1 /* 2 * ARM kernel loader. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "config.h" 11 #include "hw/hw.h" 12 #include "hw/arm/arm.h" 13 #include "hw/arm/linux-boot-if.h" 14 #include "sysemu/sysemu.h" 15 #include "hw/boards.h" 16 #include "hw/loader.h" 17 #include "elf.h" 18 #include "sysemu/device_tree.h" 19 #include "qemu/config-file.h" 20 #include "exec/address-spaces.h" 21 22 /* Kernel boot protocol is specified in the kernel docs 23 * Documentation/arm/Booting and Documentation/arm64/booting.txt 24 * They have different preferred image load offsets from system RAM base. 25 */ 26 #define KERNEL_ARGS_ADDR 0x100 27 #define KERNEL_LOAD_ADDR 0x00010000 28 #define KERNEL64_LOAD_ADDR 0x00080000 29 30 typedef enum { 31 FIXUP_NONE = 0, /* do nothing */ 32 FIXUP_TERMINATOR, /* end of insns */ 33 FIXUP_BOARDID, /* overwrite with board ID number */ 34 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */ 35 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */ 36 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */ 37 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ 38 FIXUP_BOOTREG, /* overwrite with boot register address */ 39 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ 40 FIXUP_MAX, 41 } FixupType; 42 43 typedef struct ARMInsnFixup { 44 uint32_t insn; 45 FixupType fixup; 46 } ARMInsnFixup; 47 48 static const ARMInsnFixup bootloader_aarch64[] = { 49 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ 50 { 0xaa1f03e1 }, /* mov x1, xzr */ 51 { 0xaa1f03e2 }, /* mov x2, xzr */ 52 { 0xaa1f03e3 }, /* mov x3, xzr */ 53 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ 54 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ 55 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */ 56 { 0 }, /* .word @DTB Higher 32-bits */ 57 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */ 58 { 0 }, /* .word @Kernel Entry Higher 32-bits */ 59 { 0, FIXUP_TERMINATOR } 60 }; 61 62 /* A very small bootloader: call the board-setup code (if needed), 63 * set r0-r2, then jump to the kernel. 64 * If we're not calling boot setup code then we don't copy across 65 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array. 66 */ 67 68 static const ARMInsnFixup bootloader[] = { 69 { 0xe28fe008 }, /* add lr, pc, #8 */ 70 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */ 71 { 0, FIXUP_BOARD_SETUP }, 72 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3 73 { 0xe3a00000 }, /* mov r0, #0 */ 74 { 0xe59f1004 }, /* ldr r1, [pc, #4] */ 75 { 0xe59f2004 }, /* ldr r2, [pc, #4] */ 76 { 0xe59ff004 }, /* ldr pc, [pc, #4] */ 77 { 0, FIXUP_BOARDID }, 78 { 0, FIXUP_ARGPTR }, 79 { 0, FIXUP_ENTRYPOINT }, 80 { 0, FIXUP_TERMINATOR } 81 }; 82 83 /* Handling for secondary CPU boot in a multicore system. 84 * Unlike the uniprocessor/primary CPU boot, this is platform 85 * dependent. The default code here is based on the secondary 86 * CPU boot protocol used on realview/vexpress boards, with 87 * some parameterisation to increase its flexibility. 88 * QEMU platform models for which this code is not appropriate 89 * should override write_secondary_boot and secondary_cpu_reset_hook 90 * instead. 91 * 92 * This code enables the interrupt controllers for the secondary 93 * CPUs and then puts all the secondary CPUs into a loop waiting 94 * for an interprocessor interrupt and polling a configurable 95 * location for the kernel secondary CPU entry point. 96 */ 97 #define DSB_INSN 0xf57ff04f 98 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ 99 100 static const ARMInsnFixup smpboot[] = { 101 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ 102 { 0xe59f0028 }, /* ldr r0, bootreg_addr */ 103 { 0xe3a01001 }, /* mov r1, #1 */ 104 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ 105 { 0xe3a010ff }, /* mov r1, #0xff */ 106 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ 107 { 0, FIXUP_DSB }, /* dsb */ 108 { 0xe320f003 }, /* wfi */ 109 { 0xe5901000 }, /* ldr r1, [r0] */ 110 { 0xe1110001 }, /* tst r1, r1 */ 111 { 0x0afffffb }, /* beq <wfi> */ 112 { 0xe12fff11 }, /* bx r1 */ 113 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ 114 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ 115 { 0, FIXUP_TERMINATOR } 116 }; 117 118 static void write_bootloader(const char *name, hwaddr addr, 119 const ARMInsnFixup *insns, uint32_t *fixupcontext) 120 { 121 /* Fix up the specified bootloader fragment and write it into 122 * guest memory using rom_add_blob_fixed(). fixupcontext is 123 * an array giving the values to write in for the fixup types 124 * which write a value into the code array. 125 */ 126 int i, len; 127 uint32_t *code; 128 129 len = 0; 130 while (insns[len].fixup != FIXUP_TERMINATOR) { 131 len++; 132 } 133 134 code = g_new0(uint32_t, len); 135 136 for (i = 0; i < len; i++) { 137 uint32_t insn = insns[i].insn; 138 FixupType fixup = insns[i].fixup; 139 140 switch (fixup) { 141 case FIXUP_NONE: 142 break; 143 case FIXUP_BOARDID: 144 case FIXUP_BOARD_SETUP: 145 case FIXUP_ARGPTR: 146 case FIXUP_ENTRYPOINT: 147 case FIXUP_GIC_CPU_IF: 148 case FIXUP_BOOTREG: 149 case FIXUP_DSB: 150 insn = fixupcontext[fixup]; 151 break; 152 default: 153 abort(); 154 } 155 code[i] = tswap32(insn); 156 } 157 158 rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr); 159 160 g_free(code); 161 } 162 163 static void default_write_secondary(ARMCPU *cpu, 164 const struct arm_boot_info *info) 165 { 166 uint32_t fixupcontext[FIXUP_MAX]; 167 168 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; 169 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; 170 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 171 fixupcontext[FIXUP_DSB] = DSB_INSN; 172 } else { 173 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; 174 } 175 176 write_bootloader("smpboot", info->smp_loader_start, 177 smpboot, fixupcontext); 178 } 179 180 static void default_reset_secondary(ARMCPU *cpu, 181 const struct arm_boot_info *info) 182 { 183 CPUState *cs = CPU(cpu); 184 185 address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr, 186 0, MEMTXATTRS_UNSPECIFIED, NULL); 187 cpu_set_pc(cs, info->smp_loader_start); 188 } 189 190 static inline bool have_dtb(const struct arm_boot_info *info) 191 { 192 return info->dtb_filename || info->get_dtb; 193 } 194 195 #define WRITE_WORD(p, value) do { \ 196 address_space_stl_notdirty(&address_space_memory, p, value, \ 197 MEMTXATTRS_UNSPECIFIED, NULL); \ 198 p += 4; \ 199 } while (0) 200 201 static void set_kernel_args(const struct arm_boot_info *info) 202 { 203 int initrd_size = info->initrd_size; 204 hwaddr base = info->loader_start; 205 hwaddr p; 206 207 p = base + KERNEL_ARGS_ADDR; 208 /* ATAG_CORE */ 209 WRITE_WORD(p, 5); 210 WRITE_WORD(p, 0x54410001); 211 WRITE_WORD(p, 1); 212 WRITE_WORD(p, 0x1000); 213 WRITE_WORD(p, 0); 214 /* ATAG_MEM */ 215 /* TODO: handle multiple chips on one ATAG list */ 216 WRITE_WORD(p, 4); 217 WRITE_WORD(p, 0x54410002); 218 WRITE_WORD(p, info->ram_size); 219 WRITE_WORD(p, info->loader_start); 220 if (initrd_size) { 221 /* ATAG_INITRD2 */ 222 WRITE_WORD(p, 4); 223 WRITE_WORD(p, 0x54420005); 224 WRITE_WORD(p, info->initrd_start); 225 WRITE_WORD(p, initrd_size); 226 } 227 if (info->kernel_cmdline && *info->kernel_cmdline) { 228 /* ATAG_CMDLINE */ 229 int cmdline_size; 230 231 cmdline_size = strlen(info->kernel_cmdline); 232 cpu_physical_memory_write(p + 8, info->kernel_cmdline, 233 cmdline_size + 1); 234 cmdline_size = (cmdline_size >> 2) + 1; 235 WRITE_WORD(p, cmdline_size + 2); 236 WRITE_WORD(p, 0x54410009); 237 p += cmdline_size * 4; 238 } 239 if (info->atag_board) { 240 /* ATAG_BOARD */ 241 int atag_board_len; 242 uint8_t atag_board_buf[0x1000]; 243 244 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; 245 WRITE_WORD(p, (atag_board_len + 8) >> 2); 246 WRITE_WORD(p, 0x414f4d50); 247 cpu_physical_memory_write(p, atag_board_buf, atag_board_len); 248 p += atag_board_len; 249 } 250 /* ATAG_END */ 251 WRITE_WORD(p, 0); 252 WRITE_WORD(p, 0); 253 } 254 255 static void set_kernel_args_old(const struct arm_boot_info *info) 256 { 257 hwaddr p; 258 const char *s; 259 int initrd_size = info->initrd_size; 260 hwaddr base = info->loader_start; 261 262 /* see linux/include/asm-arm/setup.h */ 263 p = base + KERNEL_ARGS_ADDR; 264 /* page_size */ 265 WRITE_WORD(p, 4096); 266 /* nr_pages */ 267 WRITE_WORD(p, info->ram_size / 4096); 268 /* ramdisk_size */ 269 WRITE_WORD(p, 0); 270 #define FLAG_READONLY 1 271 #define FLAG_RDLOAD 4 272 #define FLAG_RDPROMPT 8 273 /* flags */ 274 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); 275 /* rootdev */ 276 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ 277 /* video_num_cols */ 278 WRITE_WORD(p, 0); 279 /* video_num_rows */ 280 WRITE_WORD(p, 0); 281 /* video_x */ 282 WRITE_WORD(p, 0); 283 /* video_y */ 284 WRITE_WORD(p, 0); 285 /* memc_control_reg */ 286 WRITE_WORD(p, 0); 287 /* unsigned char sounddefault */ 288 /* unsigned char adfsdrives */ 289 /* unsigned char bytes_per_char_h */ 290 /* unsigned char bytes_per_char_v */ 291 WRITE_WORD(p, 0); 292 /* pages_in_bank[4] */ 293 WRITE_WORD(p, 0); 294 WRITE_WORD(p, 0); 295 WRITE_WORD(p, 0); 296 WRITE_WORD(p, 0); 297 /* pages_in_vram */ 298 WRITE_WORD(p, 0); 299 /* initrd_start */ 300 if (initrd_size) { 301 WRITE_WORD(p, info->initrd_start); 302 } else { 303 WRITE_WORD(p, 0); 304 } 305 /* initrd_size */ 306 WRITE_WORD(p, initrd_size); 307 /* rd_start */ 308 WRITE_WORD(p, 0); 309 /* system_rev */ 310 WRITE_WORD(p, 0); 311 /* system_serial_low */ 312 WRITE_WORD(p, 0); 313 /* system_serial_high */ 314 WRITE_WORD(p, 0); 315 /* mem_fclk_21285 */ 316 WRITE_WORD(p, 0); 317 /* zero unused fields */ 318 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { 319 WRITE_WORD(p, 0); 320 } 321 s = info->kernel_cmdline; 322 if (s) { 323 cpu_physical_memory_write(p, s, strlen(s) + 1); 324 } else { 325 WRITE_WORD(p, 0); 326 } 327 } 328 329 /** 330 * load_dtb() - load a device tree binary image into memory 331 * @addr: the address to load the image at 332 * @binfo: struct describing the boot environment 333 * @addr_limit: upper limit of the available memory area at @addr 334 * 335 * Load a device tree supplied by the machine or by the user with the 336 * '-dtb' command line option, and put it at offset @addr in target 337 * memory. 338 * 339 * If @addr_limit contains a meaningful value (i.e., it is strictly greater 340 * than @addr), the device tree is only loaded if its size does not exceed 341 * the limit. 342 * 343 * Returns: the size of the device tree image on success, 344 * 0 if the image size exceeds the limit, 345 * -1 on errors. 346 * 347 * Note: Must not be called unless have_dtb(binfo) is true. 348 */ 349 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo, 350 hwaddr addr_limit) 351 { 352 void *fdt = NULL; 353 int size, rc; 354 uint32_t acells, scells; 355 356 if (binfo->dtb_filename) { 357 char *filename; 358 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); 359 if (!filename) { 360 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); 361 goto fail; 362 } 363 364 fdt = load_device_tree(filename, &size); 365 if (!fdt) { 366 fprintf(stderr, "Couldn't open dtb file %s\n", filename); 367 g_free(filename); 368 goto fail; 369 } 370 g_free(filename); 371 } else { 372 fdt = binfo->get_dtb(binfo, &size); 373 if (!fdt) { 374 fprintf(stderr, "Board was unable to create a dtb blob\n"); 375 goto fail; 376 } 377 } 378 379 if (addr_limit > addr && size > (addr_limit - addr)) { 380 /* Installing the device tree blob at addr would exceed addr_limit. 381 * Whether this constitutes failure is up to the caller to decide, 382 * so just return 0 as size, i.e., no error. 383 */ 384 g_free(fdt); 385 return 0; 386 } 387 388 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells"); 389 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells"); 390 if (acells == 0 || scells == 0) { 391 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); 392 goto fail; 393 } 394 395 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) { 396 /* This is user error so deserves a friendlier error message 397 * than the failure of setprop_sized_cells would provide 398 */ 399 fprintf(stderr, "qemu: dtb file not compatible with " 400 "RAM size > 4GB\n"); 401 goto fail; 402 } 403 404 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg", 405 acells, binfo->loader_start, 406 scells, binfo->ram_size); 407 if (rc < 0) { 408 fprintf(stderr, "couldn't set /memory/reg\n"); 409 goto fail; 410 } 411 412 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { 413 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", 414 binfo->kernel_cmdline); 415 if (rc < 0) { 416 fprintf(stderr, "couldn't set /chosen/bootargs\n"); 417 goto fail; 418 } 419 } 420 421 if (binfo->initrd_size) { 422 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", 423 binfo->initrd_start); 424 if (rc < 0) { 425 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); 426 goto fail; 427 } 428 429 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", 430 binfo->initrd_start + binfo->initrd_size); 431 if (rc < 0) { 432 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); 433 goto fail; 434 } 435 } 436 437 if (binfo->modify_dtb) { 438 binfo->modify_dtb(binfo, fdt); 439 } 440 441 qemu_fdt_dumpdtb(fdt, size); 442 443 /* Put the DTB into the memory map as a ROM image: this will ensure 444 * the DTB is copied again upon reset, even if addr points into RAM. 445 */ 446 rom_add_blob_fixed("dtb", fdt, size, addr); 447 448 g_free(fdt); 449 450 return size; 451 452 fail: 453 g_free(fdt); 454 return -1; 455 } 456 457 static void do_cpu_reset(void *opaque) 458 { 459 ARMCPU *cpu = opaque; 460 CPUState *cs = CPU(cpu); 461 CPUARMState *env = &cpu->env; 462 const struct arm_boot_info *info = env->boot_info; 463 464 cpu_reset(cs); 465 if (info) { 466 if (!info->is_linux) { 467 /* Jump to the entry point. */ 468 uint64_t entry = info->entry; 469 470 if (!env->aarch64) { 471 env->thumb = info->entry & 1; 472 entry &= 0xfffffffe; 473 } 474 cpu_set_pc(cs, entry); 475 } else { 476 /* If we are booting Linux then we need to check whether we are 477 * booting into secure or non-secure state and adjust the state 478 * accordingly. Out of reset, ARM is defined to be in secure state 479 * (SCR.NS = 0), we change that here if non-secure boot has been 480 * requested. 481 */ 482 if (arm_feature(env, ARM_FEATURE_EL3)) { 483 /* AArch64 is defined to come out of reset into EL3 if enabled. 484 * If we are booting Linux then we need to adjust our EL as 485 * Linux expects us to be in EL2 or EL1. AArch32 resets into 486 * SVC, which Linux expects, so no privilege/exception level to 487 * adjust. 488 */ 489 if (env->aarch64) { 490 if (arm_feature(env, ARM_FEATURE_EL2)) { 491 env->pstate = PSTATE_MODE_EL2h; 492 } else { 493 env->pstate = PSTATE_MODE_EL1h; 494 } 495 } 496 497 /* Set to non-secure if not a secure boot */ 498 if (!info->secure_boot) { 499 /* Linux expects non-secure state */ 500 env->cp15.scr_el3 |= SCR_NS; 501 } 502 } 503 504 if (cs == first_cpu) { 505 cpu_set_pc(cs, info->loader_start); 506 507 if (!have_dtb(info)) { 508 if (old_param) { 509 set_kernel_args_old(info); 510 } else { 511 set_kernel_args(info); 512 } 513 } 514 } else { 515 info->secondary_cpu_reset_hook(cpu, info); 516 } 517 } 518 } 519 } 520 521 /** 522 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified 523 * by key. 524 * @fw_cfg: The firmware config instance to store the data in. 525 * @size_key: The firmware config key to store the size of the loaded 526 * data under, with fw_cfg_add_i32(). 527 * @data_key: The firmware config key to store the loaded data under, 528 * with fw_cfg_add_bytes(). 529 * @image_name: The name of the image file to load. If it is NULL, the 530 * function returns without doing anything. 531 * @try_decompress: Whether the image should be decompressed (gunzipped) before 532 * adding it to fw_cfg. If decompression fails, the image is 533 * loaded as-is. 534 * 535 * In case of failure, the function prints an error message to stderr and the 536 * process exits with status 1. 537 */ 538 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, 539 uint16_t data_key, const char *image_name, 540 bool try_decompress) 541 { 542 size_t size = -1; 543 uint8_t *data; 544 545 if (image_name == NULL) { 546 return; 547 } 548 549 if (try_decompress) { 550 size = load_image_gzipped_buffer(image_name, 551 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); 552 } 553 554 if (size == (size_t)-1) { 555 gchar *contents; 556 gsize length; 557 558 if (!g_file_get_contents(image_name, &contents, &length, NULL)) { 559 fprintf(stderr, "failed to load \"%s\"\n", image_name); 560 exit(1); 561 } 562 size = length; 563 data = (uint8_t *)contents; 564 } 565 566 fw_cfg_add_i32(fw_cfg, size_key, size); 567 fw_cfg_add_bytes(fw_cfg, data_key, data, size); 568 } 569 570 static int do_arm_linux_init(Object *obj, void *opaque) 571 { 572 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) { 573 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj); 574 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj); 575 struct arm_boot_info *info = opaque; 576 577 if (albifc->arm_linux_init) { 578 albifc->arm_linux_init(albif, info->secure_boot); 579 } 580 } 581 return 0; 582 } 583 584 static void arm_load_kernel_notify(Notifier *notifier, void *data) 585 { 586 CPUState *cs; 587 int kernel_size; 588 int initrd_size; 589 int is_linux = 0; 590 uint64_t elf_entry, elf_low_addr, elf_high_addr; 591 int elf_machine; 592 hwaddr entry, kernel_load_offset; 593 int big_endian; 594 static const ARMInsnFixup *primary_loader; 595 ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier, 596 notifier, notifier); 597 ARMCPU *cpu = n->cpu; 598 struct arm_boot_info *info = 599 container_of(n, struct arm_boot_info, load_kernel_notifier); 600 601 /* Load the kernel. */ 602 if (!info->kernel_filename || info->firmware_loaded) { 603 604 if (have_dtb(info)) { 605 /* If we have a device tree blob, but no kernel to supply it to (or 606 * the kernel is supposed to be loaded by the bootloader), copy the 607 * DTB to the base of RAM for the bootloader to pick up. 608 */ 609 if (load_dtb(info->loader_start, info, 0) < 0) { 610 exit(1); 611 } 612 } 613 614 if (info->kernel_filename) { 615 FWCfgState *fw_cfg; 616 bool try_decompressing_kernel; 617 618 fw_cfg = fw_cfg_find(); 619 try_decompressing_kernel = arm_feature(&cpu->env, 620 ARM_FEATURE_AARCH64); 621 622 /* Expose the kernel, the command line, and the initrd in fw_cfg. 623 * We don't process them here at all, it's all left to the 624 * firmware. 625 */ 626 load_image_to_fw_cfg(fw_cfg, 627 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, 628 info->kernel_filename, 629 try_decompressing_kernel); 630 load_image_to_fw_cfg(fw_cfg, 631 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, 632 info->initrd_filename, false); 633 634 if (info->kernel_cmdline) { 635 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 636 strlen(info->kernel_cmdline) + 1); 637 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, 638 info->kernel_cmdline); 639 } 640 } 641 642 /* We will start from address 0 (typically a boot ROM image) in the 643 * same way as hardware. 644 */ 645 return; 646 } 647 648 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 649 primary_loader = bootloader_aarch64; 650 kernel_load_offset = KERNEL64_LOAD_ADDR; 651 elf_machine = EM_AARCH64; 652 } else { 653 primary_loader = bootloader; 654 if (!info->write_board_setup) { 655 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET; 656 } 657 kernel_load_offset = KERNEL_LOAD_ADDR; 658 elf_machine = EM_ARM; 659 } 660 661 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb"); 662 663 if (!info->secondary_cpu_reset_hook) { 664 info->secondary_cpu_reset_hook = default_reset_secondary; 665 } 666 if (!info->write_secondary_boot) { 667 info->write_secondary_boot = default_write_secondary; 668 } 669 670 if (info->nb_cpus == 0) 671 info->nb_cpus = 1; 672 673 #ifdef TARGET_WORDS_BIGENDIAN 674 big_endian = 1; 675 #else 676 big_endian = 0; 677 #endif 678 679 /* We want to put the initrd far enough into RAM that when the 680 * kernel is uncompressed it will not clobber the initrd. However 681 * on boards without much RAM we must ensure that we still leave 682 * enough room for a decent sized initrd, and on boards with large 683 * amounts of RAM we must avoid the initrd being so far up in RAM 684 * that it is outside lowmem and inaccessible to the kernel. 685 * So for boards with less than 256MB of RAM we put the initrd 686 * halfway into RAM, and for boards with 256MB of RAM or more we put 687 * the initrd at 128MB. 688 */ 689 info->initrd_start = info->loader_start + 690 MIN(info->ram_size / 2, 128 * 1024 * 1024); 691 692 /* Assume that raw images are linux kernels, and ELF images are not. */ 693 kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry, 694 &elf_low_addr, &elf_high_addr, big_endian, 695 elf_machine, 1); 696 if (kernel_size > 0 && have_dtb(info)) { 697 /* If there is still some room left at the base of RAM, try and put 698 * the DTB there like we do for images loaded with -bios or -pflash. 699 */ 700 if (elf_low_addr > info->loader_start 701 || elf_high_addr < info->loader_start) { 702 /* Pass elf_low_addr as address limit to load_dtb if it may be 703 * pointing into RAM, otherwise pass '0' (no limit) 704 */ 705 if (elf_low_addr < info->loader_start) { 706 elf_low_addr = 0; 707 } 708 if (load_dtb(info->loader_start, info, elf_low_addr) < 0) { 709 exit(1); 710 } 711 } 712 } 713 entry = elf_entry; 714 if (kernel_size < 0) { 715 kernel_size = load_uimage(info->kernel_filename, &entry, NULL, 716 &is_linux, NULL, NULL); 717 } 718 /* On aarch64, it's the bootloader's job to uncompress the kernel. */ 719 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { 720 entry = info->loader_start + kernel_load_offset; 721 kernel_size = load_image_gzipped(info->kernel_filename, entry, 722 info->ram_size - kernel_load_offset); 723 is_linux = 1; 724 } 725 if (kernel_size < 0) { 726 entry = info->loader_start + kernel_load_offset; 727 kernel_size = load_image_targphys(info->kernel_filename, entry, 728 info->ram_size - kernel_load_offset); 729 is_linux = 1; 730 } 731 if (kernel_size < 0) { 732 fprintf(stderr, "qemu: could not load kernel '%s'\n", 733 info->kernel_filename); 734 exit(1); 735 } 736 info->entry = entry; 737 if (is_linux) { 738 uint32_t fixupcontext[FIXUP_MAX]; 739 740 if (info->initrd_filename) { 741 initrd_size = load_ramdisk(info->initrd_filename, 742 info->initrd_start, 743 info->ram_size - 744 info->initrd_start); 745 if (initrd_size < 0) { 746 initrd_size = load_image_targphys(info->initrd_filename, 747 info->initrd_start, 748 info->ram_size - 749 info->initrd_start); 750 } 751 if (initrd_size < 0) { 752 fprintf(stderr, "qemu: could not load initrd '%s'\n", 753 info->initrd_filename); 754 exit(1); 755 } 756 } else { 757 initrd_size = 0; 758 } 759 info->initrd_size = initrd_size; 760 761 fixupcontext[FIXUP_BOARDID] = info->board_id; 762 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr; 763 764 /* for device tree boot, we pass the DTB directly in r2. Otherwise 765 * we point to the kernel args. 766 */ 767 if (have_dtb(info)) { 768 hwaddr align; 769 hwaddr dtb_start; 770 771 if (elf_machine == EM_AARCH64) { 772 /* 773 * Some AArch64 kernels on early bootup map the fdt region as 774 * 775 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] 776 * 777 * Let's play safe and prealign it to 2MB to give us some space. 778 */ 779 align = 2 * 1024 * 1024; 780 } else { 781 /* 782 * Some 32bit kernels will trash anything in the 4K page the 783 * initrd ends in, so make sure the DTB isn't caught up in that. 784 */ 785 align = 4096; 786 } 787 788 /* Place the DTB after the initrd in memory with alignment. */ 789 dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align); 790 if (load_dtb(dtb_start, info, 0) < 0) { 791 exit(1); 792 } 793 fixupcontext[FIXUP_ARGPTR] = dtb_start; 794 } else { 795 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR; 796 if (info->ram_size >= (1ULL << 32)) { 797 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot" 798 " Linux kernel using ATAGS (try passing a device tree" 799 " using -dtb)\n"); 800 exit(1); 801 } 802 } 803 fixupcontext[FIXUP_ENTRYPOINT] = entry; 804 805 write_bootloader("bootloader", info->loader_start, 806 primary_loader, fixupcontext); 807 808 if (info->nb_cpus > 1) { 809 info->write_secondary_boot(cpu, info); 810 } 811 if (info->write_board_setup) { 812 info->write_board_setup(cpu, info); 813 } 814 815 /* Notify devices which need to fake up firmware initialization 816 * that we're doing a direct kernel boot. 817 */ 818 object_child_foreach_recursive(object_get_root(), 819 do_arm_linux_init, info); 820 } 821 info->is_linux = is_linux; 822 823 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { 824 ARM_CPU(cs)->env.boot_info = info; 825 } 826 } 827 828 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) 829 { 830 CPUState *cs; 831 832 info->load_kernel_notifier.cpu = cpu; 833 info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify; 834 qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier); 835 836 /* CPU objects (unlike devices) are not automatically reset on system 837 * reset, so we must always register a handler to do so. If we're 838 * actually loading a kernel, the handler is also responsible for 839 * arranging that we start it correctly. 840 */ 841 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { 842 qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); 843 } 844 } 845 846 static const TypeInfo arm_linux_boot_if_info = { 847 .name = TYPE_ARM_LINUX_BOOT_IF, 848 .parent = TYPE_INTERFACE, 849 .class_size = sizeof(ARMLinuxBootIfClass), 850 }; 851 852 static void arm_linux_boot_register_types(void) 853 { 854 type_register_static(&arm_linux_boot_if_info); 855 } 856 857 type_init(arm_linux_boot_register_types) 858