1 /* 2 * ARM kernel loader. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu-common.h" 12 #include "qemu/datadir.h" 13 #include "qemu/error-report.h" 14 #include "qapi/error.h" 15 #include <libfdt.h> 16 #include "hw/arm/boot.h" 17 #include "hw/arm/linux-boot-if.h" 18 #include "sysemu/kvm.h" 19 #include "sysemu/sysemu.h" 20 #include "sysemu/numa.h" 21 #include "hw/boards.h" 22 #include "sysemu/reset.h" 23 #include "hw/loader.h" 24 #include "elf.h" 25 #include "sysemu/device_tree.h" 26 #include "qemu/config-file.h" 27 #include "qemu/option.h" 28 #include "qemu/units.h" 29 30 /* Kernel boot protocol is specified in the kernel docs 31 * Documentation/arm/Booting and Documentation/arm64/booting.txt 32 * They have different preferred image load offsets from system RAM base. 33 */ 34 #define KERNEL_ARGS_ADDR 0x100 35 #define KERNEL_NOLOAD_ADDR 0x02000000 36 #define KERNEL_LOAD_ADDR 0x00010000 37 #define KERNEL64_LOAD_ADDR 0x00080000 38 39 #define ARM64_TEXT_OFFSET_OFFSET 8 40 #define ARM64_MAGIC_OFFSET 56 41 42 #define BOOTLOADER_MAX_SIZE (4 * KiB) 43 44 AddressSpace *arm_boot_address_space(ARMCPU *cpu, 45 const struct arm_boot_info *info) 46 { 47 /* Return the address space to use for bootloader reads and writes. 48 * We prefer the secure address space if the CPU has it and we're 49 * going to boot the guest into it. 50 */ 51 int asidx; 52 CPUState *cs = CPU(cpu); 53 54 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) { 55 asidx = ARMASIdx_S; 56 } else { 57 asidx = ARMASIdx_NS; 58 } 59 60 return cpu_get_address_space(cs, asidx); 61 } 62 63 typedef enum { 64 FIXUP_NONE = 0, /* do nothing */ 65 FIXUP_TERMINATOR, /* end of insns */ 66 FIXUP_BOARDID, /* overwrite with board ID number */ 67 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */ 68 FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */ 69 FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */ 70 FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */ 71 FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */ 72 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ 73 FIXUP_BOOTREG, /* overwrite with boot register address */ 74 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ 75 FIXUP_MAX, 76 } FixupType; 77 78 typedef struct ARMInsnFixup { 79 uint32_t insn; 80 FixupType fixup; 81 } ARMInsnFixup; 82 83 static const ARMInsnFixup bootloader_aarch64[] = { 84 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ 85 { 0xaa1f03e1 }, /* mov x1, xzr */ 86 { 0xaa1f03e2 }, /* mov x2, xzr */ 87 { 0xaa1f03e3 }, /* mov x3, xzr */ 88 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ 89 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ 90 { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */ 91 { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */ 92 { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */ 93 { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */ 94 { 0, FIXUP_TERMINATOR } 95 }; 96 97 /* A very small bootloader: call the board-setup code (if needed), 98 * set r0-r2, then jump to the kernel. 99 * If we're not calling boot setup code then we don't copy across 100 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array. 101 */ 102 103 static const ARMInsnFixup bootloader[] = { 104 { 0xe28fe004 }, /* add lr, pc, #4 */ 105 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */ 106 { 0, FIXUP_BOARD_SETUP }, 107 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3 108 { 0xe3a00000 }, /* mov r0, #0 */ 109 { 0xe59f1004 }, /* ldr r1, [pc, #4] */ 110 { 0xe59f2004 }, /* ldr r2, [pc, #4] */ 111 { 0xe59ff004 }, /* ldr pc, [pc, #4] */ 112 { 0, FIXUP_BOARDID }, 113 { 0, FIXUP_ARGPTR_LO }, 114 { 0, FIXUP_ENTRYPOINT_LO }, 115 { 0, FIXUP_TERMINATOR } 116 }; 117 118 /* Handling for secondary CPU boot in a multicore system. 119 * Unlike the uniprocessor/primary CPU boot, this is platform 120 * dependent. The default code here is based on the secondary 121 * CPU boot protocol used on realview/vexpress boards, with 122 * some parameterisation to increase its flexibility. 123 * QEMU platform models for which this code is not appropriate 124 * should override write_secondary_boot and secondary_cpu_reset_hook 125 * instead. 126 * 127 * This code enables the interrupt controllers for the secondary 128 * CPUs and then puts all the secondary CPUs into a loop waiting 129 * for an interprocessor interrupt and polling a configurable 130 * location for the kernel secondary CPU entry point. 131 */ 132 #define DSB_INSN 0xf57ff04f 133 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ 134 135 static const ARMInsnFixup smpboot[] = { 136 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ 137 { 0xe59f0028 }, /* ldr r0, bootreg_addr */ 138 { 0xe3a01001 }, /* mov r1, #1 */ 139 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ 140 { 0xe3a010ff }, /* mov r1, #0xff */ 141 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ 142 { 0, FIXUP_DSB }, /* dsb */ 143 { 0xe320f003 }, /* wfi */ 144 { 0xe5901000 }, /* ldr r1, [r0] */ 145 { 0xe1110001 }, /* tst r1, r1 */ 146 { 0x0afffffb }, /* beq <wfi> */ 147 { 0xe12fff11 }, /* bx r1 */ 148 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ 149 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ 150 { 0, FIXUP_TERMINATOR } 151 }; 152 153 static void write_bootloader(const char *name, hwaddr addr, 154 const ARMInsnFixup *insns, uint32_t *fixupcontext, 155 AddressSpace *as) 156 { 157 /* Fix up the specified bootloader fragment and write it into 158 * guest memory using rom_add_blob_fixed(). fixupcontext is 159 * an array giving the values to write in for the fixup types 160 * which write a value into the code array. 161 */ 162 int i, len; 163 uint32_t *code; 164 165 len = 0; 166 while (insns[len].fixup != FIXUP_TERMINATOR) { 167 len++; 168 } 169 170 code = g_new0(uint32_t, len); 171 172 for (i = 0; i < len; i++) { 173 uint32_t insn = insns[i].insn; 174 FixupType fixup = insns[i].fixup; 175 176 switch (fixup) { 177 case FIXUP_NONE: 178 break; 179 case FIXUP_BOARDID: 180 case FIXUP_BOARD_SETUP: 181 case FIXUP_ARGPTR_LO: 182 case FIXUP_ARGPTR_HI: 183 case FIXUP_ENTRYPOINT_LO: 184 case FIXUP_ENTRYPOINT_HI: 185 case FIXUP_GIC_CPU_IF: 186 case FIXUP_BOOTREG: 187 case FIXUP_DSB: 188 insn = fixupcontext[fixup]; 189 break; 190 default: 191 abort(); 192 } 193 code[i] = tswap32(insn); 194 } 195 196 assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE); 197 198 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as); 199 200 g_free(code); 201 } 202 203 static void default_write_secondary(ARMCPU *cpu, 204 const struct arm_boot_info *info) 205 { 206 uint32_t fixupcontext[FIXUP_MAX]; 207 AddressSpace *as = arm_boot_address_space(cpu, info); 208 209 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; 210 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; 211 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 212 fixupcontext[FIXUP_DSB] = DSB_INSN; 213 } else { 214 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; 215 } 216 217 write_bootloader("smpboot", info->smp_loader_start, 218 smpboot, fixupcontext, as); 219 } 220 221 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu, 222 const struct arm_boot_info *info, 223 hwaddr mvbar_addr) 224 { 225 AddressSpace *as = arm_boot_address_space(cpu, info); 226 int n; 227 uint32_t mvbar_blob[] = { 228 /* mvbar_addr: secure monitor vectors 229 * Default unimplemented and unused vectors to spin. Makes it 230 * easier to debug (as opposed to the CPU running away). 231 */ 232 0xeafffffe, /* (spin) */ 233 0xeafffffe, /* (spin) */ 234 0xe1b0f00e, /* movs pc, lr ;SMC exception return */ 235 0xeafffffe, /* (spin) */ 236 0xeafffffe, /* (spin) */ 237 0xeafffffe, /* (spin) */ 238 0xeafffffe, /* (spin) */ 239 0xeafffffe, /* (spin) */ 240 }; 241 uint32_t board_setup_blob[] = { 242 /* board setup addr */ 243 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */ 244 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */ 245 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */ 246 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */ 247 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */ 248 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */ 249 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */ 250 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */ 251 0xe1a0100e, /* mov r1, lr ;save LR across SMC */ 252 0xe1600070, /* smc #0 ;call monitor to flush SCR */ 253 0xe1a0f001, /* mov pc, r1 ;return */ 254 }; 255 256 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */ 257 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100); 258 259 /* check that these blobs don't overlap */ 260 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr) 261 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr)); 262 263 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) { 264 mvbar_blob[n] = tswap32(mvbar_blob[n]); 265 } 266 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob), 267 mvbar_addr, as); 268 269 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) { 270 board_setup_blob[n] = tswap32(board_setup_blob[n]); 271 } 272 rom_add_blob_fixed_as("board-setup", board_setup_blob, 273 sizeof(board_setup_blob), info->board_setup_addr, as); 274 } 275 276 static void default_reset_secondary(ARMCPU *cpu, 277 const struct arm_boot_info *info) 278 { 279 AddressSpace *as = arm_boot_address_space(cpu, info); 280 CPUState *cs = CPU(cpu); 281 282 address_space_stl_notdirty(as, info->smp_bootreg_addr, 283 0, MEMTXATTRS_UNSPECIFIED, NULL); 284 cpu_set_pc(cs, info->smp_loader_start); 285 } 286 287 static inline bool have_dtb(const struct arm_boot_info *info) 288 { 289 return info->dtb_filename || info->get_dtb; 290 } 291 292 #define WRITE_WORD(p, value) do { \ 293 address_space_stl_notdirty(as, p, value, \ 294 MEMTXATTRS_UNSPECIFIED, NULL); \ 295 p += 4; \ 296 } while (0) 297 298 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as) 299 { 300 int initrd_size = info->initrd_size; 301 hwaddr base = info->loader_start; 302 hwaddr p; 303 304 p = base + KERNEL_ARGS_ADDR; 305 /* ATAG_CORE */ 306 WRITE_WORD(p, 5); 307 WRITE_WORD(p, 0x54410001); 308 WRITE_WORD(p, 1); 309 WRITE_WORD(p, 0x1000); 310 WRITE_WORD(p, 0); 311 /* ATAG_MEM */ 312 /* TODO: handle multiple chips on one ATAG list */ 313 WRITE_WORD(p, 4); 314 WRITE_WORD(p, 0x54410002); 315 WRITE_WORD(p, info->ram_size); 316 WRITE_WORD(p, info->loader_start); 317 if (initrd_size) { 318 /* ATAG_INITRD2 */ 319 WRITE_WORD(p, 4); 320 WRITE_WORD(p, 0x54420005); 321 WRITE_WORD(p, info->initrd_start); 322 WRITE_WORD(p, initrd_size); 323 } 324 if (info->kernel_cmdline && *info->kernel_cmdline) { 325 /* ATAG_CMDLINE */ 326 int cmdline_size; 327 328 cmdline_size = strlen(info->kernel_cmdline); 329 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED, 330 info->kernel_cmdline, cmdline_size + 1); 331 cmdline_size = (cmdline_size >> 2) + 1; 332 WRITE_WORD(p, cmdline_size + 2); 333 WRITE_WORD(p, 0x54410009); 334 p += cmdline_size * 4; 335 } 336 if (info->atag_board) { 337 /* ATAG_BOARD */ 338 int atag_board_len; 339 uint8_t atag_board_buf[0x1000]; 340 341 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; 342 WRITE_WORD(p, (atag_board_len + 8) >> 2); 343 WRITE_WORD(p, 0x414f4d50); 344 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, 345 atag_board_buf, atag_board_len); 346 p += atag_board_len; 347 } 348 /* ATAG_END */ 349 WRITE_WORD(p, 0); 350 WRITE_WORD(p, 0); 351 } 352 353 static void set_kernel_args_old(const struct arm_boot_info *info, 354 AddressSpace *as) 355 { 356 hwaddr p; 357 const char *s; 358 int initrd_size = info->initrd_size; 359 hwaddr base = info->loader_start; 360 361 /* see linux/include/asm-arm/setup.h */ 362 p = base + KERNEL_ARGS_ADDR; 363 /* page_size */ 364 WRITE_WORD(p, 4096); 365 /* nr_pages */ 366 WRITE_WORD(p, info->ram_size / 4096); 367 /* ramdisk_size */ 368 WRITE_WORD(p, 0); 369 #define FLAG_READONLY 1 370 #define FLAG_RDLOAD 4 371 #define FLAG_RDPROMPT 8 372 /* flags */ 373 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); 374 /* rootdev */ 375 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ 376 /* video_num_cols */ 377 WRITE_WORD(p, 0); 378 /* video_num_rows */ 379 WRITE_WORD(p, 0); 380 /* video_x */ 381 WRITE_WORD(p, 0); 382 /* video_y */ 383 WRITE_WORD(p, 0); 384 /* memc_control_reg */ 385 WRITE_WORD(p, 0); 386 /* unsigned char sounddefault */ 387 /* unsigned char adfsdrives */ 388 /* unsigned char bytes_per_char_h */ 389 /* unsigned char bytes_per_char_v */ 390 WRITE_WORD(p, 0); 391 /* pages_in_bank[4] */ 392 WRITE_WORD(p, 0); 393 WRITE_WORD(p, 0); 394 WRITE_WORD(p, 0); 395 WRITE_WORD(p, 0); 396 /* pages_in_vram */ 397 WRITE_WORD(p, 0); 398 /* initrd_start */ 399 if (initrd_size) { 400 WRITE_WORD(p, info->initrd_start); 401 } else { 402 WRITE_WORD(p, 0); 403 } 404 /* initrd_size */ 405 WRITE_WORD(p, initrd_size); 406 /* rd_start */ 407 WRITE_WORD(p, 0); 408 /* system_rev */ 409 WRITE_WORD(p, 0); 410 /* system_serial_low */ 411 WRITE_WORD(p, 0); 412 /* system_serial_high */ 413 WRITE_WORD(p, 0); 414 /* mem_fclk_21285 */ 415 WRITE_WORD(p, 0); 416 /* zero unused fields */ 417 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { 418 WRITE_WORD(p, 0); 419 } 420 s = info->kernel_cmdline; 421 if (s) { 422 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1); 423 } else { 424 WRITE_WORD(p, 0); 425 } 426 } 427 428 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base, 429 uint32_t scells, hwaddr mem_len, 430 int numa_node_id) 431 { 432 char *nodename; 433 int ret; 434 435 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base); 436 qemu_fdt_add_subnode(fdt, nodename); 437 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); 438 ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base, 439 scells, mem_len); 440 if (ret < 0) { 441 goto out; 442 } 443 444 /* only set the NUMA ID if it is specified */ 445 if (numa_node_id >= 0) { 446 ret = qemu_fdt_setprop_cell(fdt, nodename, 447 "numa-node-id", numa_node_id); 448 } 449 out: 450 g_free(nodename); 451 return ret; 452 } 453 454 static void fdt_add_psci_node(void *fdt) 455 { 456 uint32_t cpu_suspend_fn; 457 uint32_t cpu_off_fn; 458 uint32_t cpu_on_fn; 459 uint32_t migrate_fn; 460 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 461 const char *psci_method; 462 int64_t psci_conduit; 463 int rc; 464 465 psci_conduit = object_property_get_int(OBJECT(armcpu), 466 "psci-conduit", 467 &error_abort); 468 switch (psci_conduit) { 469 case QEMU_PSCI_CONDUIT_DISABLED: 470 return; 471 case QEMU_PSCI_CONDUIT_HVC: 472 psci_method = "hvc"; 473 break; 474 case QEMU_PSCI_CONDUIT_SMC: 475 psci_method = "smc"; 476 break; 477 default: 478 g_assert_not_reached(); 479 } 480 481 /* 482 * If /psci node is present in provided DTB, assume that no fixup 483 * is necessary and all PSCI configuration should be taken as-is 484 */ 485 rc = fdt_path_offset(fdt, "/psci"); 486 if (rc >= 0) { 487 return; 488 } 489 490 qemu_fdt_add_subnode(fdt, "/psci"); 491 if (armcpu->psci_version == 2) { 492 const char comp[] = "arm,psci-0.2\0arm,psci"; 493 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 494 495 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 496 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 497 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 498 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 499 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 500 } else { 501 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 502 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 503 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 504 } 505 } else { 506 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 507 508 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 509 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 510 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 511 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 512 } 513 514 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 515 * to the instruction that should be used to invoke PSCI functions. 516 * However, the device tree binding uses 'method' instead, so that is 517 * what we should use here. 518 */ 519 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method); 520 521 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 522 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 523 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 524 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 525 } 526 527 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo, 528 hwaddr addr_limit, AddressSpace *as, MachineState *ms) 529 { 530 void *fdt = NULL; 531 int size, rc, n = 0; 532 uint32_t acells, scells; 533 unsigned int i; 534 hwaddr mem_base, mem_len; 535 char **node_path; 536 Error *err = NULL; 537 538 if (binfo->dtb_filename) { 539 char *filename; 540 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); 541 if (!filename) { 542 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); 543 goto fail; 544 } 545 546 fdt = load_device_tree(filename, &size); 547 if (!fdt) { 548 fprintf(stderr, "Couldn't open dtb file %s\n", filename); 549 g_free(filename); 550 goto fail; 551 } 552 g_free(filename); 553 } else { 554 fdt = binfo->get_dtb(binfo, &size); 555 if (!fdt) { 556 fprintf(stderr, "Board was unable to create a dtb blob\n"); 557 goto fail; 558 } 559 } 560 561 if (addr_limit > addr && size > (addr_limit - addr)) { 562 /* Installing the device tree blob at addr would exceed addr_limit. 563 * Whether this constitutes failure is up to the caller to decide, 564 * so just return 0 as size, i.e., no error. 565 */ 566 g_free(fdt); 567 return 0; 568 } 569 570 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells", 571 NULL, &error_fatal); 572 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells", 573 NULL, &error_fatal); 574 if (acells == 0 || scells == 0) { 575 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); 576 goto fail; 577 } 578 579 if (scells < 2 && binfo->ram_size >= 4 * GiB) { 580 /* This is user error so deserves a friendlier error message 581 * than the failure of setprop_sized_cells would provide 582 */ 583 fprintf(stderr, "qemu: dtb file not compatible with " 584 "RAM size > 4GB\n"); 585 goto fail; 586 } 587 588 /* nop all root nodes matching /memory or /memory@unit-address */ 589 node_path = qemu_fdt_node_unit_path(fdt, "memory", &err); 590 if (err) { 591 error_report_err(err); 592 goto fail; 593 } 594 while (node_path[n]) { 595 if (g_str_has_prefix(node_path[n], "/memory")) { 596 qemu_fdt_nop_node(fdt, node_path[n]); 597 } 598 n++; 599 } 600 g_strfreev(node_path); 601 602 /* 603 * We drop all the memory nodes which correspond to empty NUMA nodes 604 * from the device tree, because the Linux NUMA binding document 605 * states they should not be generated. Linux will get the NUMA node 606 * IDs of the empty NUMA nodes from the distance map if they are needed. 607 * This means QEMU users may be obliged to provide command lines which 608 * configure distance maps when the empty NUMA node IDs are needed and 609 * Linux's default distance map isn't sufficient. 610 */ 611 if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) { 612 mem_base = binfo->loader_start; 613 for (i = 0; i < ms->numa_state->num_nodes; i++) { 614 mem_len = ms->numa_state->nodes[i].node_mem; 615 if (!mem_len) { 616 continue; 617 } 618 619 rc = fdt_add_memory_node(fdt, acells, mem_base, 620 scells, mem_len, i); 621 if (rc < 0) { 622 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n", 623 mem_base); 624 goto fail; 625 } 626 627 mem_base += mem_len; 628 } 629 } else { 630 rc = fdt_add_memory_node(fdt, acells, binfo->loader_start, 631 scells, binfo->ram_size, -1); 632 if (rc < 0) { 633 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n", 634 binfo->loader_start); 635 goto fail; 636 } 637 } 638 639 rc = fdt_path_offset(fdt, "/chosen"); 640 if (rc < 0) { 641 qemu_fdt_add_subnode(fdt, "/chosen"); 642 } 643 644 if (ms->kernel_cmdline && *ms->kernel_cmdline) { 645 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", 646 ms->kernel_cmdline); 647 if (rc < 0) { 648 fprintf(stderr, "couldn't set /chosen/bootargs\n"); 649 goto fail; 650 } 651 } 652 653 if (binfo->initrd_size) { 654 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", 655 binfo->initrd_start); 656 if (rc < 0) { 657 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); 658 goto fail; 659 } 660 661 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", 662 binfo->initrd_start + binfo->initrd_size); 663 if (rc < 0) { 664 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); 665 goto fail; 666 } 667 } 668 669 fdt_add_psci_node(fdt); 670 671 if (binfo->modify_dtb) { 672 binfo->modify_dtb(binfo, fdt); 673 } 674 675 qemu_fdt_dumpdtb(fdt, size); 676 677 /* Put the DTB into the memory map as a ROM image: this will ensure 678 * the DTB is copied again upon reset, even if addr points into RAM. 679 */ 680 rom_add_blob_fixed_as("dtb", fdt, size, addr, as); 681 682 g_free(fdt); 683 684 return size; 685 686 fail: 687 g_free(fdt); 688 return -1; 689 } 690 691 static void do_cpu_reset(void *opaque) 692 { 693 ARMCPU *cpu = opaque; 694 CPUState *cs = CPU(cpu); 695 CPUARMState *env = &cpu->env; 696 const struct arm_boot_info *info = env->boot_info; 697 698 cpu_reset(cs); 699 if (info) { 700 if (!info->is_linux) { 701 int i; 702 /* Jump to the entry point. */ 703 uint64_t entry = info->entry; 704 705 switch (info->endianness) { 706 case ARM_ENDIANNESS_LE: 707 env->cp15.sctlr_el[1] &= ~SCTLR_E0E; 708 for (i = 1; i < 4; ++i) { 709 env->cp15.sctlr_el[i] &= ~SCTLR_EE; 710 } 711 env->uncached_cpsr &= ~CPSR_E; 712 break; 713 case ARM_ENDIANNESS_BE8: 714 env->cp15.sctlr_el[1] |= SCTLR_E0E; 715 for (i = 1; i < 4; ++i) { 716 env->cp15.sctlr_el[i] |= SCTLR_EE; 717 } 718 env->uncached_cpsr |= CPSR_E; 719 break; 720 case ARM_ENDIANNESS_BE32: 721 env->cp15.sctlr_el[1] |= SCTLR_B; 722 break; 723 case ARM_ENDIANNESS_UNKNOWN: 724 break; /* Board's decision */ 725 default: 726 g_assert_not_reached(); 727 } 728 729 cpu_set_pc(cs, entry); 730 } else { 731 /* If we are booting Linux then we need to check whether we are 732 * booting into secure or non-secure state and adjust the state 733 * accordingly. Out of reset, ARM is defined to be in secure state 734 * (SCR.NS = 0), we change that here if non-secure boot has been 735 * requested. 736 */ 737 if (arm_feature(env, ARM_FEATURE_EL3)) { 738 /* AArch64 is defined to come out of reset into EL3 if enabled. 739 * If we are booting Linux then we need to adjust our EL as 740 * Linux expects us to be in EL2 or EL1. AArch32 resets into 741 * SVC, which Linux expects, so no privilege/exception level to 742 * adjust. 743 */ 744 if (env->aarch64) { 745 env->cp15.scr_el3 |= SCR_RW; 746 if (arm_feature(env, ARM_FEATURE_EL2)) { 747 env->cp15.hcr_el2 |= HCR_RW; 748 env->pstate = PSTATE_MODE_EL2h; 749 } else { 750 env->pstate = PSTATE_MODE_EL1h; 751 } 752 if (cpu_isar_feature(aa64_pauth, cpu)) { 753 env->cp15.scr_el3 |= SCR_API | SCR_APK; 754 } 755 if (cpu_isar_feature(aa64_mte, cpu)) { 756 env->cp15.scr_el3 |= SCR_ATA; 757 } 758 if (cpu_isar_feature(aa64_sve, cpu)) { 759 env->cp15.cptr_el[3] |= CPTR_EZ; 760 } 761 /* AArch64 kernels never boot in secure mode */ 762 assert(!info->secure_boot); 763 /* This hook is only supported for AArch32 currently: 764 * bootloader_aarch64[] will not call the hook, and 765 * the code above has already dropped us into EL2 or EL1. 766 */ 767 assert(!info->secure_board_setup); 768 } 769 770 if (arm_feature(env, ARM_FEATURE_EL2)) { 771 /* If we have EL2 then Linux expects the HVC insn to work */ 772 env->cp15.scr_el3 |= SCR_HCE; 773 } 774 775 /* Set to non-secure if not a secure boot */ 776 if (!info->secure_boot && 777 (cs != first_cpu || !info->secure_board_setup)) { 778 /* Linux expects non-secure state */ 779 env->cp15.scr_el3 |= SCR_NS; 780 /* Set NSACR.{CP11,CP10} so NS can access the FPU */ 781 env->cp15.nsacr |= 3 << 10; 782 } 783 } 784 785 if (!env->aarch64 && !info->secure_boot && 786 arm_feature(env, ARM_FEATURE_EL2)) { 787 /* 788 * This is an AArch32 boot not to Secure state, and 789 * we have Hyp mode available, so boot the kernel into 790 * Hyp mode. This is not how the CPU comes out of reset, 791 * so we need to manually put it there. 792 */ 793 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw); 794 } 795 796 if (cs == first_cpu) { 797 AddressSpace *as = arm_boot_address_space(cpu, info); 798 799 cpu_set_pc(cs, info->loader_start); 800 801 if (!have_dtb(info)) { 802 if (old_param) { 803 set_kernel_args_old(info, as); 804 } else { 805 set_kernel_args(info, as); 806 } 807 } 808 } else { 809 info->secondary_cpu_reset_hook(cpu, info); 810 } 811 } 812 arm_rebuild_hflags(env); 813 } 814 } 815 816 /** 817 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified 818 * by key. 819 * @fw_cfg: The firmware config instance to store the data in. 820 * @size_key: The firmware config key to store the size of the loaded 821 * data under, with fw_cfg_add_i32(). 822 * @data_key: The firmware config key to store the loaded data under, 823 * with fw_cfg_add_bytes(). 824 * @image_name: The name of the image file to load. If it is NULL, the 825 * function returns without doing anything. 826 * @try_decompress: Whether the image should be decompressed (gunzipped) before 827 * adding it to fw_cfg. If decompression fails, the image is 828 * loaded as-is. 829 * 830 * In case of failure, the function prints an error message to stderr and the 831 * process exits with status 1. 832 */ 833 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, 834 uint16_t data_key, const char *image_name, 835 bool try_decompress) 836 { 837 size_t size = -1; 838 uint8_t *data; 839 840 if (image_name == NULL) { 841 return; 842 } 843 844 if (try_decompress) { 845 size = load_image_gzipped_buffer(image_name, 846 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); 847 } 848 849 if (size == (size_t)-1) { 850 gchar *contents; 851 gsize length; 852 853 if (!g_file_get_contents(image_name, &contents, &length, NULL)) { 854 error_report("failed to load \"%s\"", image_name); 855 exit(1); 856 } 857 size = length; 858 data = (uint8_t *)contents; 859 } 860 861 fw_cfg_add_i32(fw_cfg, size_key, size); 862 fw_cfg_add_bytes(fw_cfg, data_key, data, size); 863 } 864 865 static int do_arm_linux_init(Object *obj, void *opaque) 866 { 867 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) { 868 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj); 869 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj); 870 struct arm_boot_info *info = opaque; 871 872 if (albifc->arm_linux_init) { 873 albifc->arm_linux_init(albif, info->secure_boot); 874 } 875 } 876 return 0; 877 } 878 879 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry, 880 uint64_t *lowaddr, uint64_t *highaddr, 881 int elf_machine, AddressSpace *as) 882 { 883 bool elf_is64; 884 union { 885 Elf32_Ehdr h32; 886 Elf64_Ehdr h64; 887 } elf_header; 888 int data_swab = 0; 889 bool big_endian; 890 int64_t ret = -1; 891 Error *err = NULL; 892 893 894 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err); 895 if (err) { 896 error_free(err); 897 return ret; 898 } 899 900 if (elf_is64) { 901 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB; 902 info->endianness = big_endian ? ARM_ENDIANNESS_BE8 903 : ARM_ENDIANNESS_LE; 904 } else { 905 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB; 906 if (big_endian) { 907 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) { 908 info->endianness = ARM_ENDIANNESS_BE8; 909 } else { 910 info->endianness = ARM_ENDIANNESS_BE32; 911 /* In BE32, the CPU has a different view of the per-byte 912 * address map than the rest of the system. BE32 ELF files 913 * are organised such that they can be programmed through 914 * the CPU's per-word byte-reversed view of the world. QEMU 915 * however loads ELF files independently of the CPU. So 916 * tell the ELF loader to byte reverse the data for us. 917 */ 918 data_swab = 2; 919 } 920 } else { 921 info->endianness = ARM_ENDIANNESS_LE; 922 } 923 } 924 925 ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL, 926 pentry, lowaddr, highaddr, NULL, big_endian, elf_machine, 927 1, data_swab, as); 928 if (ret <= 0) { 929 /* The header loaded but the image didn't */ 930 exit(1); 931 } 932 933 return ret; 934 } 935 936 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base, 937 hwaddr *entry, AddressSpace *as) 938 { 939 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR; 940 uint64_t kernel_size = 0; 941 uint8_t *buffer; 942 int size; 943 944 /* On aarch64, it's the bootloader's job to uncompress the kernel. */ 945 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES, 946 &buffer); 947 948 if (size < 0) { 949 gsize len; 950 951 /* Load as raw file otherwise */ 952 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) { 953 return -1; 954 } 955 size = len; 956 } 957 958 /* check the arm64 magic header value -- very old kernels may not have it */ 959 if (size > ARM64_MAGIC_OFFSET + 4 && 960 memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) { 961 uint64_t hdrvals[2]; 962 963 /* The arm64 Image header has text_offset and image_size fields at 8 and 964 * 16 bytes into the Image header, respectively. The text_offset field 965 * is only valid if the image_size is non-zero. 966 */ 967 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals)); 968 969 kernel_size = le64_to_cpu(hdrvals[1]); 970 971 if (kernel_size != 0) { 972 kernel_load_offset = le64_to_cpu(hdrvals[0]); 973 974 /* 975 * We write our startup "bootloader" at the very bottom of RAM, 976 * so that bit can't be used for the image. Luckily the Image 977 * format specification is that the image requests only an offset 978 * from a 2MB boundary, not an absolute load address. So if the 979 * image requests an offset that might mean it overlaps with the 980 * bootloader, we can just load it starting at 2MB+offset rather 981 * than 0MB + offset. 982 */ 983 if (kernel_load_offset < BOOTLOADER_MAX_SIZE) { 984 kernel_load_offset += 2 * MiB; 985 } 986 } 987 } 988 989 /* 990 * Kernels before v3.17 don't populate the image_size field, and 991 * raw images have no header. For those our best guess at the size 992 * is the size of the Image file itself. 993 */ 994 if (kernel_size == 0) { 995 kernel_size = size; 996 } 997 998 *entry = mem_base + kernel_load_offset; 999 rom_add_blob_fixed_as(filename, buffer, size, *entry, as); 1000 1001 g_free(buffer); 1002 1003 return kernel_size; 1004 } 1005 1006 static void arm_setup_direct_kernel_boot(ARMCPU *cpu, 1007 struct arm_boot_info *info) 1008 { 1009 /* Set up for a direct boot of a kernel image file. */ 1010 CPUState *cs; 1011 AddressSpace *as = arm_boot_address_space(cpu, info); 1012 int kernel_size; 1013 int initrd_size; 1014 int is_linux = 0; 1015 uint64_t elf_entry; 1016 /* Addresses of first byte used and first byte not used by the image */ 1017 uint64_t image_low_addr = 0, image_high_addr = 0; 1018 int elf_machine; 1019 hwaddr entry; 1020 static const ARMInsnFixup *primary_loader; 1021 uint64_t ram_end = info->loader_start + info->ram_size; 1022 1023 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1024 primary_loader = bootloader_aarch64; 1025 elf_machine = EM_AARCH64; 1026 } else { 1027 primary_loader = bootloader; 1028 if (!info->write_board_setup) { 1029 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET; 1030 } 1031 elf_machine = EM_ARM; 1032 } 1033 1034 if (!info->secondary_cpu_reset_hook) { 1035 info->secondary_cpu_reset_hook = default_reset_secondary; 1036 } 1037 if (!info->write_secondary_boot) { 1038 info->write_secondary_boot = default_write_secondary; 1039 } 1040 1041 if (info->nb_cpus == 0) 1042 info->nb_cpus = 1; 1043 1044 /* Assume that raw images are linux kernels, and ELF images are not. */ 1045 kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr, 1046 &image_high_addr, elf_machine, as); 1047 if (kernel_size > 0 && have_dtb(info)) { 1048 /* 1049 * If there is still some room left at the base of RAM, try and put 1050 * the DTB there like we do for images loaded with -bios or -pflash. 1051 */ 1052 if (image_low_addr > info->loader_start 1053 || image_high_addr < info->loader_start) { 1054 /* 1055 * Set image_low_addr as address limit for arm_load_dtb if it may be 1056 * pointing into RAM, otherwise pass '0' (no limit) 1057 */ 1058 if (image_low_addr < info->loader_start) { 1059 image_low_addr = 0; 1060 } 1061 info->dtb_start = info->loader_start; 1062 info->dtb_limit = image_low_addr; 1063 } 1064 } 1065 entry = elf_entry; 1066 if (kernel_size < 0) { 1067 uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR; 1068 kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr, 1069 &is_linux, NULL, NULL, as); 1070 if (kernel_size >= 0) { 1071 image_low_addr = loadaddr; 1072 image_high_addr = image_low_addr + kernel_size; 1073 } 1074 } 1075 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { 1076 kernel_size = load_aarch64_image(info->kernel_filename, 1077 info->loader_start, &entry, as); 1078 is_linux = 1; 1079 if (kernel_size >= 0) { 1080 image_low_addr = entry; 1081 image_high_addr = image_low_addr + kernel_size; 1082 } 1083 } else if (kernel_size < 0) { 1084 /* 32-bit ARM */ 1085 entry = info->loader_start + KERNEL_LOAD_ADDR; 1086 kernel_size = load_image_targphys_as(info->kernel_filename, entry, 1087 ram_end - KERNEL_LOAD_ADDR, as); 1088 is_linux = 1; 1089 if (kernel_size >= 0) { 1090 image_low_addr = entry; 1091 image_high_addr = image_low_addr + kernel_size; 1092 } 1093 } 1094 if (kernel_size < 0) { 1095 error_report("could not load kernel '%s'", info->kernel_filename); 1096 exit(1); 1097 } 1098 1099 if (kernel_size > info->ram_size) { 1100 error_report("kernel '%s' is too large to fit in RAM " 1101 "(kernel size %d, RAM size %" PRId64 ")", 1102 info->kernel_filename, kernel_size, info->ram_size); 1103 exit(1); 1104 } 1105 1106 info->entry = entry; 1107 1108 /* 1109 * We want to put the initrd far enough into RAM that when the 1110 * kernel is uncompressed it will not clobber the initrd. However 1111 * on boards without much RAM we must ensure that we still leave 1112 * enough room for a decent sized initrd, and on boards with large 1113 * amounts of RAM we must avoid the initrd being so far up in RAM 1114 * that it is outside lowmem and inaccessible to the kernel. 1115 * So for boards with less than 256MB of RAM we put the initrd 1116 * halfway into RAM, and for boards with 256MB of RAM or more we put 1117 * the initrd at 128MB. 1118 * We also refuse to put the initrd somewhere that will definitely 1119 * overlay the kernel we just loaded, though for kernel formats which 1120 * don't tell us their exact size (eg self-decompressing 32-bit kernels) 1121 * we might still make a bad choice here. 1122 */ 1123 info->initrd_start = info->loader_start + 1124 MIN(info->ram_size / 2, 128 * MiB); 1125 if (image_high_addr) { 1126 info->initrd_start = MAX(info->initrd_start, image_high_addr); 1127 } 1128 info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start); 1129 1130 if (is_linux) { 1131 uint32_t fixupcontext[FIXUP_MAX]; 1132 1133 if (info->initrd_filename) { 1134 1135 if (info->initrd_start >= ram_end) { 1136 error_report("not enough space after kernel to load initrd"); 1137 exit(1); 1138 } 1139 1140 initrd_size = load_ramdisk_as(info->initrd_filename, 1141 info->initrd_start, 1142 ram_end - info->initrd_start, as); 1143 if (initrd_size < 0) { 1144 initrd_size = load_image_targphys_as(info->initrd_filename, 1145 info->initrd_start, 1146 ram_end - 1147 info->initrd_start, 1148 as); 1149 } 1150 if (initrd_size < 0) { 1151 error_report("could not load initrd '%s'", 1152 info->initrd_filename); 1153 exit(1); 1154 } 1155 if (info->initrd_start + initrd_size > ram_end) { 1156 error_report("could not load initrd '%s': " 1157 "too big to fit into RAM after the kernel", 1158 info->initrd_filename); 1159 exit(1); 1160 } 1161 } else { 1162 initrd_size = 0; 1163 } 1164 info->initrd_size = initrd_size; 1165 1166 fixupcontext[FIXUP_BOARDID] = info->board_id; 1167 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr; 1168 1169 /* 1170 * for device tree boot, we pass the DTB directly in r2. Otherwise 1171 * we point to the kernel args. 1172 */ 1173 if (have_dtb(info)) { 1174 hwaddr align; 1175 1176 if (elf_machine == EM_AARCH64) { 1177 /* 1178 * Some AArch64 kernels on early bootup map the fdt region as 1179 * 1180 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] 1181 * 1182 * Let's play safe and prealign it to 2MB to give us some space. 1183 */ 1184 align = 2 * MiB; 1185 } else { 1186 /* 1187 * Some 32bit kernels will trash anything in the 4K page the 1188 * initrd ends in, so make sure the DTB isn't caught up in that. 1189 */ 1190 align = 4 * KiB; 1191 } 1192 1193 /* Place the DTB after the initrd in memory with alignment. */ 1194 info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, 1195 align); 1196 if (info->dtb_start >= ram_end) { 1197 error_report("Not enough space for DTB after kernel/initrd"); 1198 exit(1); 1199 } 1200 fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start; 1201 fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32; 1202 } else { 1203 fixupcontext[FIXUP_ARGPTR_LO] = 1204 info->loader_start + KERNEL_ARGS_ADDR; 1205 fixupcontext[FIXUP_ARGPTR_HI] = 1206 (info->loader_start + KERNEL_ARGS_ADDR) >> 32; 1207 if (info->ram_size >= 4 * GiB) { 1208 error_report("RAM size must be less than 4GB to boot" 1209 " Linux kernel using ATAGS (try passing a device tree" 1210 " using -dtb)"); 1211 exit(1); 1212 } 1213 } 1214 fixupcontext[FIXUP_ENTRYPOINT_LO] = entry; 1215 fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32; 1216 1217 write_bootloader("bootloader", info->loader_start, 1218 primary_loader, fixupcontext, as); 1219 1220 if (info->nb_cpus > 1) { 1221 info->write_secondary_boot(cpu, info); 1222 } 1223 if (info->write_board_setup) { 1224 info->write_board_setup(cpu, info); 1225 } 1226 1227 /* 1228 * Notify devices which need to fake up firmware initialization 1229 * that we're doing a direct kernel boot. 1230 */ 1231 object_child_foreach_recursive(object_get_root(), 1232 do_arm_linux_init, info); 1233 } 1234 info->is_linux = is_linux; 1235 1236 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { 1237 ARM_CPU(cs)->env.boot_info = info; 1238 } 1239 } 1240 1241 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info) 1242 { 1243 /* Set up for booting firmware (which might load a kernel via fw_cfg) */ 1244 1245 if (have_dtb(info)) { 1246 /* 1247 * If we have a device tree blob, but no kernel to supply it to (or 1248 * the kernel is supposed to be loaded by the bootloader), copy the 1249 * DTB to the base of RAM for the bootloader to pick up. 1250 */ 1251 info->dtb_start = info->loader_start; 1252 } 1253 1254 if (info->kernel_filename) { 1255 FWCfgState *fw_cfg; 1256 bool try_decompressing_kernel; 1257 1258 fw_cfg = fw_cfg_find(); 1259 1260 if (!fw_cfg) { 1261 error_report("This machine type does not support loading both " 1262 "a guest firmware/BIOS image and a guest kernel at " 1263 "the same time. You should change your QEMU command " 1264 "line to specify one or the other, but not both."); 1265 exit(1); 1266 } 1267 1268 try_decompressing_kernel = arm_feature(&cpu->env, 1269 ARM_FEATURE_AARCH64); 1270 1271 /* 1272 * Expose the kernel, the command line, and the initrd in fw_cfg. 1273 * We don't process them here at all, it's all left to the 1274 * firmware. 1275 */ 1276 load_image_to_fw_cfg(fw_cfg, 1277 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, 1278 info->kernel_filename, 1279 try_decompressing_kernel); 1280 load_image_to_fw_cfg(fw_cfg, 1281 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, 1282 info->initrd_filename, false); 1283 1284 if (info->kernel_cmdline) { 1285 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 1286 strlen(info->kernel_cmdline) + 1); 1287 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, 1288 info->kernel_cmdline); 1289 } 1290 } 1291 1292 /* 1293 * We will start from address 0 (typically a boot ROM image) in the 1294 * same way as hardware. Leave env->boot_info NULL, so that 1295 * do_cpu_reset() knows it does not need to alter the PC on reset. 1296 */ 1297 } 1298 1299 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info) 1300 { 1301 CPUState *cs; 1302 AddressSpace *as = arm_boot_address_space(cpu, info); 1303 1304 /* 1305 * CPU objects (unlike devices) are not automatically reset on system 1306 * reset, so we must always register a handler to do so. If we're 1307 * actually loading a kernel, the handler is also responsible for 1308 * arranging that we start it correctly. 1309 */ 1310 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { 1311 qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); 1312 } 1313 1314 /* 1315 * The board code is not supposed to set secure_board_setup unless 1316 * running its code in secure mode is actually possible, and KVM 1317 * doesn't support secure. 1318 */ 1319 assert(!(info->secure_board_setup && kvm_enabled())); 1320 info->kernel_filename = ms->kernel_filename; 1321 info->kernel_cmdline = ms->kernel_cmdline; 1322 info->initrd_filename = ms->initrd_filename; 1323 info->dtb_filename = ms->dtb; 1324 info->dtb_limit = 0; 1325 1326 /* Load the kernel. */ 1327 if (!info->kernel_filename || info->firmware_loaded) { 1328 arm_setup_firmware_boot(cpu, info); 1329 } else { 1330 arm_setup_direct_kernel_boot(cpu, info); 1331 } 1332 1333 if (!info->skip_dtb_autoload && have_dtb(info)) { 1334 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1335 exit(1); 1336 } 1337 } 1338 } 1339 1340 static const TypeInfo arm_linux_boot_if_info = { 1341 .name = TYPE_ARM_LINUX_BOOT_IF, 1342 .parent = TYPE_INTERFACE, 1343 .class_size = sizeof(ARMLinuxBootIfClass), 1344 }; 1345 1346 static void arm_linux_boot_register_types(void) 1347 { 1348 type_register_static(&arm_linux_boot_if_info); 1349 } 1350 1351 type_init(arm_linux_boot_register_types) 1352