader.  Set r0-r2, then jump to kernel.  */
61 static const ARMInsnFixup bootloader[] = {
62     { 0xe3a00000 }, /* mov     r0, #0 */
63     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
64     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
65     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
66     { 0, FIXUP_BOARDID },
67     { 0, FIXUP_ARGPTR },
68     { 0, FIXUP_ENTRYPOINT },
69     { 0, FIXUP_TERMINATOR }
70 };
71 
72 /* Handling for secondary CPU boot in a multicore system.
73  * Unlike the uniprocessor/primary CPU boot, this is platform
74  * dependent. The default code here is based on the secondary
75  * CPU boot protocol used on realview/vexpress boards, with
76  * some parameterisation to increase its flexibility.
77  * QEMU platform models for which this code is not appropriate
78  * should override write_secondary_boot and secondary_cpu_reset_hook
79  * instead.
80  *
81  * This code enables the interrupt controllers for the secondary
82  * CPUs and then puts all the secondary CPUs into a loop waiting
83  * for an interprocessor interrupt and polling a configurable
84  * location for the kernel secondary CPU entry point.
85  */
86 #define DSB_INSN 0xf57ff04f
87 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
88 
89 static const ARMInsnFixup smpboot[] = {
90     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
91     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
92     { 0xe3a01001 }, /* mov r1, #1 */
93     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
94     { 0xe3a010ff }, /* mov r1, #0xff */
95     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
96     { 0, FIXUP_DSB },   /* dsb */
97     { 0xe320f003 }, /* wfi */
98     { 0xe5901000 }, /* ldr     r1, [r0] */
99     { 0xe1110001 }, /* tst     r1, r1 */
100     { 0x0afffffb }, /* beq     <wfi> */
101     { 0xe12fff11 }, /* bx      r1 */
102     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
103     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
104     { 0, FIXUP_TERMINATOR }
105 };
106 
107 static void write_bootloader(const char *name, hwaddr addr,
108                              const ARMInsnFixup *insns, uint32_t *fixupcontext)
109 {
110     /* Fix up the specified bootloader fragment and write it into
111      * guest memory using rom_add_blob_fixed(). fixupcontext is
112      * an array giving the values to write in for the fixup types
113      * which write a value into the code array.
114      */
115     int i, len;
116     uint32_t *code;
117 
118     len = 0;
119     while (insns[len].fixup != FIXUP_TERMINATOR) {
120         len++;
121     }
122 
123     code = g_new0(uint32_t, len);
124 
125     for (i = 0; i < len; i++) {
126         uint32_t insn = insns[i].insn;
127         FixupType fixup = insns[i].fixup;
128 
129         switch (fixup) {
130         case FIXUP_NONE:
131             break;
132         case FIXUP_BOARDID:
133         case FIXUP_ARGPTR:
134         case FIXUP_ENTRYPOINT:
135         case FIXUP_GIC_CPU_IF:
136         case FIXUP_BOOTREG:
137         case FIXUP_DSB:
138             insn = fixupcontext[fixup];
139             break;
140         default:
141             abort();
142         }
143         code[i] = tswap32(insn);
144     }
145 
146     rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
147 
148     g_free(code);
149 }
150 
151 static void default_write_secondary(ARMCPU *cpu,
152                                     const struct arm_boot_info *info)
153 {
154     uint32_t fixupcontext[FIXUP_MAX];
155 
156     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
157     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
158     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
159         fixupcontext[FIXUP_DSB] = DSB_INSN;
160     } else {
161         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
162     }
163 
164     write_bootloader("smpboot", info->smp_loader_start,
165                      smpboot, fixupcontext);
166 }
167 
168 static void default_reset_secondary(ARMCPU *cpu,
169                                     const struct arm_boot_info *info)
170 {
171     CPUARMState *env = &cpu->env;
172 
173     stl_phys_notdirty(&address_space_memory, info->smp_bootreg_addr, 0);
174     env->regs[15] = info->smp_loader_start;
175 }
176 
177 static inline bool have_dtb(const struct arm_boot_info *info)
178 {
179     return info->dtb_filename || info->get_dtb;
180 }
181 
182 #define WRITE_WORD(p, value) do { \
183     stl_phys_notdirty(&address_space_memory, p, value);  \
184     p += 4;                       \
185 } while (0)
186 
187 static void set_kernel_args(const struct arm_boot_info *info)
188 {
189     int initrd_size = info->initrd_size;
190     hwaddr base = info->loader_start;
191     hwaddr p;
192 
193     p = base + KERNEL_ARGS_ADDR;
194     /* ATAG_CORE */
195     WRITE_WORD(p, 5);
196     WRITE_WORD(p, 0x54410001);
197     WRITE_WORD(p, 1);
198     WRITE_WORD(p, 0x1000);
199     WRITE_WORD(p, 0);
200     /* ATAG_MEM */
201     /* TODO: handle multiple chips on one ATAG list */
202     WRITE_WORD(p, 4);
203     WRITE_WORD(p, 0x54410002);
204     WRITE_WORD(p, info->ram_size);
205     WRITE_WORD(p, info->loader_start);
206     if (initrd_size) {
207         /* ATAG_INITRD2 */
208         WRITE_WORD(p, 4);
209         WRITE_WORD(p, 0x54420005);
210         WRITE_WORD(p, info->initrd_start);
211         WRITE_WORD(p, initrd_size);
212     }
213     if (info->kernel_cmdline && *info->kernel_cmdline) {
214         /* ATAG_CMDLINE */
215         int cmdline_size;
216 
217         cmdline_size = strlen(info->kernel_cmdline);
218         cpu_physical_memory_write(p + 8, info->kernel_cmdline,
219                                   cmdline_size + 1);
220         cmdline_size = (cmdline_size >> 2) + 1;
221         WRITE_WORD(p, cmdline_size + 2);
222         WRITE_WORD(p, 0x54410009);
223         p += cmdline_size * 4;
224     }
225     if (info->atag_board) {
226         /* ATAG_BOARD */
227         int atag_board_len;
228         uint8_t atag_board_buf[0x1000];
229 
230         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
231         WRITE_WORD(p, (atag_board_len + 8) >> 2);
232         WRITE_WORD(p, 0x414f4d50);
233         cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
234         p += atag_board_len;
235     }
236     /* ATAG_END */
237     WRITE_WORD(p, 0);
238     WRITE_WORD(p, 0);
239 }
240 
241 static void set_kernel_args_old(const struct arm_boot_info *info)
242 {
243     hwaddr p;
244     const char *s;
245     int initrd_size = info->initrd_size;
246     hwaddr base = info->loader_start;
247 
248     /* see linux/include/asm-arm/setup.h */
249     p = base + KERNEL_ARGS_ADDR;
250     /* page_size */
251     WRITE_WORD(p, 4096);
252     /* nr_pages */
253     WRITE_WORD(p, info->ram_size / 4096);
254     /* ramdisk_size */
255     WRITE_WORD(p, 0);
256 #define FLAG_READONLY	1
257 #define FLAG_RDLOAD	4
258 #define FLAG_RDPROMPT	8
259     /* flags */
260     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
261     /* rootdev */
262     WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
263     /* video_num_cols */
264     WRITE_WORD(p, 0);
265     /* video_num_rows */
266     WRITE_WORD(p, 0);
267     /* video_x */
268     WRITE_WORD(p, 0);
269     /* video_y */
270     WRITE_WORD(p, 0);
271     /* memc_control_reg */
272     WRITE_WORD(p, 0);
273     /* unsigned char sounddefault */
274     /* unsigned char adfsdrives */
275     /* unsigned char bytes_per_char_h */
276     /* unsigned char bytes_per_char_v */
277     WRITE_WORD(p, 0);
278     /* pages_in_bank[4] */
279     WRITE_WORD(p, 0);
280     WRITE_WORD(p, 0);
281     WRITE_WORD(p, 0);
282     WRITE_WORD(p, 0);
283     /* pages_in_vram */
284     WRITE_WORD(p, 0);
285     /* initrd_start */
286     if (initrd_size) {
287         WRITE_WORD(p, info->initrd_start);
288     } else {
289         WRITE_WORD(p, 0);
290     }
291     /* initrd_size */
292     WRITE_WORD(p, initrd_size);
293     /* rd_start */
294     WRITE_WORD(p, 0);
295     /* system_rev */
296     WRITE_WORD(p, 0);
297     /* system_serial_low */
298     WRITE_WORD(p, 0);
299     /* system_serial_high */
300     WRITE_WORD(p, 0);
301     /* mem_fclk_21285 */
302     WRITE_WORD(p, 0);
303     /* zero unused fields */
304     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
305         WRITE_WORD(p, 0);
306     }
307     s = info->kernel_cmdline;
308     if (s) {
309         cpu_physical_memory_write(p, s, strlen(s) + 1);
310     } else {
311         WRITE_WORD(p, 0);
312     }
313 }
314 
315 /**
316  * load_dtb() - load a device tree binary image into memory
317  * @addr:       the address to load the image at
318  * @binfo:      struct describing the boot environment
319  * @addr_limit: upper limit of the available memory area at @addr
320  *
321  * Load a device tree supplied by the machine or by the user  with the
322  * '-dtb' command line option, and put it at offset @addr in target
323  * memory.
324  *
325  * If @addr_limit contains a meaningful value (i.e., it is strictly greater
326  * than @addr), the device tree is only loaded if its size does not exceed
327  * the limit.
328  *
329  * Returns: the size of the device tree image on success,
330  *          0 if the image size exceeds the limit,
331  *          -1 on errors.
332  *
333  * Note: Must not be called unless have_dtb(binfo) is true.
334  */
335 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
336                     hwaddr addr_limit)
337 {
338     void *fdt = NULL;
339     int size, rc;
340     uint32_t acells, scells;
341 
342     if (binfo->dtb_filename) {
343         char *filename;
344         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
345         if (!filename) {
346             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
347             goto fail;
348         }
349 
350         fdt = load_device_tree(filename, &size);
351         if (!fdt) {
352             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
353             g_free(filename);
354             goto fail;
355         }
356         g_free(filename);
357     } else {
358         fdt = binfo->get_dtb(binfo, &size);
359         if (!fdt) {
360             fprintf(stderr, "Board was unable to create a dtb blob\n");
361             goto fail;
362         }
363     }
364 
365     if (addr_limit > addr && size > (addr_limit - addr)) {
366         /* Installing the device tree blob at addr would exceed addr_limit.
367          * Whether this constitutes failure is up to the caller to decide,
368          * so just return 0 as size, i.e., no error.
369          */
370         g_free(fdt);
371         return 0;
372     }
373 
374     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells");
375     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells");
376     if (acells == 0 || scells == 0) {
377         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
378         goto fail;
379     }
380 
381     if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
382         /* This is user error so deserves a friendlier error message
383          * than the failure of setprop_sized_cells would provide
384          */
385         fprintf(stderr, "qemu: dtb file not compatible with "
386                 "RAM size > 4GB\n");
387         goto fail;
388     }
389 
390     rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
391                                       acells, binfo->loader_start,
392                                       scells, binfo->ram_size);
393     if (rc < 0) {
394         fprintf(stderr, "couldn't set /memory/reg\n");
395         goto fail;
396     }
397 
398     if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
399         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
400                                      binfo->kernel_cmdline);
401         if (rc < 0) {
402             fprintf(stderr, "couldn't set /chosen/bootargs\n");
403             goto fail;
404         }
405     }
406 
407     if (binfo->initrd_size) {
408         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
409                                    binfo->initrd_start);
410         if (rc < 0) {
411             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
412             goto fail;
413         }
414 
415         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
416                                    binfo->initrd_start + binfo->initrd_size);
417         if (rc < 0) {
418             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
419             goto fail;
420         }
421     }
422 
423     if (binfo->modify_dtb) {
424         binfo->modify_dtb(binfo, fdt);
425     }
426 
427     qemu_fdt_dumpdtb(fdt, size);
428 
429     /* Put the DTB into the memory map as a ROM image: this will ensure
430      * the DTB is copied again upon reset, even if addr points into RAM.
431      */
432     rom_add_blob_fixed("dtb", fdt, size, addr);
433 
434     g_free(fdt);
435 
436     return size;
437 
438 fail:
439     g_free(fdt);
440     return -1;
441 }
442 
443 static void do_cpu_reset(void *opaque)
444 {
445     ARMCPU *cpu = opaque;
446     CPUARMState *env = &cpu->env;
447     const struct arm_boot_info *info = env->boot_info;
448 
449     cpu_reset(CPU(cpu));
450     if (info) {
451         if (!info->is_linux) {
452             /* Jump to the entry point.  */
453             if (env->aarch64) {
454                 env->pc = info->entry;
455             } else {
456                 env->regs[15] = info->entry & 0xfffffffe;
457                 env->thumb = info->entry & 1;
458             }
459         } else {
460             /* If we are booting Linux then we need to check whether we are
461              * booting into secure or non-secure state and adjust the state
462              * accordingly.  Out of reset, ARM is defined to be in secure state
463              * (SCR.NS = 0), we change that here if non-secure boot has been
464              * requested.
465              */
466             if (arm_feature(env, ARM_FEATURE_EL3) && !info->secure_boot) {
467                 env->cp15.scr_el3 |= SCR_NS;
468             }
469 
470             if (CPU(cpu) == first_cpu) {
471                 if (env->aarch64) {
472                     env->pc = info->loader_start;
473                 } else {
474                     env->regs[15] = info->loader_start;
475                 }
476 
477                 if (!have_dtb(info)) {
478                     if (old_param) {
479                         set_kernel_args_old(info);
480                     } else {
481                         set_kernel_args(info);
482                     }
483                 }
484             } else {
485                 info->secondary_cpu_reset_hook(cpu, info);
486             }
487         }
488     }
489 }
490 
491 /**
492  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
493  *                          by key.
494  * @fw_cfg:         The firmware config instance to store the data in.
495  * @size_key:       The firmware config key to store the size of the loaded
496  *                  data under, with fw_cfg_add_i32().
497  * @data_key:       The firmware config key to store the loaded data under,
498  *                  with fw_cfg_add_bytes().
499  * @image_name:     The name of the image file to load. If it is NULL, the
500  *                  function returns without doing anything.
501  * @try_decompress: Whether the image should be decompressed (gunzipped) before
502  *                  adding it to fw_cfg. If decompression fails, the image is
503  *                  loaded as-is.
504  *
505  * In case of failure, the function prints an error message to stderr and the
506  * process exits with status 1.
507  */
508 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
509                                  uint16_t data_key, const char *image_name,
510                                  bool try_decompress)
511 {
512     size_t size = -1;
513     uint8_t *data;
514 
515     if (image_name == NULL) {
516         return;
517     }
518 
519     if (try_decompress) {
520         size = load_image_gzipped_buffer(image_name,
521                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
522     }
523 
524     if (size == (size_t)-1) {
525         gchar *contents;
526         gsize length;
527 
528         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
529             fprintf(stderr, "failed to load \"%s\"\n", image_name);
530             exit(1);
531         }
532         size = length;
533         data = (uint8_t *)contents;
534     }
535 
536     fw_cfg_add_i32(fw_cfg, size_key, size);
537     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
538 }
539 
540 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
541 {
542     CPUState *cs;
543     int kernel_size;
544     int initrd_size;
545     int is_linux = 0;
546     uint64_t elf_entry, elf_low_addr, elf_high_addr;
547     int elf_machine;
548     hwaddr entry, kernel_load_offset;
549     int big_endian;
550     static const ARMInsnFixup *primary_loader;
551 
552     /* CPU objects (unlike devices) are not automatically reset on system
553      * reset, so we must always register a handler to do so. If we're
554      * actually loading a kernel, the handler is also responsible for
555      * arranging that we start it correctly.
556      */
557     for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
558         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
559     }
560 
561     /* Load the kernel.  */
562     if (!info->kernel_filename || info->firmware_loaded) {
563 
564         if (have_dtb(info)) {
565             /* If we have a device tree blob, but no kernel to supply it to (or
566              * the kernel is supposed to be loaded by the bootloader), copy the
567              * DTB to the base of RAM for the bootloader to pick up.
568              */
569             if (load_dtb(info->loader_start, info, 0) < 0) {
570                 exit(1);
571             }
572         }
573 
574         if (info->kernel_filename) {
575             FWCfgState *fw_cfg;
576             bool try_decompressing_kernel;
577 
578             fw_cfg = fw_cfg_find();
579             try_decompressing_kernel = arm_feature(&cpu->env,
580                                                    ARM_FEATURE_AARCH64);
581 
582             /* Expose the kernel, the command line, and the initrd in fw_cfg.
583              * We don't process them here at all, it's all left to the
584              * firmware.
585              */
586             load_image_to_fw_cfg(fw_cfg,
587                                  FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
588                                  info->kernel_filename,
589                                  try_decompressing_kernel);
590             load_image_to_fw_cfg(fw_cfg,
591                                  FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
592                                  info->initrd_filename, false);
593 
594             if (info->kernel_cmdline) {
595                 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
596                                strlen(info->kernel_cmdline) + 1);
597                 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
598                                   info->kernel_cmdline);
599             }
600         }
601 
602         /* We will start from address 0 (typically a boot ROM image) in the
603          * same way as hardware.
604          */
605         return;
606     }
607 
608     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
609         primary_loader = bootloader_aarch64;
610         kernel_load_offset = KERNEL64_LOAD_ADDR;
611         elf_machine = EM_AARCH64;
612     } else {
613         primary_loader = bootloader;
614         kernel_load_offset = KERNEL_LOAD_ADDR;
615         elf_machine = EM_ARM;
616     }
617 
618     info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
619 
620     if (!info->secondary_cpu_reset_hook) {
621         info->secondary_cpu_reset_hook = default_reset_secondary;
622     }
623     if (!info->write_secondary_boot) {
624         info->write_secondary_boot = default_write_secondary;
625     }
626 
627     if (info->nb_cpus == 0)
628         info->nb_cpus = 1;
629 
630 #ifdef TARGET_WORDS_BIGENDIAN
631     big_endian = 1;
632 #else
633     big_endian = 0;
634 #endif
635 
636     /* We want to put the initrd far enough into RAM that when the
637      * kernel is uncompressed it will not clobber the initrd. However
638      * on boards without much RAM we must ensure that we still leave
639      * enough room for a decent sized initrd, and on boards with large
640      * amounts of RAM we must avoid the initrd being so far up in RAM
641      * that it is outside lowmem and inaccessible to the kernel.
642      * So for boards with less  than 256MB of RAM we put the initrd
643      * halfway into RAM, and for boards with 256MB of RAM or more we put
644      * the initrd at 128MB.
645      */
646     info->initrd_start = info->loader_start +
647         MIN(info->ram_size / 2, 128 * 1024 * 1024);
648 
649     /* Assume that raw images are linux kernels, and ELF images are not.  */
650     kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
651                            &elf_low_addr, &elf_high_addr, big_endian,
652                            elf_machine, 1);
653     if (kernel_size > 0 && have_dtb(info)) {
654         /* If there is still some room left at the base of RAM, try and put
655          * the DTB there like we do for images loaded with -bios or -pflash.
656          */
657         if (elf_low_addr > info->loader_start
658             || elf_high_addr < info->loader_start) {
659             /* Pass elf_low_addr as address limit to load_dtb if it may be
660              * pointing into RAM, otherwise pass '0' (no limit)
661              */
662             if (elf_low_addr < info->loader_start) {
663                 elf_low_addr = 0;
664             }
665             if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
666                 exit(1);
667             }
668         }
669     }
670     entry = elf_entry;
671     if (kernel_size < 0) {
672         kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
673                                   &is_linux, NULL, NULL);
674     }
675     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
676     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
677         entry = info->loader_start + kernel_load_offset;
678         kernel_size = load_image_gzipped(info->kernel_filename, entry,
679                                          info->ram_size - kernel_load_offset);
680         is_linux = 1;
681     }
682     if (kernel_size < 0) {
683         entry = info->loader_start + kernel_load_offset;
684         kernel_size = load_image_targphys(info->kernel_filename, entry,
685                                           info->ram_size - kernel_load_offset);
686         is_linux = 1;
687     }
688     if (kernel_size < 0) {
689         fprintf(stderr, "qemu: could not load kernel '%s'\n",
690                 info->kernel_filename);
691         exit(1);
692     }
693     info->entry = entry;
694     if (is_linux) {
695         uint32_t fixupcontext[FIXUP_MAX];
696 
697         if (info->initrd_filename) {
698             initrd_size = load_ramdisk(info->initrd_filename,
699                                        info->initrd_start,
700                                        info->ram_size -
701                                        info->initrd_start);
702             if (initrd_size < 0) {
703                 initrd_size = load_image_targphys(info->initrd_filename,
704                                                   info->initrd_start,
705                                                   info->ram_size -
706                                                   info->initrd_start);
707             }
708             if (initrd_size < 0) {
709                 fprintf(stderr, "qemu: could not load initrd '%s'\n",
710                         info->initrd_filename);
711                 exit(1);
712             }
713         } else {
714             initrd_size = 0;
715         }
716         info->initrd_size = initrd_size;
717 
718         fixupcontext[FIXUP_BOARDID] = info->board_id;
719 
720         /* for device tree boot, we pass the DTB directly in r2. Otherwise
721          * we point to the kernel args.
722          */
723         if (have_dtb(info)) {
724             /* Place the DTB after the initrd in memory. Note that some
725              * kernels will trash anything in the 4K page the initrd
726              * ends in, so make sure the DTB isn't caught up in that.
727              */
728             hwaddr dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
729                                              4096);
730             if (load_dtb(dtb_start, info, 0) < 0) {
731                 exit(1);
732             }
733             fixupcontext[FIXUP_ARGPTR] = dtb_start;
734         } else {
735             fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
736             if (info->ram_size >= (1ULL << 32)) {
737                 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
738                         " Linux kernel using ATAGS (try passing a device tree"
739                         " using -dtb)\n");
740                 exit(1);
741             }
742         }
743         fixupcontext[FIXUP_ENTRYPOINT] = entry;
744 
745         write_bootloader("bootloader", info->loader_start,
746                          primary_loader, fixupcontext);
747 
748         if (info->nb_cpus > 1) {
749             info->write_secondary_boot(cpu, info);
750         }
751     }
752     info->is_linux = is_linux;
753 
754     for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
755         ARM_CPU(cs)->env.boot_info = info;
756     }
757 }
758