xref: /openbmc/qemu/hw/arm/boot.c (revision d5938f29)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu-common.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "sysemu/reset.h"
21 #include "hw/loader.h"
22 #include "elf.h"
23 #include "sysemu/device_tree.h"
24 #include "qemu/config-file.h"
25 #include "qemu/option.h"
26 #include "exec/address-spaces.h"
27 #include "qemu/units.h"
28 
29 /* Kernel boot protocol is specified in the kernel docs
30  * Documentation/arm/Booting and Documentation/arm64/booting.txt
31  * They have different preferred image load offsets from system RAM base.
32  */
33 #define KERNEL_ARGS_ADDR   0x100
34 #define KERNEL_NOLOAD_ADDR 0x02000000
35 #define KERNEL_LOAD_ADDR   0x00010000
36 #define KERNEL64_LOAD_ADDR 0x00080000
37 
38 #define ARM64_TEXT_OFFSET_OFFSET    8
39 #define ARM64_MAGIC_OFFSET          56
40 
41 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
42 
43 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
44                                      const struct arm_boot_info *info)
45 {
46     /* Return the address space to use for bootloader reads and writes.
47      * We prefer the secure address space if the CPU has it and we're
48      * going to boot the guest into it.
49      */
50     int asidx;
51     CPUState *cs = CPU(cpu);
52 
53     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
54         asidx = ARMASIdx_S;
55     } else {
56         asidx = ARMASIdx_NS;
57     }
58 
59     return cpu_get_address_space(cs, asidx);
60 }
61 
62 typedef enum {
63     FIXUP_NONE = 0,     /* do nothing */
64     FIXUP_TERMINATOR,   /* end of insns */
65     FIXUP_BOARDID,      /* overwrite with board ID number */
66     FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
67     FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
68     FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
69     FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
70     FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
71     FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
72     FIXUP_BOOTREG,      /* overwrite with boot register address */
73     FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
74     FIXUP_MAX,
75 } FixupType;
76 
77 typedef struct ARMInsnFixup {
78     uint32_t insn;
79     FixupType fixup;
80 } ARMInsnFixup;
81 
82 static const ARMInsnFixup bootloader_aarch64[] = {
83     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
84     { 0xaa1f03e1 }, /* mov x1, xzr */
85     { 0xaa1f03e2 }, /* mov x2, xzr */
86     { 0xaa1f03e3 }, /* mov x3, xzr */
87     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
88     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
89     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
90     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
91     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
92     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
93     { 0, FIXUP_TERMINATOR }
94 };
95 
96 /* A very small bootloader: call the board-setup code (if needed),
97  * set r0-r2, then jump to the kernel.
98  * If we're not calling boot setup code then we don't copy across
99  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
100  */
101 
102 static const ARMInsnFixup bootloader[] = {
103     { 0xe28fe004 }, /* add     lr, pc, #4 */
104     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
105     { 0, FIXUP_BOARD_SETUP },
106 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
107     { 0xe3a00000 }, /* mov     r0, #0 */
108     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
109     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
110     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
111     { 0, FIXUP_BOARDID },
112     { 0, FIXUP_ARGPTR_LO },
113     { 0, FIXUP_ENTRYPOINT_LO },
114     { 0, FIXUP_TERMINATOR }
115 };
116 
117 /* Handling for secondary CPU boot in a multicore system.
118  * Unlike the uniprocessor/primary CPU boot, this is platform
119  * dependent. The default code here is based on the secondary
120  * CPU boot protocol used on realview/vexpress boards, with
121  * some parameterisation to increase its flexibility.
122  * QEMU platform models for which this code is not appropriate
123  * should override write_secondary_boot and secondary_cpu_reset_hook
124  * instead.
125  *
126  * This code enables the interrupt controllers for the secondary
127  * CPUs and then puts all the secondary CPUs into a loop waiting
128  * for an interprocessor interrupt and polling a configurable
129  * location for the kernel secondary CPU entry point.
130  */
131 #define DSB_INSN 0xf57ff04f
132 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
133 
134 static const ARMInsnFixup smpboot[] = {
135     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
136     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
137     { 0xe3a01001 }, /* mov r1, #1 */
138     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
139     { 0xe3a010ff }, /* mov r1, #0xff */
140     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
141     { 0, FIXUP_DSB },   /* dsb */
142     { 0xe320f003 }, /* wfi */
143     { 0xe5901000 }, /* ldr     r1, [r0] */
144     { 0xe1110001 }, /* tst     r1, r1 */
145     { 0x0afffffb }, /* beq     <wfi> */
146     { 0xe12fff11 }, /* bx      r1 */
147     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
148     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
149     { 0, FIXUP_TERMINATOR }
150 };
151 
152 static void write_bootloader(const char *name, hwaddr addr,
153                              const ARMInsnFixup *insns, uint32_t *fixupcontext,
154                              AddressSpace *as)
155 {
156     /* Fix up the specified bootloader fragment and write it into
157      * guest memory using rom_add_blob_fixed(). fixupcontext is
158      * an array giving the values to write in for the fixup types
159      * which write a value into the code array.
160      */
161     int i, len;
162     uint32_t *code;
163 
164     len = 0;
165     while (insns[len].fixup != FIXUP_TERMINATOR) {
166         len++;
167     }
168 
169     code = g_new0(uint32_t, len);
170 
171     for (i = 0; i < len; i++) {
172         uint32_t insn = insns[i].insn;
173         FixupType fixup = insns[i].fixup;
174 
175         switch (fixup) {
176         case FIXUP_NONE:
177             break;
178         case FIXUP_BOARDID:
179         case FIXUP_BOARD_SETUP:
180         case FIXUP_ARGPTR_LO:
181         case FIXUP_ARGPTR_HI:
182         case FIXUP_ENTRYPOINT_LO:
183         case FIXUP_ENTRYPOINT_HI:
184         case FIXUP_GIC_CPU_IF:
185         case FIXUP_BOOTREG:
186         case FIXUP_DSB:
187             insn = fixupcontext[fixup];
188             break;
189         default:
190             abort();
191         }
192         code[i] = tswap32(insn);
193     }
194 
195     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
196 
197     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
198 
199     g_free(code);
200 }
201 
202 static void default_write_secondary(ARMCPU *cpu,
203                                     const struct arm_boot_info *info)
204 {
205     uint32_t fixupcontext[FIXUP_MAX];
206     AddressSpace *as = arm_boot_address_space(cpu, info);
207 
208     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
209     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
210     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
211         fixupcontext[FIXUP_DSB] = DSB_INSN;
212     } else {
213         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
214     }
215 
216     write_bootloader("smpboot", info->smp_loader_start,
217                      smpboot, fixupcontext, as);
218 }
219 
220 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
221                                             const struct arm_boot_info *info,
222                                             hwaddr mvbar_addr)
223 {
224     AddressSpace *as = arm_boot_address_space(cpu, info);
225     int n;
226     uint32_t mvbar_blob[] = {
227         /* mvbar_addr: secure monitor vectors
228          * Default unimplemented and unused vectors to spin. Makes it
229          * easier to debug (as opposed to the CPU running away).
230          */
231         0xeafffffe, /* (spin) */
232         0xeafffffe, /* (spin) */
233         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
234         0xeafffffe, /* (spin) */
235         0xeafffffe, /* (spin) */
236         0xeafffffe, /* (spin) */
237         0xeafffffe, /* (spin) */
238         0xeafffffe, /* (spin) */
239     };
240     uint32_t board_setup_blob[] = {
241         /* board setup addr */
242         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
243         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
244         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
245         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
246         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
247         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
248         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
249         0xe1a0f001, /* mov     pc, r1                 ;return */
250     };
251 
252     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
253     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
254 
255     /* check that these blobs don't overlap */
256     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
257           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
258 
259     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
260         mvbar_blob[n] = tswap32(mvbar_blob[n]);
261     }
262     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
263                           mvbar_addr, as);
264 
265     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
266         board_setup_blob[n] = tswap32(board_setup_blob[n]);
267     }
268     rom_add_blob_fixed_as("board-setup", board_setup_blob,
269                           sizeof(board_setup_blob), info->board_setup_addr, as);
270 }
271 
272 static void default_reset_secondary(ARMCPU *cpu,
273                                     const struct arm_boot_info *info)
274 {
275     AddressSpace *as = arm_boot_address_space(cpu, info);
276     CPUState *cs = CPU(cpu);
277 
278     address_space_stl_notdirty(as, info->smp_bootreg_addr,
279                                0, MEMTXATTRS_UNSPECIFIED, NULL);
280     cpu_set_pc(cs, info->smp_loader_start);
281 }
282 
283 static inline bool have_dtb(const struct arm_boot_info *info)
284 {
285     return info->dtb_filename || info->get_dtb;
286 }
287 
288 #define WRITE_WORD(p, value) do { \
289     address_space_stl_notdirty(as, p, value, \
290                                MEMTXATTRS_UNSPECIFIED, NULL);  \
291     p += 4;                       \
292 } while (0)
293 
294 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
295 {
296     int initrd_size = info->initrd_size;
297     hwaddr base = info->loader_start;
298     hwaddr p;
299 
300     p = base + KERNEL_ARGS_ADDR;
301     /* ATAG_CORE */
302     WRITE_WORD(p, 5);
303     WRITE_WORD(p, 0x54410001);
304     WRITE_WORD(p, 1);
305     WRITE_WORD(p, 0x1000);
306     WRITE_WORD(p, 0);
307     /* ATAG_MEM */
308     /* TODO: handle multiple chips on one ATAG list */
309     WRITE_WORD(p, 4);
310     WRITE_WORD(p, 0x54410002);
311     WRITE_WORD(p, info->ram_size);
312     WRITE_WORD(p, info->loader_start);
313     if (initrd_size) {
314         /* ATAG_INITRD2 */
315         WRITE_WORD(p, 4);
316         WRITE_WORD(p, 0x54420005);
317         WRITE_WORD(p, info->initrd_start);
318         WRITE_WORD(p, initrd_size);
319     }
320     if (info->kernel_cmdline && *info->kernel_cmdline) {
321         /* ATAG_CMDLINE */
322         int cmdline_size;
323 
324         cmdline_size = strlen(info->kernel_cmdline);
325         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
326                             (const uint8_t *)info->kernel_cmdline,
327                             cmdline_size + 1);
328         cmdline_size = (cmdline_size >> 2) + 1;
329         WRITE_WORD(p, cmdline_size + 2);
330         WRITE_WORD(p, 0x54410009);
331         p += cmdline_size * 4;
332     }
333     if (info->atag_board) {
334         /* ATAG_BOARD */
335         int atag_board_len;
336         uint8_t atag_board_buf[0x1000];
337 
338         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
339         WRITE_WORD(p, (atag_board_len + 8) >> 2);
340         WRITE_WORD(p, 0x414f4d50);
341         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
342                             atag_board_buf, atag_board_len);
343         p += atag_board_len;
344     }
345     /* ATAG_END */
346     WRITE_WORD(p, 0);
347     WRITE_WORD(p, 0);
348 }
349 
350 static void set_kernel_args_old(const struct arm_boot_info *info,
351                                 AddressSpace *as)
352 {
353     hwaddr p;
354     const char *s;
355     int initrd_size = info->initrd_size;
356     hwaddr base = info->loader_start;
357 
358     /* see linux/include/asm-arm/setup.h */
359     p = base + KERNEL_ARGS_ADDR;
360     /* page_size */
361     WRITE_WORD(p, 4096);
362     /* nr_pages */
363     WRITE_WORD(p, info->ram_size / 4096);
364     /* ramdisk_size */
365     WRITE_WORD(p, 0);
366 #define FLAG_READONLY	1
367 #define FLAG_RDLOAD	4
368 #define FLAG_RDPROMPT	8
369     /* flags */
370     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
371     /* rootdev */
372     WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
373     /* video_num_cols */
374     WRITE_WORD(p, 0);
375     /* video_num_rows */
376     WRITE_WORD(p, 0);
377     /* video_x */
378     WRITE_WORD(p, 0);
379     /* video_y */
380     WRITE_WORD(p, 0);
381     /* memc_control_reg */
382     WRITE_WORD(p, 0);
383     /* unsigned char sounddefault */
384     /* unsigned char adfsdrives */
385     /* unsigned char bytes_per_char_h */
386     /* unsigned char bytes_per_char_v */
387     WRITE_WORD(p, 0);
388     /* pages_in_bank[4] */
389     WRITE_WORD(p, 0);
390     WRITE_WORD(p, 0);
391     WRITE_WORD(p, 0);
392     WRITE_WORD(p, 0);
393     /* pages_in_vram */
394     WRITE_WORD(p, 0);
395     /* initrd_start */
396     if (initrd_size) {
397         WRITE_WORD(p, info->initrd_start);
398     } else {
399         WRITE_WORD(p, 0);
400     }
401     /* initrd_size */
402     WRITE_WORD(p, initrd_size);
403     /* rd_start */
404     WRITE_WORD(p, 0);
405     /* system_rev */
406     WRITE_WORD(p, 0);
407     /* system_serial_low */
408     WRITE_WORD(p, 0);
409     /* system_serial_high */
410     WRITE_WORD(p, 0);
411     /* mem_fclk_21285 */
412     WRITE_WORD(p, 0);
413     /* zero unused fields */
414     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
415         WRITE_WORD(p, 0);
416     }
417     s = info->kernel_cmdline;
418     if (s) {
419         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
420                             (const uint8_t *)s, strlen(s) + 1);
421     } else {
422         WRITE_WORD(p, 0);
423     }
424 }
425 
426 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
427                                uint32_t scells, hwaddr mem_len,
428                                int numa_node_id)
429 {
430     char *nodename;
431     int ret;
432 
433     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
434     qemu_fdt_add_subnode(fdt, nodename);
435     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
436     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
437                                        scells, mem_len);
438     if (ret < 0) {
439         goto out;
440     }
441 
442     /* only set the NUMA ID if it is specified */
443     if (numa_node_id >= 0) {
444         ret = qemu_fdt_setprop_cell(fdt, nodename,
445                                     "numa-node-id", numa_node_id);
446     }
447 out:
448     g_free(nodename);
449     return ret;
450 }
451 
452 static void fdt_add_psci_node(void *fdt)
453 {
454     uint32_t cpu_suspend_fn;
455     uint32_t cpu_off_fn;
456     uint32_t cpu_on_fn;
457     uint32_t migrate_fn;
458     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
459     const char *psci_method;
460     int64_t psci_conduit;
461     int rc;
462 
463     psci_conduit = object_property_get_int(OBJECT(armcpu),
464                                            "psci-conduit",
465                                            &error_abort);
466     switch (psci_conduit) {
467     case QEMU_PSCI_CONDUIT_DISABLED:
468         return;
469     case QEMU_PSCI_CONDUIT_HVC:
470         psci_method = "hvc";
471         break;
472     case QEMU_PSCI_CONDUIT_SMC:
473         psci_method = "smc";
474         break;
475     default:
476         g_assert_not_reached();
477     }
478 
479     /*
480      * If /psci node is present in provided DTB, assume that no fixup
481      * is necessary and all PSCI configuration should be taken as-is
482      */
483     rc = fdt_path_offset(fdt, "/psci");
484     if (rc >= 0) {
485         return;
486     }
487 
488     qemu_fdt_add_subnode(fdt, "/psci");
489     if (armcpu->psci_version == 2) {
490         const char comp[] = "arm,psci-0.2\0arm,psci";
491         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
492 
493         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
494         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
495             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
496             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
497             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
498         } else {
499             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
500             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
501             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
502         }
503     } else {
504         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
505 
506         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
507         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
508         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
509         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
510     }
511 
512     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
513      * to the instruction that should be used to invoke PSCI functions.
514      * However, the device tree binding uses 'method' instead, so that is
515      * what we should use here.
516      */
517     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
518 
519     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
520     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
521     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
522     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
523 }
524 
525 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
526                  hwaddr addr_limit, AddressSpace *as)
527 {
528     void *fdt = NULL;
529     int size, rc, n = 0;
530     uint32_t acells, scells;
531     unsigned int i;
532     hwaddr mem_base, mem_len;
533     char **node_path;
534     Error *err = NULL;
535 
536     if (binfo->dtb_filename) {
537         char *filename;
538         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
539         if (!filename) {
540             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
541             goto fail;
542         }
543 
544         fdt = load_device_tree(filename, &size);
545         if (!fdt) {
546             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
547             g_free(filename);
548             goto fail;
549         }
550         g_free(filename);
551     } else {
552         fdt = binfo->get_dtb(binfo, &size);
553         if (!fdt) {
554             fprintf(stderr, "Board was unable to create a dtb blob\n");
555             goto fail;
556         }
557     }
558 
559     if (addr_limit > addr && size > (addr_limit - addr)) {
560         /* Installing the device tree blob at addr would exceed addr_limit.
561          * Whether this constitutes failure is up to the caller to decide,
562          * so just return 0 as size, i.e., no error.
563          */
564         g_free(fdt);
565         return 0;
566     }
567 
568     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
569                                    NULL, &error_fatal);
570     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
571                                    NULL, &error_fatal);
572     if (acells == 0 || scells == 0) {
573         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
574         goto fail;
575     }
576 
577     if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
578         /* This is user error so deserves a friendlier error message
579          * than the failure of setprop_sized_cells would provide
580          */
581         fprintf(stderr, "qemu: dtb file not compatible with "
582                 "RAM size > 4GB\n");
583         goto fail;
584     }
585 
586     /* nop all root nodes matching /memory or /memory@unit-address */
587     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
588     if (err) {
589         error_report_err(err);
590         goto fail;
591     }
592     while (node_path[n]) {
593         if (g_str_has_prefix(node_path[n], "/memory")) {
594             qemu_fdt_nop_node(fdt, node_path[n]);
595         }
596         n++;
597     }
598     g_strfreev(node_path);
599 
600     if (nb_numa_nodes > 0) {
601         mem_base = binfo->loader_start;
602         for (i = 0; i < nb_numa_nodes; i++) {
603             mem_len = numa_info[i].node_mem;
604             rc = fdt_add_memory_node(fdt, acells, mem_base,
605                                      scells, mem_len, i);
606             if (rc < 0) {
607                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
608                         mem_base);
609                 goto fail;
610             }
611 
612             mem_base += mem_len;
613         }
614     } else {
615         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
616                                  scells, binfo->ram_size, -1);
617         if (rc < 0) {
618             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
619                     binfo->loader_start);
620             goto fail;
621         }
622     }
623 
624     rc = fdt_path_offset(fdt, "/chosen");
625     if (rc < 0) {
626         qemu_fdt_add_subnode(fdt, "/chosen");
627     }
628 
629     if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
630         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
631                                      binfo->kernel_cmdline);
632         if (rc < 0) {
633             fprintf(stderr, "couldn't set /chosen/bootargs\n");
634             goto fail;
635         }
636     }
637 
638     if (binfo->initrd_size) {
639         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
640                                    binfo->initrd_start);
641         if (rc < 0) {
642             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
643             goto fail;
644         }
645 
646         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
647                                    binfo->initrd_start + binfo->initrd_size);
648         if (rc < 0) {
649             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
650             goto fail;
651         }
652     }
653 
654     fdt_add_psci_node(fdt);
655 
656     if (binfo->modify_dtb) {
657         binfo->modify_dtb(binfo, fdt);
658     }
659 
660     qemu_fdt_dumpdtb(fdt, size);
661 
662     /* Put the DTB into the memory map as a ROM image: this will ensure
663      * the DTB is copied again upon reset, even if addr points into RAM.
664      */
665     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
666 
667     g_free(fdt);
668 
669     return size;
670 
671 fail:
672     g_free(fdt);
673     return -1;
674 }
675 
676 static void do_cpu_reset(void *opaque)
677 {
678     ARMCPU *cpu = opaque;
679     CPUState *cs = CPU(cpu);
680     CPUARMState *env = &cpu->env;
681     const struct arm_boot_info *info = env->boot_info;
682 
683     cpu_reset(cs);
684     if (info) {
685         if (!info->is_linux) {
686             int i;
687             /* Jump to the entry point.  */
688             uint64_t entry = info->entry;
689 
690             switch (info->endianness) {
691             case ARM_ENDIANNESS_LE:
692                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
693                 for (i = 1; i < 4; ++i) {
694                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
695                 }
696                 env->uncached_cpsr &= ~CPSR_E;
697                 break;
698             case ARM_ENDIANNESS_BE8:
699                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
700                 for (i = 1; i < 4; ++i) {
701                     env->cp15.sctlr_el[i] |= SCTLR_EE;
702                 }
703                 env->uncached_cpsr |= CPSR_E;
704                 break;
705             case ARM_ENDIANNESS_BE32:
706                 env->cp15.sctlr_el[1] |= SCTLR_B;
707                 break;
708             case ARM_ENDIANNESS_UNKNOWN:
709                 break; /* Board's decision */
710             default:
711                 g_assert_not_reached();
712             }
713 
714             cpu_set_pc(cs, entry);
715         } else {
716             /* If we are booting Linux then we need to check whether we are
717              * booting into secure or non-secure state and adjust the state
718              * accordingly.  Out of reset, ARM is defined to be in secure state
719              * (SCR.NS = 0), we change that here if non-secure boot has been
720              * requested.
721              */
722             if (arm_feature(env, ARM_FEATURE_EL3)) {
723                 /* AArch64 is defined to come out of reset into EL3 if enabled.
724                  * If we are booting Linux then we need to adjust our EL as
725                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
726                  * SVC, which Linux expects, so no privilege/exception level to
727                  * adjust.
728                  */
729                 if (env->aarch64) {
730                     env->cp15.scr_el3 |= SCR_RW;
731                     if (arm_feature(env, ARM_FEATURE_EL2)) {
732                         env->cp15.hcr_el2 |= HCR_RW;
733                         env->pstate = PSTATE_MODE_EL2h;
734                     } else {
735                         env->pstate = PSTATE_MODE_EL1h;
736                     }
737                     /* AArch64 kernels never boot in secure mode */
738                     assert(!info->secure_boot);
739                     /* This hook is only supported for AArch32 currently:
740                      * bootloader_aarch64[] will not call the hook, and
741                      * the code above has already dropped us into EL2 or EL1.
742                      */
743                     assert(!info->secure_board_setup);
744                 }
745 
746                 if (arm_feature(env, ARM_FEATURE_EL2)) {
747                     /* If we have EL2 then Linux expects the HVC insn to work */
748                     env->cp15.scr_el3 |= SCR_HCE;
749                 }
750 
751                 /* Set to non-secure if not a secure boot */
752                 if (!info->secure_boot &&
753                     (cs != first_cpu || !info->secure_board_setup)) {
754                     /* Linux expects non-secure state */
755                     env->cp15.scr_el3 |= SCR_NS;
756                 }
757             }
758 
759             if (!env->aarch64 && !info->secure_boot &&
760                 arm_feature(env, ARM_FEATURE_EL2)) {
761                 /*
762                  * This is an AArch32 boot not to Secure state, and
763                  * we have Hyp mode available, so boot the kernel into
764                  * Hyp mode. This is not how the CPU comes out of reset,
765                  * so we need to manually put it there.
766                  */
767                 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
768             }
769 
770             if (cs == first_cpu) {
771                 AddressSpace *as = arm_boot_address_space(cpu, info);
772 
773                 cpu_set_pc(cs, info->loader_start);
774 
775                 if (!have_dtb(info)) {
776                     if (old_param) {
777                         set_kernel_args_old(info, as);
778                     } else {
779                         set_kernel_args(info, as);
780                     }
781                 }
782             } else {
783                 info->secondary_cpu_reset_hook(cpu, info);
784             }
785         }
786     }
787 }
788 
789 /**
790  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
791  *                          by key.
792  * @fw_cfg:         The firmware config instance to store the data in.
793  * @size_key:       The firmware config key to store the size of the loaded
794  *                  data under, with fw_cfg_add_i32().
795  * @data_key:       The firmware config key to store the loaded data under,
796  *                  with fw_cfg_add_bytes().
797  * @image_name:     The name of the image file to load. If it is NULL, the
798  *                  function returns without doing anything.
799  * @try_decompress: Whether the image should be decompressed (gunzipped) before
800  *                  adding it to fw_cfg. If decompression fails, the image is
801  *                  loaded as-is.
802  *
803  * In case of failure, the function prints an error message to stderr and the
804  * process exits with status 1.
805  */
806 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
807                                  uint16_t data_key, const char *image_name,
808                                  bool try_decompress)
809 {
810     size_t size = -1;
811     uint8_t *data;
812 
813     if (image_name == NULL) {
814         return;
815     }
816 
817     if (try_decompress) {
818         size = load_image_gzipped_buffer(image_name,
819                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
820     }
821 
822     if (size == (size_t)-1) {
823         gchar *contents;
824         gsize length;
825 
826         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
827             error_report("failed to load \"%s\"", image_name);
828             exit(1);
829         }
830         size = length;
831         data = (uint8_t *)contents;
832     }
833 
834     fw_cfg_add_i32(fw_cfg, size_key, size);
835     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
836 }
837 
838 static int do_arm_linux_init(Object *obj, void *opaque)
839 {
840     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
841         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
842         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
843         struct arm_boot_info *info = opaque;
844 
845         if (albifc->arm_linux_init) {
846             albifc->arm_linux_init(albif, info->secure_boot);
847         }
848     }
849     return 0;
850 }
851 
852 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
853                             uint64_t *lowaddr, uint64_t *highaddr,
854                             int elf_machine, AddressSpace *as)
855 {
856     bool elf_is64;
857     union {
858         Elf32_Ehdr h32;
859         Elf64_Ehdr h64;
860     } elf_header;
861     int data_swab = 0;
862     bool big_endian;
863     int64_t ret = -1;
864     Error *err = NULL;
865 
866 
867     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
868     if (err) {
869         error_free(err);
870         return ret;
871     }
872 
873     if (elf_is64) {
874         big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
875         info->endianness = big_endian ? ARM_ENDIANNESS_BE8
876                                       : ARM_ENDIANNESS_LE;
877     } else {
878         big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
879         if (big_endian) {
880             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
881                 info->endianness = ARM_ENDIANNESS_BE8;
882             } else {
883                 info->endianness = ARM_ENDIANNESS_BE32;
884                 /* In BE32, the CPU has a different view of the per-byte
885                  * address map than the rest of the system. BE32 ELF files
886                  * are organised such that they can be programmed through
887                  * the CPU's per-word byte-reversed view of the world. QEMU
888                  * however loads ELF files independently of the CPU. So
889                  * tell the ELF loader to byte reverse the data for us.
890                  */
891                 data_swab = 2;
892             }
893         } else {
894             info->endianness = ARM_ENDIANNESS_LE;
895         }
896     }
897 
898     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
899                       pentry, lowaddr, highaddr, big_endian, elf_machine,
900                       1, data_swab, as);
901     if (ret <= 0) {
902         /* The header loaded but the image didn't */
903         exit(1);
904     }
905 
906     return ret;
907 }
908 
909 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
910                                    hwaddr *entry, AddressSpace *as)
911 {
912     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
913     uint64_t kernel_size = 0;
914     uint8_t *buffer;
915     int size;
916 
917     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
918     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
919                                      &buffer);
920 
921     if (size < 0) {
922         gsize len;
923 
924         /* Load as raw file otherwise */
925         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
926             return -1;
927         }
928         size = len;
929     }
930 
931     /* check the arm64 magic header value -- very old kernels may not have it */
932     if (size > ARM64_MAGIC_OFFSET + 4 &&
933         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
934         uint64_t hdrvals[2];
935 
936         /* The arm64 Image header has text_offset and image_size fields at 8 and
937          * 16 bytes into the Image header, respectively. The text_offset field
938          * is only valid if the image_size is non-zero.
939          */
940         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
941 
942         kernel_size = le64_to_cpu(hdrvals[1]);
943 
944         if (kernel_size != 0) {
945             kernel_load_offset = le64_to_cpu(hdrvals[0]);
946 
947             /*
948              * We write our startup "bootloader" at the very bottom of RAM,
949              * so that bit can't be used for the image. Luckily the Image
950              * format specification is that the image requests only an offset
951              * from a 2MB boundary, not an absolute load address. So if the
952              * image requests an offset that might mean it overlaps with the
953              * bootloader, we can just load it starting at 2MB+offset rather
954              * than 0MB + offset.
955              */
956             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
957                 kernel_load_offset += 2 * MiB;
958             }
959         }
960     }
961 
962     /*
963      * Kernels before v3.17 don't populate the image_size field, and
964      * raw images have no header. For those our best guess at the size
965      * is the size of the Image file itself.
966      */
967     if (kernel_size == 0) {
968         kernel_size = size;
969     }
970 
971     *entry = mem_base + kernel_load_offset;
972     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
973 
974     g_free(buffer);
975 
976     return kernel_size;
977 }
978 
979 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
980                                          struct arm_boot_info *info)
981 {
982     /* Set up for a direct boot of a kernel image file. */
983     CPUState *cs;
984     AddressSpace *as = arm_boot_address_space(cpu, info);
985     int kernel_size;
986     int initrd_size;
987     int is_linux = 0;
988     uint64_t elf_entry;
989     /* Addresses of first byte used and first byte not used by the image */
990     uint64_t image_low_addr = 0, image_high_addr = 0;
991     int elf_machine;
992     hwaddr entry;
993     static const ARMInsnFixup *primary_loader;
994     uint64_t ram_end = info->loader_start + info->ram_size;
995 
996     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
997         primary_loader = bootloader_aarch64;
998         elf_machine = EM_AARCH64;
999     } else {
1000         primary_loader = bootloader;
1001         if (!info->write_board_setup) {
1002             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1003         }
1004         elf_machine = EM_ARM;
1005     }
1006 
1007     if (!info->secondary_cpu_reset_hook) {
1008         info->secondary_cpu_reset_hook = default_reset_secondary;
1009     }
1010     if (!info->write_secondary_boot) {
1011         info->write_secondary_boot = default_write_secondary;
1012     }
1013 
1014     if (info->nb_cpus == 0)
1015         info->nb_cpus = 1;
1016 
1017     /* Assume that raw images are linux kernels, and ELF images are not.  */
1018     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1019                                &image_high_addr, elf_machine, as);
1020     if (kernel_size > 0 && have_dtb(info)) {
1021         /*
1022          * If there is still some room left at the base of RAM, try and put
1023          * the DTB there like we do for images loaded with -bios or -pflash.
1024          */
1025         if (image_low_addr > info->loader_start
1026             || image_high_addr < info->loader_start) {
1027             /*
1028              * Set image_low_addr as address limit for arm_load_dtb if it may be
1029              * pointing into RAM, otherwise pass '0' (no limit)
1030              */
1031             if (image_low_addr < info->loader_start) {
1032                 image_low_addr = 0;
1033             }
1034             info->dtb_start = info->loader_start;
1035             info->dtb_limit = image_low_addr;
1036         }
1037     }
1038     entry = elf_entry;
1039     if (kernel_size < 0) {
1040         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1041         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1042                                      &is_linux, NULL, NULL, as);
1043         if (kernel_size >= 0) {
1044             image_low_addr = loadaddr;
1045             image_high_addr = image_low_addr + kernel_size;
1046         }
1047     }
1048     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1049         kernel_size = load_aarch64_image(info->kernel_filename,
1050                                          info->loader_start, &entry, as);
1051         is_linux = 1;
1052         if (kernel_size >= 0) {
1053             image_low_addr = entry;
1054             image_high_addr = image_low_addr + kernel_size;
1055         }
1056     } else if (kernel_size < 0) {
1057         /* 32-bit ARM */
1058         entry = info->loader_start + KERNEL_LOAD_ADDR;
1059         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1060                                              ram_end - KERNEL_LOAD_ADDR, as);
1061         is_linux = 1;
1062         if (kernel_size >= 0) {
1063             image_low_addr = entry;
1064             image_high_addr = image_low_addr + kernel_size;
1065         }
1066     }
1067     if (kernel_size < 0) {
1068         error_report("could not load kernel '%s'", info->kernel_filename);
1069         exit(1);
1070     }
1071 
1072     if (kernel_size > info->ram_size) {
1073         error_report("kernel '%s' is too large to fit in RAM "
1074                      "(kernel size %d, RAM size %" PRId64 ")",
1075                      info->kernel_filename, kernel_size, info->ram_size);
1076         exit(1);
1077     }
1078 
1079     info->entry = entry;
1080 
1081     /*
1082      * We want to put the initrd far enough into RAM that when the
1083      * kernel is uncompressed it will not clobber the initrd. However
1084      * on boards without much RAM we must ensure that we still leave
1085      * enough room for a decent sized initrd, and on boards with large
1086      * amounts of RAM we must avoid the initrd being so far up in RAM
1087      * that it is outside lowmem and inaccessible to the kernel.
1088      * So for boards with less  than 256MB of RAM we put the initrd
1089      * halfway into RAM, and for boards with 256MB of RAM or more we put
1090      * the initrd at 128MB.
1091      * We also refuse to put the initrd somewhere that will definitely
1092      * overlay the kernel we just loaded, though for kernel formats which
1093      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1094      * we might still make a bad choice here.
1095      */
1096     info->initrd_start = info->loader_start +
1097         MIN(info->ram_size / 2, 128 * 1024 * 1024);
1098     if (image_high_addr) {
1099         info->initrd_start = MAX(info->initrd_start, image_high_addr);
1100     }
1101     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1102 
1103     if (is_linux) {
1104         uint32_t fixupcontext[FIXUP_MAX];
1105 
1106         if (info->initrd_filename) {
1107 
1108             if (info->initrd_start >= ram_end) {
1109                 error_report("not enough space after kernel to load initrd");
1110                 exit(1);
1111             }
1112 
1113             initrd_size = load_ramdisk_as(info->initrd_filename,
1114                                           info->initrd_start,
1115                                           ram_end - info->initrd_start, as);
1116             if (initrd_size < 0) {
1117                 initrd_size = load_image_targphys_as(info->initrd_filename,
1118                                                      info->initrd_start,
1119                                                      ram_end -
1120                                                      info->initrd_start,
1121                                                      as);
1122             }
1123             if (initrd_size < 0) {
1124                 error_report("could not load initrd '%s'",
1125                              info->initrd_filename);
1126                 exit(1);
1127             }
1128             if (info->initrd_start + initrd_size > ram_end) {
1129                 error_report("could not load initrd '%s': "
1130                              "too big to fit into RAM after the kernel",
1131                              info->initrd_filename);
1132                 exit(1);
1133             }
1134         } else {
1135             initrd_size = 0;
1136         }
1137         info->initrd_size = initrd_size;
1138 
1139         fixupcontext[FIXUP_BOARDID] = info->board_id;
1140         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1141 
1142         /*
1143          * for device tree boot, we pass the DTB directly in r2. Otherwise
1144          * we point to the kernel args.
1145          */
1146         if (have_dtb(info)) {
1147             hwaddr align;
1148 
1149             if (elf_machine == EM_AARCH64) {
1150                 /*
1151                  * Some AArch64 kernels on early bootup map the fdt region as
1152                  *
1153                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1154                  *
1155                  * Let's play safe and prealign it to 2MB to give us some space.
1156                  */
1157                 align = 2 * 1024 * 1024;
1158             } else {
1159                 /*
1160                  * Some 32bit kernels will trash anything in the 4K page the
1161                  * initrd ends in, so make sure the DTB isn't caught up in that.
1162                  */
1163                 align = 4096;
1164             }
1165 
1166             /* Place the DTB after the initrd in memory with alignment. */
1167             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1168                                            align);
1169             if (info->dtb_start >= ram_end) {
1170                 error_report("Not enough space for DTB after kernel/initrd");
1171                 exit(1);
1172             }
1173             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1174             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1175         } else {
1176             fixupcontext[FIXUP_ARGPTR_LO] =
1177                 info->loader_start + KERNEL_ARGS_ADDR;
1178             fixupcontext[FIXUP_ARGPTR_HI] =
1179                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1180             if (info->ram_size >= (1ULL << 32)) {
1181                 error_report("RAM size must be less than 4GB to boot"
1182                              " Linux kernel using ATAGS (try passing a device tree"
1183                              " using -dtb)");
1184                 exit(1);
1185             }
1186         }
1187         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1188         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1189 
1190         write_bootloader("bootloader", info->loader_start,
1191                          primary_loader, fixupcontext, as);
1192 
1193         if (info->nb_cpus > 1) {
1194             info->write_secondary_boot(cpu, info);
1195         }
1196         if (info->write_board_setup) {
1197             info->write_board_setup(cpu, info);
1198         }
1199 
1200         /*
1201          * Notify devices which need to fake up firmware initialization
1202          * that we're doing a direct kernel boot.
1203          */
1204         object_child_foreach_recursive(object_get_root(),
1205                                        do_arm_linux_init, info);
1206     }
1207     info->is_linux = is_linux;
1208 
1209     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1210         ARM_CPU(cs)->env.boot_info = info;
1211     }
1212 }
1213 
1214 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1215 {
1216     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1217 
1218     if (have_dtb(info)) {
1219         /*
1220          * If we have a device tree blob, but no kernel to supply it to (or
1221          * the kernel is supposed to be loaded by the bootloader), copy the
1222          * DTB to the base of RAM for the bootloader to pick up.
1223          */
1224         info->dtb_start = info->loader_start;
1225     }
1226 
1227     if (info->kernel_filename) {
1228         FWCfgState *fw_cfg;
1229         bool try_decompressing_kernel;
1230 
1231         fw_cfg = fw_cfg_find();
1232         try_decompressing_kernel = arm_feature(&cpu->env,
1233                                                ARM_FEATURE_AARCH64);
1234 
1235         /*
1236          * Expose the kernel, the command line, and the initrd in fw_cfg.
1237          * We don't process them here at all, it's all left to the
1238          * firmware.
1239          */
1240         load_image_to_fw_cfg(fw_cfg,
1241                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1242                              info->kernel_filename,
1243                              try_decompressing_kernel);
1244         load_image_to_fw_cfg(fw_cfg,
1245                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1246                              info->initrd_filename, false);
1247 
1248         if (info->kernel_cmdline) {
1249             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1250                            strlen(info->kernel_cmdline) + 1);
1251             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1252                               info->kernel_cmdline);
1253         }
1254     }
1255 
1256     /*
1257      * We will start from address 0 (typically a boot ROM image) in the
1258      * same way as hardware. Leave env->boot_info NULL, so that
1259      * do_cpu_reset() knows it does not need to alter the PC on reset.
1260      */
1261 }
1262 
1263 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1264 {
1265     CPUState *cs;
1266     AddressSpace *as = arm_boot_address_space(cpu, info);
1267 
1268     /*
1269      * CPU objects (unlike devices) are not automatically reset on system
1270      * reset, so we must always register a handler to do so. If we're
1271      * actually loading a kernel, the handler is also responsible for
1272      * arranging that we start it correctly.
1273      */
1274     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1275         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1276     }
1277 
1278     /*
1279      * The board code is not supposed to set secure_board_setup unless
1280      * running its code in secure mode is actually possible, and KVM
1281      * doesn't support secure.
1282      */
1283     assert(!(info->secure_board_setup && kvm_enabled()));
1284 
1285     info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
1286     info->dtb_limit = 0;
1287 
1288     /* Load the kernel.  */
1289     if (!info->kernel_filename || info->firmware_loaded) {
1290         arm_setup_firmware_boot(cpu, info);
1291     } else {
1292         arm_setup_direct_kernel_boot(cpu, info);
1293     }
1294 
1295     if (!info->skip_dtb_autoload && have_dtb(info)) {
1296         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1297             exit(1);
1298         }
1299     }
1300 }
1301 
1302 static const TypeInfo arm_linux_boot_if_info = {
1303     .name = TYPE_ARM_LINUX_BOOT_IF,
1304     .parent = TYPE_INTERFACE,
1305     .class_size = sizeof(ARMLinuxBootIfClass),
1306 };
1307 
1308 static void arm_linux_boot_register_types(void)
1309 {
1310     type_register_static(&arm_linux_boot_if_info);
1311 }
1312 
1313 type_init(arm_linux_boot_register_types)
1314