xref: /openbmc/qemu/hw/arm/boot.c (revision c63ca4ff)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu-common.h"
12 #include "qemu/datadir.h"
13 #include "qemu/error-report.h"
14 #include "qapi/error.h"
15 #include <libfdt.h>
16 #include "hw/arm/boot.h"
17 #include "hw/arm/linux-boot-if.h"
18 #include "sysemu/kvm.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/numa.h"
21 #include "hw/boards.h"
22 #include "sysemu/reset.h"
23 #include "hw/loader.h"
24 #include "elf.h"
25 #include "sysemu/device_tree.h"
26 #include "qemu/config-file.h"
27 #include "qemu/option.h"
28 #include "exec/address-spaces.h"
29 #include "qemu/units.h"
30 
31 /* Kernel boot protocol is specified in the kernel docs
32  * Documentation/arm/Booting and Documentation/arm64/booting.txt
33  * They have different preferred image load offsets from system RAM base.
34  */
35 #define KERNEL_ARGS_ADDR   0x100
36 #define KERNEL_NOLOAD_ADDR 0x02000000
37 #define KERNEL_LOAD_ADDR   0x00010000
38 #define KERNEL64_LOAD_ADDR 0x00080000
39 
40 #define ARM64_TEXT_OFFSET_OFFSET    8
41 #define ARM64_MAGIC_OFFSET          56
42 
43 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
44 
45 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
46                                      const struct arm_boot_info *info)
47 {
48     /* Return the address space to use for bootloader reads and writes.
49      * We prefer the secure address space if the CPU has it and we're
50      * going to boot the guest into it.
51      */
52     int asidx;
53     CPUState *cs = CPU(cpu);
54 
55     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
56         asidx = ARMASIdx_S;
57     } else {
58         asidx = ARMASIdx_NS;
59     }
60 
61     return cpu_get_address_space(cs, asidx);
62 }
63 
64 typedef enum {
65     FIXUP_NONE = 0,     /* do nothing */
66     FIXUP_TERMINATOR,   /* end of insns */
67     FIXUP_BOARDID,      /* overwrite with board ID number */
68     FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
69     FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
70     FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
71     FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
72     FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
73     FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
74     FIXUP_BOOTREG,      /* overwrite with boot register address */
75     FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
76     FIXUP_MAX,
77 } FixupType;
78 
79 typedef struct ARMInsnFixup {
80     uint32_t insn;
81     FixupType fixup;
82 } ARMInsnFixup;
83 
84 static const ARMInsnFixup bootloader_aarch64[] = {
85     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
86     { 0xaa1f03e1 }, /* mov x1, xzr */
87     { 0xaa1f03e2 }, /* mov x2, xzr */
88     { 0xaa1f03e3 }, /* mov x3, xzr */
89     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
90     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
91     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
92     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
93     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
94     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
95     { 0, FIXUP_TERMINATOR }
96 };
97 
98 /* A very small bootloader: call the board-setup code (if needed),
99  * set r0-r2, then jump to the kernel.
100  * If we're not calling boot setup code then we don't copy across
101  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
102  */
103 
104 static const ARMInsnFixup bootloader[] = {
105     { 0xe28fe004 }, /* add     lr, pc, #4 */
106     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
107     { 0, FIXUP_BOARD_SETUP },
108 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
109     { 0xe3a00000 }, /* mov     r0, #0 */
110     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
111     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
112     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
113     { 0, FIXUP_BOARDID },
114     { 0, FIXUP_ARGPTR_LO },
115     { 0, FIXUP_ENTRYPOINT_LO },
116     { 0, FIXUP_TERMINATOR }
117 };
118 
119 /* Handling for secondary CPU boot in a multicore system.
120  * Unlike the uniprocessor/primary CPU boot, this is platform
121  * dependent. The default code here is based on the secondary
122  * CPU boot protocol used on realview/vexpress boards, with
123  * some parameterisation to increase its flexibility.
124  * QEMU platform models for which this code is not appropriate
125  * should override write_secondary_boot and secondary_cpu_reset_hook
126  * instead.
127  *
128  * This code enables the interrupt controllers for the secondary
129  * CPUs and then puts all the secondary CPUs into a loop waiting
130  * for an interprocessor interrupt and polling a configurable
131  * location for the kernel secondary CPU entry point.
132  */
133 #define DSB_INSN 0xf57ff04f
134 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
135 
136 static const ARMInsnFixup smpboot[] = {
137     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
138     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
139     { 0xe3a01001 }, /* mov r1, #1 */
140     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
141     { 0xe3a010ff }, /* mov r1, #0xff */
142     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
143     { 0, FIXUP_DSB },   /* dsb */
144     { 0xe320f003 }, /* wfi */
145     { 0xe5901000 }, /* ldr     r1, [r0] */
146     { 0xe1110001 }, /* tst     r1, r1 */
147     { 0x0afffffb }, /* beq     <wfi> */
148     { 0xe12fff11 }, /* bx      r1 */
149     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
150     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
151     { 0, FIXUP_TERMINATOR }
152 };
153 
154 static void write_bootloader(const char *name, hwaddr addr,
155                              const ARMInsnFixup *insns, uint32_t *fixupcontext,
156                              AddressSpace *as)
157 {
158     /* Fix up the specified bootloader fragment and write it into
159      * guest memory using rom_add_blob_fixed(). fixupcontext is
160      * an array giving the values to write in for the fixup types
161      * which write a value into the code array.
162      */
163     int i, len;
164     uint32_t *code;
165 
166     len = 0;
167     while (insns[len].fixup != FIXUP_TERMINATOR) {
168         len++;
169     }
170 
171     code = g_new0(uint32_t, len);
172 
173     for (i = 0; i < len; i++) {
174         uint32_t insn = insns[i].insn;
175         FixupType fixup = insns[i].fixup;
176 
177         switch (fixup) {
178         case FIXUP_NONE:
179             break;
180         case FIXUP_BOARDID:
181         case FIXUP_BOARD_SETUP:
182         case FIXUP_ARGPTR_LO:
183         case FIXUP_ARGPTR_HI:
184         case FIXUP_ENTRYPOINT_LO:
185         case FIXUP_ENTRYPOINT_HI:
186         case FIXUP_GIC_CPU_IF:
187         case FIXUP_BOOTREG:
188         case FIXUP_DSB:
189             insn = fixupcontext[fixup];
190             break;
191         default:
192             abort();
193         }
194         code[i] = tswap32(insn);
195     }
196 
197     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
198 
199     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
200 
201     g_free(code);
202 }
203 
204 static void default_write_secondary(ARMCPU *cpu,
205                                     const struct arm_boot_info *info)
206 {
207     uint32_t fixupcontext[FIXUP_MAX];
208     AddressSpace *as = arm_boot_address_space(cpu, info);
209 
210     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
211     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
212     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
213         fixupcontext[FIXUP_DSB] = DSB_INSN;
214     } else {
215         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
216     }
217 
218     write_bootloader("smpboot", info->smp_loader_start,
219                      smpboot, fixupcontext, as);
220 }
221 
222 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
223                                             const struct arm_boot_info *info,
224                                             hwaddr mvbar_addr)
225 {
226     AddressSpace *as = arm_boot_address_space(cpu, info);
227     int n;
228     uint32_t mvbar_blob[] = {
229         /* mvbar_addr: secure monitor vectors
230          * Default unimplemented and unused vectors to spin. Makes it
231          * easier to debug (as opposed to the CPU running away).
232          */
233         0xeafffffe, /* (spin) */
234         0xeafffffe, /* (spin) */
235         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
236         0xeafffffe, /* (spin) */
237         0xeafffffe, /* (spin) */
238         0xeafffffe, /* (spin) */
239         0xeafffffe, /* (spin) */
240         0xeafffffe, /* (spin) */
241     };
242     uint32_t board_setup_blob[] = {
243         /* board setup addr */
244         0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
245         0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
246         0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
247         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
248         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
249         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
250         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
251         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
252         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
253         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
254         0xe1a0f001, /* mov     pc, r1                 ;return */
255     };
256 
257     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
258     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
259 
260     /* check that these blobs don't overlap */
261     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
262           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
263 
264     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
265         mvbar_blob[n] = tswap32(mvbar_blob[n]);
266     }
267     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
268                           mvbar_addr, as);
269 
270     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
271         board_setup_blob[n] = tswap32(board_setup_blob[n]);
272     }
273     rom_add_blob_fixed_as("board-setup", board_setup_blob,
274                           sizeof(board_setup_blob), info->board_setup_addr, as);
275 }
276 
277 static void default_reset_secondary(ARMCPU *cpu,
278                                     const struct arm_boot_info *info)
279 {
280     AddressSpace *as = arm_boot_address_space(cpu, info);
281     CPUState *cs = CPU(cpu);
282 
283     address_space_stl_notdirty(as, info->smp_bootreg_addr,
284                                0, MEMTXATTRS_UNSPECIFIED, NULL);
285     cpu_set_pc(cs, info->smp_loader_start);
286 }
287 
288 static inline bool have_dtb(const struct arm_boot_info *info)
289 {
290     return info->dtb_filename || info->get_dtb;
291 }
292 
293 #define WRITE_WORD(p, value) do { \
294     address_space_stl_notdirty(as, p, value, \
295                                MEMTXATTRS_UNSPECIFIED, NULL);  \
296     p += 4;                       \
297 } while (0)
298 
299 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
300 {
301     int initrd_size = info->initrd_size;
302     hwaddr base = info->loader_start;
303     hwaddr p;
304 
305     p = base + KERNEL_ARGS_ADDR;
306     /* ATAG_CORE */
307     WRITE_WORD(p, 5);
308     WRITE_WORD(p, 0x54410001);
309     WRITE_WORD(p, 1);
310     WRITE_WORD(p, 0x1000);
311     WRITE_WORD(p, 0);
312     /* ATAG_MEM */
313     /* TODO: handle multiple chips on one ATAG list */
314     WRITE_WORD(p, 4);
315     WRITE_WORD(p, 0x54410002);
316     WRITE_WORD(p, info->ram_size);
317     WRITE_WORD(p, info->loader_start);
318     if (initrd_size) {
319         /* ATAG_INITRD2 */
320         WRITE_WORD(p, 4);
321         WRITE_WORD(p, 0x54420005);
322         WRITE_WORD(p, info->initrd_start);
323         WRITE_WORD(p, initrd_size);
324     }
325     if (info->kernel_cmdline && *info->kernel_cmdline) {
326         /* ATAG_CMDLINE */
327         int cmdline_size;
328 
329         cmdline_size = strlen(info->kernel_cmdline);
330         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
331                             info->kernel_cmdline, cmdline_size + 1);
332         cmdline_size = (cmdline_size >> 2) + 1;
333         WRITE_WORD(p, cmdline_size + 2);
334         WRITE_WORD(p, 0x54410009);
335         p += cmdline_size * 4;
336     }
337     if (info->atag_board) {
338         /* ATAG_BOARD */
339         int atag_board_len;
340         uint8_t atag_board_buf[0x1000];
341 
342         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
343         WRITE_WORD(p, (atag_board_len + 8) >> 2);
344         WRITE_WORD(p, 0x414f4d50);
345         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
346                             atag_board_buf, atag_board_len);
347         p += atag_board_len;
348     }
349     /* ATAG_END */
350     WRITE_WORD(p, 0);
351     WRITE_WORD(p, 0);
352 }
353 
354 static void set_kernel_args_old(const struct arm_boot_info *info,
355                                 AddressSpace *as)
356 {
357     hwaddr p;
358     const char *s;
359     int initrd_size = info->initrd_size;
360     hwaddr base = info->loader_start;
361 
362     /* see linux/include/asm-arm/setup.h */
363     p = base + KERNEL_ARGS_ADDR;
364     /* page_size */
365     WRITE_WORD(p, 4096);
366     /* nr_pages */
367     WRITE_WORD(p, info->ram_size / 4096);
368     /* ramdisk_size */
369     WRITE_WORD(p, 0);
370 #define FLAG_READONLY	1
371 #define FLAG_RDLOAD	4
372 #define FLAG_RDPROMPT	8
373     /* flags */
374     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
375     /* rootdev */
376     WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
377     /* video_num_cols */
378     WRITE_WORD(p, 0);
379     /* video_num_rows */
380     WRITE_WORD(p, 0);
381     /* video_x */
382     WRITE_WORD(p, 0);
383     /* video_y */
384     WRITE_WORD(p, 0);
385     /* memc_control_reg */
386     WRITE_WORD(p, 0);
387     /* unsigned char sounddefault */
388     /* unsigned char adfsdrives */
389     /* unsigned char bytes_per_char_h */
390     /* unsigned char bytes_per_char_v */
391     WRITE_WORD(p, 0);
392     /* pages_in_bank[4] */
393     WRITE_WORD(p, 0);
394     WRITE_WORD(p, 0);
395     WRITE_WORD(p, 0);
396     WRITE_WORD(p, 0);
397     /* pages_in_vram */
398     WRITE_WORD(p, 0);
399     /* initrd_start */
400     if (initrd_size) {
401         WRITE_WORD(p, info->initrd_start);
402     } else {
403         WRITE_WORD(p, 0);
404     }
405     /* initrd_size */
406     WRITE_WORD(p, initrd_size);
407     /* rd_start */
408     WRITE_WORD(p, 0);
409     /* system_rev */
410     WRITE_WORD(p, 0);
411     /* system_serial_low */
412     WRITE_WORD(p, 0);
413     /* system_serial_high */
414     WRITE_WORD(p, 0);
415     /* mem_fclk_21285 */
416     WRITE_WORD(p, 0);
417     /* zero unused fields */
418     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
419         WRITE_WORD(p, 0);
420     }
421     s = info->kernel_cmdline;
422     if (s) {
423         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
424     } else {
425         WRITE_WORD(p, 0);
426     }
427 }
428 
429 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
430                                uint32_t scells, hwaddr mem_len,
431                                int numa_node_id)
432 {
433     char *nodename;
434     int ret;
435 
436     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
437     qemu_fdt_add_subnode(fdt, nodename);
438     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
439     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
440                                        scells, mem_len);
441     if (ret < 0) {
442         goto out;
443     }
444 
445     /* only set the NUMA ID if it is specified */
446     if (numa_node_id >= 0) {
447         ret = qemu_fdt_setprop_cell(fdt, nodename,
448                                     "numa-node-id", numa_node_id);
449     }
450 out:
451     g_free(nodename);
452     return ret;
453 }
454 
455 static void fdt_add_psci_node(void *fdt)
456 {
457     uint32_t cpu_suspend_fn;
458     uint32_t cpu_off_fn;
459     uint32_t cpu_on_fn;
460     uint32_t migrate_fn;
461     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
462     const char *psci_method;
463     int64_t psci_conduit;
464     int rc;
465 
466     psci_conduit = object_property_get_int(OBJECT(armcpu),
467                                            "psci-conduit",
468                                            &error_abort);
469     switch (psci_conduit) {
470     case QEMU_PSCI_CONDUIT_DISABLED:
471         return;
472     case QEMU_PSCI_CONDUIT_HVC:
473         psci_method = "hvc";
474         break;
475     case QEMU_PSCI_CONDUIT_SMC:
476         psci_method = "smc";
477         break;
478     default:
479         g_assert_not_reached();
480     }
481 
482     /*
483      * If /psci node is present in provided DTB, assume that no fixup
484      * is necessary and all PSCI configuration should be taken as-is
485      */
486     rc = fdt_path_offset(fdt, "/psci");
487     if (rc >= 0) {
488         return;
489     }
490 
491     qemu_fdt_add_subnode(fdt, "/psci");
492     if (armcpu->psci_version == 2) {
493         const char comp[] = "arm,psci-0.2\0arm,psci";
494         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
495 
496         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
497         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
498             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
499             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
500             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
501         } else {
502             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
503             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
504             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
505         }
506     } else {
507         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
508 
509         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
510         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
511         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
512         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
513     }
514 
515     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
516      * to the instruction that should be used to invoke PSCI functions.
517      * However, the device tree binding uses 'method' instead, so that is
518      * what we should use here.
519      */
520     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
521 
522     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
523     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
524     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
525     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
526 }
527 
528 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
529                  hwaddr addr_limit, AddressSpace *as, MachineState *ms)
530 {
531     void *fdt = NULL;
532     int size, rc, n = 0;
533     uint32_t acells, scells;
534     unsigned int i;
535     hwaddr mem_base, mem_len;
536     char **node_path;
537     Error *err = NULL;
538 
539     if (binfo->dtb_filename) {
540         char *filename;
541         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
542         if (!filename) {
543             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
544             goto fail;
545         }
546 
547         fdt = load_device_tree(filename, &size);
548         if (!fdt) {
549             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
550             g_free(filename);
551             goto fail;
552         }
553         g_free(filename);
554     } else {
555         fdt = binfo->get_dtb(binfo, &size);
556         if (!fdt) {
557             fprintf(stderr, "Board was unable to create a dtb blob\n");
558             goto fail;
559         }
560     }
561 
562     if (addr_limit > addr && size > (addr_limit - addr)) {
563         /* Installing the device tree blob at addr would exceed addr_limit.
564          * Whether this constitutes failure is up to the caller to decide,
565          * so just return 0 as size, i.e., no error.
566          */
567         g_free(fdt);
568         return 0;
569     }
570 
571     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
572                                    NULL, &error_fatal);
573     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
574                                    NULL, &error_fatal);
575     if (acells == 0 || scells == 0) {
576         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
577         goto fail;
578     }
579 
580     if (scells < 2 && binfo->ram_size >= 4 * GiB) {
581         /* This is user error so deserves a friendlier error message
582          * than the failure of setprop_sized_cells would provide
583          */
584         fprintf(stderr, "qemu: dtb file not compatible with "
585                 "RAM size > 4GB\n");
586         goto fail;
587     }
588 
589     /* nop all root nodes matching /memory or /memory@unit-address */
590     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
591     if (err) {
592         error_report_err(err);
593         goto fail;
594     }
595     while (node_path[n]) {
596         if (g_str_has_prefix(node_path[n], "/memory")) {
597             qemu_fdt_nop_node(fdt, node_path[n]);
598         }
599         n++;
600     }
601     g_strfreev(node_path);
602 
603     if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
604         mem_base = binfo->loader_start;
605         for (i = 0; i < ms->numa_state->num_nodes; i++) {
606             mem_len = ms->numa_state->nodes[i].node_mem;
607             rc = fdt_add_memory_node(fdt, acells, mem_base,
608                                      scells, mem_len, i);
609             if (rc < 0) {
610                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
611                         mem_base);
612                 goto fail;
613             }
614 
615             mem_base += mem_len;
616         }
617     } else {
618         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
619                                  scells, binfo->ram_size, -1);
620         if (rc < 0) {
621             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
622                     binfo->loader_start);
623             goto fail;
624         }
625     }
626 
627     rc = fdt_path_offset(fdt, "/chosen");
628     if (rc < 0) {
629         qemu_fdt_add_subnode(fdt, "/chosen");
630     }
631 
632     if (ms->kernel_cmdline && *ms->kernel_cmdline) {
633         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
634                                      ms->kernel_cmdline);
635         if (rc < 0) {
636             fprintf(stderr, "couldn't set /chosen/bootargs\n");
637             goto fail;
638         }
639     }
640 
641     if (binfo->initrd_size) {
642         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
643                                    binfo->initrd_start);
644         if (rc < 0) {
645             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
646             goto fail;
647         }
648 
649         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
650                                    binfo->initrd_start + binfo->initrd_size);
651         if (rc < 0) {
652             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
653             goto fail;
654         }
655     }
656 
657     fdt_add_psci_node(fdt);
658 
659     if (binfo->modify_dtb) {
660         binfo->modify_dtb(binfo, fdt);
661     }
662 
663     qemu_fdt_dumpdtb(fdt, size);
664 
665     /* Put the DTB into the memory map as a ROM image: this will ensure
666      * the DTB is copied again upon reset, even if addr points into RAM.
667      */
668     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
669 
670     g_free(fdt);
671 
672     return size;
673 
674 fail:
675     g_free(fdt);
676     return -1;
677 }
678 
679 static void do_cpu_reset(void *opaque)
680 {
681     ARMCPU *cpu = opaque;
682     CPUState *cs = CPU(cpu);
683     CPUARMState *env = &cpu->env;
684     const struct arm_boot_info *info = env->boot_info;
685 
686     cpu_reset(cs);
687     if (info) {
688         if (!info->is_linux) {
689             int i;
690             /* Jump to the entry point.  */
691             uint64_t entry = info->entry;
692 
693             switch (info->endianness) {
694             case ARM_ENDIANNESS_LE:
695                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
696                 for (i = 1; i < 4; ++i) {
697                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
698                 }
699                 env->uncached_cpsr &= ~CPSR_E;
700                 break;
701             case ARM_ENDIANNESS_BE8:
702                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
703                 for (i = 1; i < 4; ++i) {
704                     env->cp15.sctlr_el[i] |= SCTLR_EE;
705                 }
706                 env->uncached_cpsr |= CPSR_E;
707                 break;
708             case ARM_ENDIANNESS_BE32:
709                 env->cp15.sctlr_el[1] |= SCTLR_B;
710                 break;
711             case ARM_ENDIANNESS_UNKNOWN:
712                 break; /* Board's decision */
713             default:
714                 g_assert_not_reached();
715             }
716 
717             cpu_set_pc(cs, entry);
718         } else {
719             /* If we are booting Linux then we need to check whether we are
720              * booting into secure or non-secure state and adjust the state
721              * accordingly.  Out of reset, ARM is defined to be in secure state
722              * (SCR.NS = 0), we change that here if non-secure boot has been
723              * requested.
724              */
725             if (arm_feature(env, ARM_FEATURE_EL3)) {
726                 /* AArch64 is defined to come out of reset into EL3 if enabled.
727                  * If we are booting Linux then we need to adjust our EL as
728                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
729                  * SVC, which Linux expects, so no privilege/exception level to
730                  * adjust.
731                  */
732                 if (env->aarch64) {
733                     env->cp15.scr_el3 |= SCR_RW;
734                     if (arm_feature(env, ARM_FEATURE_EL2)) {
735                         env->cp15.hcr_el2 |= HCR_RW;
736                         env->pstate = PSTATE_MODE_EL2h;
737                     } else {
738                         env->pstate = PSTATE_MODE_EL1h;
739                     }
740                     if (cpu_isar_feature(aa64_pauth, cpu)) {
741                         env->cp15.scr_el3 |= SCR_API | SCR_APK;
742                     }
743                     if (cpu_isar_feature(aa64_mte, cpu)) {
744                         env->cp15.scr_el3 |= SCR_ATA;
745                     }
746                     if (cpu_isar_feature(aa64_sve, cpu)) {
747                         env->cp15.cptr_el[3] |= CPTR_EZ;
748                     }
749                     /* AArch64 kernels never boot in secure mode */
750                     assert(!info->secure_boot);
751                     /* This hook is only supported for AArch32 currently:
752                      * bootloader_aarch64[] will not call the hook, and
753                      * the code above has already dropped us into EL2 or EL1.
754                      */
755                     assert(!info->secure_board_setup);
756                 }
757 
758                 if (arm_feature(env, ARM_FEATURE_EL2)) {
759                     /* If we have EL2 then Linux expects the HVC insn to work */
760                     env->cp15.scr_el3 |= SCR_HCE;
761                 }
762 
763                 /* Set to non-secure if not a secure boot */
764                 if (!info->secure_boot &&
765                     (cs != first_cpu || !info->secure_board_setup)) {
766                     /* Linux expects non-secure state */
767                     env->cp15.scr_el3 |= SCR_NS;
768                     /* Set NSACR.{CP11,CP10} so NS can access the FPU */
769                     env->cp15.nsacr |= 3 << 10;
770                 }
771             }
772 
773             if (!env->aarch64 && !info->secure_boot &&
774                 arm_feature(env, ARM_FEATURE_EL2)) {
775                 /*
776                  * This is an AArch32 boot not to Secure state, and
777                  * we have Hyp mode available, so boot the kernel into
778                  * Hyp mode. This is not how the CPU comes out of reset,
779                  * so we need to manually put it there.
780                  */
781                 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
782             }
783 
784             if (cs == first_cpu) {
785                 AddressSpace *as = arm_boot_address_space(cpu, info);
786 
787                 cpu_set_pc(cs, info->loader_start);
788 
789                 if (!have_dtb(info)) {
790                     if (old_param) {
791                         set_kernel_args_old(info, as);
792                     } else {
793                         set_kernel_args(info, as);
794                     }
795                 }
796             } else {
797                 info->secondary_cpu_reset_hook(cpu, info);
798             }
799         }
800         arm_rebuild_hflags(env);
801     }
802 }
803 
804 /**
805  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
806  *                          by key.
807  * @fw_cfg:         The firmware config instance to store the data in.
808  * @size_key:       The firmware config key to store the size of the loaded
809  *                  data under, with fw_cfg_add_i32().
810  * @data_key:       The firmware config key to store the loaded data under,
811  *                  with fw_cfg_add_bytes().
812  * @image_name:     The name of the image file to load. If it is NULL, the
813  *                  function returns without doing anything.
814  * @try_decompress: Whether the image should be decompressed (gunzipped) before
815  *                  adding it to fw_cfg. If decompression fails, the image is
816  *                  loaded as-is.
817  *
818  * In case of failure, the function prints an error message to stderr and the
819  * process exits with status 1.
820  */
821 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
822                                  uint16_t data_key, const char *image_name,
823                                  bool try_decompress)
824 {
825     size_t size = -1;
826     uint8_t *data;
827 
828     if (image_name == NULL) {
829         return;
830     }
831 
832     if (try_decompress) {
833         size = load_image_gzipped_buffer(image_name,
834                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
835     }
836 
837     if (size == (size_t)-1) {
838         gchar *contents;
839         gsize length;
840 
841         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
842             error_report("failed to load \"%s\"", image_name);
843             exit(1);
844         }
845         size = length;
846         data = (uint8_t *)contents;
847     }
848 
849     fw_cfg_add_i32(fw_cfg, size_key, size);
850     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
851 }
852 
853 static int do_arm_linux_init(Object *obj, void *opaque)
854 {
855     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
856         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
857         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
858         struct arm_boot_info *info = opaque;
859 
860         if (albifc->arm_linux_init) {
861             albifc->arm_linux_init(albif, info->secure_boot);
862         }
863     }
864     return 0;
865 }
866 
867 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
868                             uint64_t *lowaddr, uint64_t *highaddr,
869                             int elf_machine, AddressSpace *as)
870 {
871     bool elf_is64;
872     union {
873         Elf32_Ehdr h32;
874         Elf64_Ehdr h64;
875     } elf_header;
876     int data_swab = 0;
877     bool big_endian;
878     int64_t ret = -1;
879     Error *err = NULL;
880 
881 
882     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
883     if (err) {
884         error_free(err);
885         return ret;
886     }
887 
888     if (elf_is64) {
889         big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
890         info->endianness = big_endian ? ARM_ENDIANNESS_BE8
891                                       : ARM_ENDIANNESS_LE;
892     } else {
893         big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
894         if (big_endian) {
895             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
896                 info->endianness = ARM_ENDIANNESS_BE8;
897             } else {
898                 info->endianness = ARM_ENDIANNESS_BE32;
899                 /* In BE32, the CPU has a different view of the per-byte
900                  * address map than the rest of the system. BE32 ELF files
901                  * are organised such that they can be programmed through
902                  * the CPU's per-word byte-reversed view of the world. QEMU
903                  * however loads ELF files independently of the CPU. So
904                  * tell the ELF loader to byte reverse the data for us.
905                  */
906                 data_swab = 2;
907             }
908         } else {
909             info->endianness = ARM_ENDIANNESS_LE;
910         }
911     }
912 
913     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
914                       pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
915                       1, data_swab, as);
916     if (ret <= 0) {
917         /* The header loaded but the image didn't */
918         exit(1);
919     }
920 
921     return ret;
922 }
923 
924 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
925                                    hwaddr *entry, AddressSpace *as)
926 {
927     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
928     uint64_t kernel_size = 0;
929     uint8_t *buffer;
930     int size;
931 
932     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
933     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
934                                      &buffer);
935 
936     if (size < 0) {
937         gsize len;
938 
939         /* Load as raw file otherwise */
940         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
941             return -1;
942         }
943         size = len;
944     }
945 
946     /* check the arm64 magic header value -- very old kernels may not have it */
947     if (size > ARM64_MAGIC_OFFSET + 4 &&
948         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
949         uint64_t hdrvals[2];
950 
951         /* The arm64 Image header has text_offset and image_size fields at 8 and
952          * 16 bytes into the Image header, respectively. The text_offset field
953          * is only valid if the image_size is non-zero.
954          */
955         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
956 
957         kernel_size = le64_to_cpu(hdrvals[1]);
958 
959         if (kernel_size != 0) {
960             kernel_load_offset = le64_to_cpu(hdrvals[0]);
961 
962             /*
963              * We write our startup "bootloader" at the very bottom of RAM,
964              * so that bit can't be used for the image. Luckily the Image
965              * format specification is that the image requests only an offset
966              * from a 2MB boundary, not an absolute load address. So if the
967              * image requests an offset that might mean it overlaps with the
968              * bootloader, we can just load it starting at 2MB+offset rather
969              * than 0MB + offset.
970              */
971             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
972                 kernel_load_offset += 2 * MiB;
973             }
974         }
975     }
976 
977     /*
978      * Kernels before v3.17 don't populate the image_size field, and
979      * raw images have no header. For those our best guess at the size
980      * is the size of the Image file itself.
981      */
982     if (kernel_size == 0) {
983         kernel_size = size;
984     }
985 
986     *entry = mem_base + kernel_load_offset;
987     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
988 
989     g_free(buffer);
990 
991     return kernel_size;
992 }
993 
994 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
995                                          struct arm_boot_info *info)
996 {
997     /* Set up for a direct boot of a kernel image file. */
998     CPUState *cs;
999     AddressSpace *as = arm_boot_address_space(cpu, info);
1000     int kernel_size;
1001     int initrd_size;
1002     int is_linux = 0;
1003     uint64_t elf_entry;
1004     /* Addresses of first byte used and first byte not used by the image */
1005     uint64_t image_low_addr = 0, image_high_addr = 0;
1006     int elf_machine;
1007     hwaddr entry;
1008     static const ARMInsnFixup *primary_loader;
1009     uint64_t ram_end = info->loader_start + info->ram_size;
1010 
1011     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1012         primary_loader = bootloader_aarch64;
1013         elf_machine = EM_AARCH64;
1014     } else {
1015         primary_loader = bootloader;
1016         if (!info->write_board_setup) {
1017             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1018         }
1019         elf_machine = EM_ARM;
1020     }
1021 
1022     if (!info->secondary_cpu_reset_hook) {
1023         info->secondary_cpu_reset_hook = default_reset_secondary;
1024     }
1025     if (!info->write_secondary_boot) {
1026         info->write_secondary_boot = default_write_secondary;
1027     }
1028 
1029     if (info->nb_cpus == 0)
1030         info->nb_cpus = 1;
1031 
1032     /* Assume that raw images are linux kernels, and ELF images are not.  */
1033     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1034                                &image_high_addr, elf_machine, as);
1035     if (kernel_size > 0 && have_dtb(info)) {
1036         /*
1037          * If there is still some room left at the base of RAM, try and put
1038          * the DTB there like we do for images loaded with -bios or -pflash.
1039          */
1040         if (image_low_addr > info->loader_start
1041             || image_high_addr < info->loader_start) {
1042             /*
1043              * Set image_low_addr as address limit for arm_load_dtb if it may be
1044              * pointing into RAM, otherwise pass '0' (no limit)
1045              */
1046             if (image_low_addr < info->loader_start) {
1047                 image_low_addr = 0;
1048             }
1049             info->dtb_start = info->loader_start;
1050             info->dtb_limit = image_low_addr;
1051         }
1052     }
1053     entry = elf_entry;
1054     if (kernel_size < 0) {
1055         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1056         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1057                                      &is_linux, NULL, NULL, as);
1058         if (kernel_size >= 0) {
1059             image_low_addr = loadaddr;
1060             image_high_addr = image_low_addr + kernel_size;
1061         }
1062     }
1063     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1064         kernel_size = load_aarch64_image(info->kernel_filename,
1065                                          info->loader_start, &entry, as);
1066         is_linux = 1;
1067         if (kernel_size >= 0) {
1068             image_low_addr = entry;
1069             image_high_addr = image_low_addr + kernel_size;
1070         }
1071     } else if (kernel_size < 0) {
1072         /* 32-bit ARM */
1073         entry = info->loader_start + KERNEL_LOAD_ADDR;
1074         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1075                                              ram_end - KERNEL_LOAD_ADDR, as);
1076         is_linux = 1;
1077         if (kernel_size >= 0) {
1078             image_low_addr = entry;
1079             image_high_addr = image_low_addr + kernel_size;
1080         }
1081     }
1082     if (kernel_size < 0) {
1083         error_report("could not load kernel '%s'", info->kernel_filename);
1084         exit(1);
1085     }
1086 
1087     if (kernel_size > info->ram_size) {
1088         error_report("kernel '%s' is too large to fit in RAM "
1089                      "(kernel size %d, RAM size %" PRId64 ")",
1090                      info->kernel_filename, kernel_size, info->ram_size);
1091         exit(1);
1092     }
1093 
1094     info->entry = entry;
1095 
1096     /*
1097      * We want to put the initrd far enough into RAM that when the
1098      * kernel is uncompressed it will not clobber the initrd. However
1099      * on boards without much RAM we must ensure that we still leave
1100      * enough room for a decent sized initrd, and on boards with large
1101      * amounts of RAM we must avoid the initrd being so far up in RAM
1102      * that it is outside lowmem and inaccessible to the kernel.
1103      * So for boards with less  than 256MB of RAM we put the initrd
1104      * halfway into RAM, and for boards with 256MB of RAM or more we put
1105      * the initrd at 128MB.
1106      * We also refuse to put the initrd somewhere that will definitely
1107      * overlay the kernel we just loaded, though for kernel formats which
1108      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1109      * we might still make a bad choice here.
1110      */
1111     info->initrd_start = info->loader_start +
1112         MIN(info->ram_size / 2, 128 * MiB);
1113     if (image_high_addr) {
1114         info->initrd_start = MAX(info->initrd_start, image_high_addr);
1115     }
1116     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1117 
1118     if (is_linux) {
1119         uint32_t fixupcontext[FIXUP_MAX];
1120 
1121         if (info->initrd_filename) {
1122 
1123             if (info->initrd_start >= ram_end) {
1124                 error_report("not enough space after kernel to load initrd");
1125                 exit(1);
1126             }
1127 
1128             initrd_size = load_ramdisk_as(info->initrd_filename,
1129                                           info->initrd_start,
1130                                           ram_end - info->initrd_start, as);
1131             if (initrd_size < 0) {
1132                 initrd_size = load_image_targphys_as(info->initrd_filename,
1133                                                      info->initrd_start,
1134                                                      ram_end -
1135                                                      info->initrd_start,
1136                                                      as);
1137             }
1138             if (initrd_size < 0) {
1139                 error_report("could not load initrd '%s'",
1140                              info->initrd_filename);
1141                 exit(1);
1142             }
1143             if (info->initrd_start + initrd_size > ram_end) {
1144                 error_report("could not load initrd '%s': "
1145                              "too big to fit into RAM after the kernel",
1146                              info->initrd_filename);
1147                 exit(1);
1148             }
1149         } else {
1150             initrd_size = 0;
1151         }
1152         info->initrd_size = initrd_size;
1153 
1154         fixupcontext[FIXUP_BOARDID] = info->board_id;
1155         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1156 
1157         /*
1158          * for device tree boot, we pass the DTB directly in r2. Otherwise
1159          * we point to the kernel args.
1160          */
1161         if (have_dtb(info)) {
1162             hwaddr align;
1163 
1164             if (elf_machine == EM_AARCH64) {
1165                 /*
1166                  * Some AArch64 kernels on early bootup map the fdt region as
1167                  *
1168                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1169                  *
1170                  * Let's play safe and prealign it to 2MB to give us some space.
1171                  */
1172                 align = 2 * MiB;
1173             } else {
1174                 /*
1175                  * Some 32bit kernels will trash anything in the 4K page the
1176                  * initrd ends in, so make sure the DTB isn't caught up in that.
1177                  */
1178                 align = 4 * KiB;
1179             }
1180 
1181             /* Place the DTB after the initrd in memory with alignment. */
1182             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1183                                            align);
1184             if (info->dtb_start >= ram_end) {
1185                 error_report("Not enough space for DTB after kernel/initrd");
1186                 exit(1);
1187             }
1188             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1189             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1190         } else {
1191             fixupcontext[FIXUP_ARGPTR_LO] =
1192                 info->loader_start + KERNEL_ARGS_ADDR;
1193             fixupcontext[FIXUP_ARGPTR_HI] =
1194                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1195             if (info->ram_size >= 4 * GiB) {
1196                 error_report("RAM size must be less than 4GB to boot"
1197                              " Linux kernel using ATAGS (try passing a device tree"
1198                              " using -dtb)");
1199                 exit(1);
1200             }
1201         }
1202         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1203         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1204 
1205         write_bootloader("bootloader", info->loader_start,
1206                          primary_loader, fixupcontext, as);
1207 
1208         if (info->nb_cpus > 1) {
1209             info->write_secondary_boot(cpu, info);
1210         }
1211         if (info->write_board_setup) {
1212             info->write_board_setup(cpu, info);
1213         }
1214 
1215         /*
1216          * Notify devices which need to fake up firmware initialization
1217          * that we're doing a direct kernel boot.
1218          */
1219         object_child_foreach_recursive(object_get_root(),
1220                                        do_arm_linux_init, info);
1221     }
1222     info->is_linux = is_linux;
1223 
1224     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1225         ARM_CPU(cs)->env.boot_info = info;
1226     }
1227 }
1228 
1229 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1230 {
1231     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1232 
1233     if (have_dtb(info)) {
1234         /*
1235          * If we have a device tree blob, but no kernel to supply it to (or
1236          * the kernel is supposed to be loaded by the bootloader), copy the
1237          * DTB to the base of RAM for the bootloader to pick up.
1238          */
1239         info->dtb_start = info->loader_start;
1240     }
1241 
1242     if (info->kernel_filename) {
1243         FWCfgState *fw_cfg;
1244         bool try_decompressing_kernel;
1245 
1246         fw_cfg = fw_cfg_find();
1247         try_decompressing_kernel = arm_feature(&cpu->env,
1248                                                ARM_FEATURE_AARCH64);
1249 
1250         /*
1251          * Expose the kernel, the command line, and the initrd in fw_cfg.
1252          * We don't process them here at all, it's all left to the
1253          * firmware.
1254          */
1255         load_image_to_fw_cfg(fw_cfg,
1256                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1257                              info->kernel_filename,
1258                              try_decompressing_kernel);
1259         load_image_to_fw_cfg(fw_cfg,
1260                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1261                              info->initrd_filename, false);
1262 
1263         if (info->kernel_cmdline) {
1264             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1265                            strlen(info->kernel_cmdline) + 1);
1266             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1267                               info->kernel_cmdline);
1268         }
1269     }
1270 
1271     /*
1272      * We will start from address 0 (typically a boot ROM image) in the
1273      * same way as hardware. Leave env->boot_info NULL, so that
1274      * do_cpu_reset() knows it does not need to alter the PC on reset.
1275      */
1276 }
1277 
1278 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1279 {
1280     CPUState *cs;
1281     AddressSpace *as = arm_boot_address_space(cpu, info);
1282 
1283     /*
1284      * CPU objects (unlike devices) are not automatically reset on system
1285      * reset, so we must always register a handler to do so. If we're
1286      * actually loading a kernel, the handler is also responsible for
1287      * arranging that we start it correctly.
1288      */
1289     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1290         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1291     }
1292 
1293     /*
1294      * The board code is not supposed to set secure_board_setup unless
1295      * running its code in secure mode is actually possible, and KVM
1296      * doesn't support secure.
1297      */
1298     assert(!(info->secure_board_setup && kvm_enabled()));
1299     info->kernel_filename = ms->kernel_filename;
1300     info->kernel_cmdline = ms->kernel_cmdline;
1301     info->initrd_filename = ms->initrd_filename;
1302     info->dtb_filename = ms->dtb;
1303     info->dtb_limit = 0;
1304 
1305     /* Load the kernel.  */
1306     if (!info->kernel_filename || info->firmware_loaded) {
1307         arm_setup_firmware_boot(cpu, info);
1308     } else {
1309         arm_setup_direct_kernel_boot(cpu, info);
1310     }
1311 
1312     if (!info->skip_dtb_autoload && have_dtb(info)) {
1313         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1314             exit(1);
1315         }
1316     }
1317 }
1318 
1319 static const TypeInfo arm_linux_boot_if_info = {
1320     .name = TYPE_ARM_LINUX_BOOT_IF,
1321     .parent = TYPE_INTERFACE,
1322     .class_size = sizeof(ARMLinuxBootIfClass),
1323 };
1324 
1325 static void arm_linux_boot_register_types(void)
1326 {
1327     type_register_static(&arm_linux_boot_if_info);
1328 }
1329 
1330 type_init(arm_linux_boot_register_types)
1331