1 /* 2 * ARM kernel loader. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "config.h" 11 #include "hw/hw.h" 12 #include "hw/arm/arm.h" 13 #include "sysemu/sysemu.h" 14 #include "hw/boards.h" 15 #include "hw/loader.h" 16 #include "elf.h" 17 #include "sysemu/device_tree.h" 18 #include "qemu/config-file.h" 19 #include "exec/address-spaces.h" 20 21 /* Kernel boot protocol is specified in the kernel docs 22 * Documentation/arm/Booting and Documentation/arm64/booting.txt 23 * They have different preferred image load offsets from system RAM base. 24 */ 25 #define KERNEL_ARGS_ADDR 0x100 26 #define KERNEL_LOAD_ADDR 0x00010000 27 #define KERNEL64_LOAD_ADDR 0x00080000 28 29 typedef enum { 30 FIXUP_NONE = 0, /* do nothing */ 31 FIXUP_TERMINATOR, /* end of insns */ 32 FIXUP_BOARDID, /* overwrite with board ID number */ 33 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */ 34 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */ 35 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ 36 FIXUP_BOOTREG, /* overwrite with boot register address */ 37 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ 38 FIXUP_MAX, 39 } FixupType; 40 41 typedef struct ARMInsnFixup { 42 uint32_t insn; 43 FixupType fixup; 44 } ARMInsnFixup; 45 46 static const ARMInsnFixup bootloader_aarch64[] = { 47 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ 48 { 0xaa1f03e1 }, /* mov x1, xzr */ 49 { 0xaa1f03e2 }, /* mov x2, xzr */ 50 { 0xaa1f03e3 }, /* mov x3, xzr */ 51 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ 52 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ 53 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */ 54 { 0 }, /* .word @DTB Higher 32-bits */ 55 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */ 56 { 0 }, /* .word @Kernel Entry Higher 32-bits */ 57 { 0, FIXUP_TERMINATOR } 58 }; 59 60 /* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */ 61 static const ARMInsnFixup bootloader[] = { 62 { 0xe3a00000 }, /* mov r0, #0 */ 63 { 0xe59f1004 }, /* ldr r1, [pc, #4] */ 64 { 0xe59f2004 }, /* ldr r2, [pc, #4] */ 65 { 0xe59ff004 }, /* ldr pc, [pc, #4] */ 66 { 0, FIXUP_BOARDID }, 67 { 0, FIXUP_ARGPTR }, 68 { 0, FIXUP_ENTRYPOINT }, 69 { 0, FIXUP_TERMINATOR } 70 }; 71 72 /* Handling for secondary CPU boot in a multicore system. 73 * Unlike the uniprocessor/primary CPU boot, this is platform 74 * dependent. The default code here is based on the secondary 75 * CPU boot protocol used on realview/vexpress boards, with 76 * some parameterisation to increase its flexibility. 77 * QEMU platform models for which this code is not appropriate 78 * should override write_secondary_boot and secondary_cpu_reset_hook 79 * instead. 80 * 81 * This code enables the interrupt controllers for the secondary 82 * CPUs and then puts all the secondary CPUs into a loop waiting 83 * for an interprocessor interrupt and polling a configurable 84 * location for the kernel secondary CPU entry point. 85 */ 86 #define DSB_INSN 0xf57ff04f 87 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ 88 89 static const ARMInsnFixup smpboot[] = { 90 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ 91 { 0xe59f0028 }, /* ldr r0, bootreg_addr */ 92 { 0xe3a01001 }, /* mov r1, #1 */ 93 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ 94 { 0xe3a010ff }, /* mov r1, #0xff */ 95 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ 96 { 0, FIXUP_DSB }, /* dsb */ 97 { 0xe320f003 }, /* wfi */ 98 { 0xe5901000 }, /* ldr r1, [r0] */ 99 { 0xe1110001 }, /* tst r1, r1 */ 100 { 0x0afffffb }, /* beq <wfi> */ 101 { 0xe12fff11 }, /* bx r1 */ 102 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ 103 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ 104 { 0, FIXUP_TERMINATOR } 105 }; 106 107 static void write_bootloader(const char *name, hwaddr addr, 108 const ARMInsnFixup *insns, uint32_t *fixupcontext) 109 { 110 /* Fix up the specified bootloader fragment and write it into 111 * guest memory using rom_add_blob_fixed(). fixupcontext is 112 * an array giving the values to write in for the fixup types 113 * which write a value into the code array. 114 */ 115 int i, len; 116 uint32_t *code; 117 118 len = 0; 119 while (insns[len].fixup != FIXUP_TERMINATOR) { 120 len++; 121 } 122 123 code = g_new0(uint32_t, len); 124 125 for (i = 0; i < len; i++) { 126 uint32_t insn = insns[i].insn; 127 FixupType fixup = insns[i].fixup; 128 129 switch (fixup) { 130 case FIXUP_NONE: 131 break; 132 case FIXUP_BOARDID: 133 case FIXUP_ARGPTR: 134 case FIXUP_ENTRYPOINT: 135 case FIXUP_GIC_CPU_IF: 136 case FIXUP_BOOTREG: 137 case FIXUP_DSB: 138 insn = fixupcontext[fixup]; 139 break; 140 default: 141 abort(); 142 } 143 code[i] = tswap32(insn); 144 } 145 146 rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr); 147 148 g_free(code); 149 } 150 151 static void default_write_secondary(ARMCPU *cpu, 152 const struct arm_boot_info *info) 153 { 154 uint32_t fixupcontext[FIXUP_MAX]; 155 156 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; 157 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; 158 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 159 fixupcontext[FIXUP_DSB] = DSB_INSN; 160 } else { 161 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; 162 } 163 164 write_bootloader("smpboot", info->smp_loader_start, 165 smpboot, fixupcontext); 166 } 167 168 static void default_reset_secondary(ARMCPU *cpu, 169 const struct arm_boot_info *info) 170 { 171 CPUState *cs = CPU(cpu); 172 173 address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr, 174 0, MEMTXATTRS_UNSPECIFIED, NULL); 175 cpu_set_pc(cs, info->smp_loader_start); 176 } 177 178 static inline bool have_dtb(const struct arm_boot_info *info) 179 { 180 return info->dtb_filename || info->get_dtb; 181 } 182 183 #define WRITE_WORD(p, value) do { \ 184 address_space_stl_notdirty(&address_space_memory, p, value, \ 185 MEMTXATTRS_UNSPECIFIED, NULL); \ 186 p += 4; \ 187 } while (0) 188 189 static void set_kernel_args(const struct arm_boot_info *info) 190 { 191 int initrd_size = info->initrd_size; 192 hwaddr base = info->loader_start; 193 hwaddr p; 194 195 p = base + KERNEL_ARGS_ADDR; 196 /* ATAG_CORE */ 197 WRITE_WORD(p, 5); 198 WRITE_WORD(p, 0x54410001); 199 WRITE_WORD(p, 1); 200 WRITE_WORD(p, 0x1000); 201 WRITE_WORD(p, 0); 202 /* ATAG_MEM */ 203 /* TODO: handle multiple chips on one ATAG list */ 204 WRITE_WORD(p, 4); 205 WRITE_WORD(p, 0x54410002); 206 WRITE_WORD(p, info->ram_size); 207 WRITE_WORD(p, info->loader_start); 208 if (initrd_size) { 209 /* ATAG_INITRD2 */ 210 WRITE_WORD(p, 4); 211 WRITE_WORD(p, 0x54420005); 212 WRITE_WORD(p, info->initrd_start); 213 WRITE_WORD(p, initrd_size); 214 } 215 if (info->kernel_cmdline && *info->kernel_cmdline) { 216 /* ATAG_CMDLINE */ 217 int cmdline_size; 218 219 cmdline_size = strlen(info->kernel_cmdline); 220 cpu_physical_memory_write(p + 8, info->kernel_cmdline, 221 cmdline_size + 1); 222 cmdline_size = (cmdline_size >> 2) + 1; 223 WRITE_WORD(p, cmdline_size + 2); 224 WRITE_WORD(p, 0x54410009); 225 p += cmdline_size * 4; 226 } 227 if (info->atag_board) { 228 /* ATAG_BOARD */ 229 int atag_board_len; 230 uint8_t atag_board_buf[0x1000]; 231 232 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; 233 WRITE_WORD(p, (atag_board_len + 8) >> 2); 234 WRITE_WORD(p, 0x414f4d50); 235 cpu_physical_memory_write(p, atag_board_buf, atag_board_len); 236 p += atag_board_len; 237 } 238 /* ATAG_END */ 239 WRITE_WORD(p, 0); 240 WRITE_WORD(p, 0); 241 } 242 243 static void set_kernel_args_old(const struct arm_boot_info *info) 244 { 245 hwaddr p; 246 const char *s; 247 int initrd_size = info->initrd_size; 248 hwaddr base = info->loader_start; 249 250 /* see linux/include/asm-arm/setup.h */ 251 p = base + KERNEL_ARGS_ADDR; 252 /* page_size */ 253 WRITE_WORD(p, 4096); 254 /* nr_pages */ 255 WRITE_WORD(p, info->ram_size / 4096); 256 /* ramdisk_size */ 257 WRITE_WORD(p, 0); 258 #define FLAG_READONLY 1 259 #define FLAG_RDLOAD 4 260 #define FLAG_RDPROMPT 8 261 /* flags */ 262 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); 263 /* rootdev */ 264 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ 265 /* video_num_cols */ 266 WRITE_WORD(p, 0); 267 /* video_num_rows */ 268 WRITE_WORD(p, 0); 269 /* video_x */ 270 WRITE_WORD(p, 0); 271 /* video_y */ 272 WRITE_WORD(p, 0); 273 /* memc_control_reg */ 274 WRITE_WORD(p, 0); 275 /* unsigned char sounddefault */ 276 /* unsigned char adfsdrives */ 277 /* unsigned char bytes_per_char_h */ 278 /* unsigned char bytes_per_char_v */ 279 WRITE_WORD(p, 0); 280 /* pages_in_bank[4] */ 281 WRITE_WORD(p, 0); 282 WRITE_WORD(p, 0); 283 WRITE_WORD(p, 0); 284 WRITE_WORD(p, 0); 285 /* pages_in_vram */ 286 WRITE_WORD(p, 0); 287 /* initrd_start */ 288 if (initrd_size) { 289 WRITE_WORD(p, info->initrd_start); 290 } else { 291 WRITE_WORD(p, 0); 292 } 293 /* initrd_size */ 294 WRITE_WORD(p, initrd_size); 295 /* rd_start */ 296 WRITE_WORD(p, 0); 297 /* system_rev */ 298 WRITE_WORD(p, 0); 299 /* system_serial_low */ 300 WRITE_WORD(p, 0); 301 /* system_serial_high */ 302 WRITE_WORD(p, 0); 303 /* mem_fclk_21285 */ 304 WRITE_WORD(p, 0); 305 /* zero unused fields */ 306 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { 307 WRITE_WORD(p, 0); 308 } 309 s = info->kernel_cmdline; 310 if (s) { 311 cpu_physical_memory_write(p, s, strlen(s) + 1); 312 } else { 313 WRITE_WORD(p, 0); 314 } 315 } 316 317 /** 318 * load_dtb() - load a device tree binary image into memory 319 * @addr: the address to load the image at 320 * @binfo: struct describing the boot environment 321 * @addr_limit: upper limit of the available memory area at @addr 322 * 323 * Load a device tree supplied by the machine or by the user with the 324 * '-dtb' command line option, and put it at offset @addr in target 325 * memory. 326 * 327 * If @addr_limit contains a meaningful value (i.e., it is strictly greater 328 * than @addr), the device tree is only loaded if its size does not exceed 329 * the limit. 330 * 331 * Returns: the size of the device tree image on success, 332 * 0 if the image size exceeds the limit, 333 * -1 on errors. 334 * 335 * Note: Must not be called unless have_dtb(binfo) is true. 336 */ 337 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo, 338 hwaddr addr_limit) 339 { 340 void *fdt = NULL; 341 int size, rc; 342 uint32_t acells, scells; 343 344 if (binfo->dtb_filename) { 345 char *filename; 346 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); 347 if (!filename) { 348 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); 349 goto fail; 350 } 351 352 fdt = load_device_tree(filename, &size); 353 if (!fdt) { 354 fprintf(stderr, "Couldn't open dtb file %s\n", filename); 355 g_free(filename); 356 goto fail; 357 } 358 g_free(filename); 359 } else { 360 fdt = binfo->get_dtb(binfo, &size); 361 if (!fdt) { 362 fprintf(stderr, "Board was unable to create a dtb blob\n"); 363 goto fail; 364 } 365 } 366 367 if (addr_limit > addr && size > (addr_limit - addr)) { 368 /* Installing the device tree blob at addr would exceed addr_limit. 369 * Whether this constitutes failure is up to the caller to decide, 370 * so just return 0 as size, i.e., no error. 371 */ 372 g_free(fdt); 373 return 0; 374 } 375 376 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells"); 377 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells"); 378 if (acells == 0 || scells == 0) { 379 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); 380 goto fail; 381 } 382 383 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) { 384 /* This is user error so deserves a friendlier error message 385 * than the failure of setprop_sized_cells would provide 386 */ 387 fprintf(stderr, "qemu: dtb file not compatible with " 388 "RAM size > 4GB\n"); 389 goto fail; 390 } 391 392 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg", 393 acells, binfo->loader_start, 394 scells, binfo->ram_size); 395 if (rc < 0) { 396 fprintf(stderr, "couldn't set /memory/reg\n"); 397 goto fail; 398 } 399 400 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { 401 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", 402 binfo->kernel_cmdline); 403 if (rc < 0) { 404 fprintf(stderr, "couldn't set /chosen/bootargs\n"); 405 goto fail; 406 } 407 } 408 409 if (binfo->initrd_size) { 410 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", 411 binfo->initrd_start); 412 if (rc < 0) { 413 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); 414 goto fail; 415 } 416 417 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", 418 binfo->initrd_start + binfo->initrd_size); 419 if (rc < 0) { 420 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); 421 goto fail; 422 } 423 } 424 425 if (binfo->modify_dtb) { 426 binfo->modify_dtb(binfo, fdt); 427 } 428 429 qemu_fdt_dumpdtb(fdt, size); 430 431 /* Put the DTB into the memory map as a ROM image: this will ensure 432 * the DTB is copied again upon reset, even if addr points into RAM. 433 */ 434 rom_add_blob_fixed("dtb", fdt, size, addr); 435 436 g_free(fdt); 437 438 return size; 439 440 fail: 441 g_free(fdt); 442 return -1; 443 } 444 445 static void do_cpu_reset(void *opaque) 446 { 447 ARMCPU *cpu = opaque; 448 CPUState *cs = CPU(cpu); 449 CPUARMState *env = &cpu->env; 450 const struct arm_boot_info *info = env->boot_info; 451 452 cpu_reset(cs); 453 if (info) { 454 if (!info->is_linux) { 455 /* Jump to the entry point. */ 456 uint64_t entry = info->entry; 457 458 if (!env->aarch64) { 459 env->thumb = info->entry & 1; 460 entry &= 0xfffffffe; 461 } 462 cpu_set_pc(cs, entry); 463 } else { 464 /* If we are booting Linux then we need to check whether we are 465 * booting into secure or non-secure state and adjust the state 466 * accordingly. Out of reset, ARM is defined to be in secure state 467 * (SCR.NS = 0), we change that here if non-secure boot has been 468 * requested. 469 */ 470 if (arm_feature(env, ARM_FEATURE_EL3)) { 471 /* AArch64 is defined to come out of reset into EL3 if enabled. 472 * If we are booting Linux then we need to adjust our EL as 473 * Linux expects us to be in EL2 or EL1. AArch32 resets into 474 * SVC, which Linux expects, so no privilege/exception level to 475 * adjust. 476 */ 477 if (env->aarch64) { 478 if (arm_feature(env, ARM_FEATURE_EL2)) { 479 env->pstate = PSTATE_MODE_EL2h; 480 } else { 481 env->pstate = PSTATE_MODE_EL1h; 482 } 483 } 484 485 /* Set to non-secure if not a secure boot */ 486 if (!info->secure_boot) { 487 /* Linux expects non-secure state */ 488 env->cp15.scr_el3 |= SCR_NS; 489 } 490 } 491 492 if (cs == first_cpu) { 493 cpu_set_pc(cs, info->loader_start); 494 495 if (!have_dtb(info)) { 496 if (old_param) { 497 set_kernel_args_old(info); 498 } else { 499 set_kernel_args(info); 500 } 501 } 502 } else { 503 info->secondary_cpu_reset_hook(cpu, info); 504 } 505 } 506 } 507 } 508 509 /** 510 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified 511 * by key. 512 * @fw_cfg: The firmware config instance to store the data in. 513 * @size_key: The firmware config key to store the size of the loaded 514 * data under, with fw_cfg_add_i32(). 515 * @data_key: The firmware config key to store the loaded data under, 516 * with fw_cfg_add_bytes(). 517 * @image_name: The name of the image file to load. If it is NULL, the 518 * function returns without doing anything. 519 * @try_decompress: Whether the image should be decompressed (gunzipped) before 520 * adding it to fw_cfg. If decompression fails, the image is 521 * loaded as-is. 522 * 523 * In case of failure, the function prints an error message to stderr and the 524 * process exits with status 1. 525 */ 526 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, 527 uint16_t data_key, const char *image_name, 528 bool try_decompress) 529 { 530 size_t size = -1; 531 uint8_t *data; 532 533 if (image_name == NULL) { 534 return; 535 } 536 537 if (try_decompress) { 538 size = load_image_gzipped_buffer(image_name, 539 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); 540 } 541 542 if (size == (size_t)-1) { 543 gchar *contents; 544 gsize length; 545 546 if (!g_file_get_contents(image_name, &contents, &length, NULL)) { 547 fprintf(stderr, "failed to load \"%s\"\n", image_name); 548 exit(1); 549 } 550 size = length; 551 data = (uint8_t *)contents; 552 } 553 554 fw_cfg_add_i32(fw_cfg, size_key, size); 555 fw_cfg_add_bytes(fw_cfg, data_key, data, size); 556 } 557 558 static void arm_load_kernel_notify(Notifier *notifier, void *data) 559 { 560 CPUState *cs; 561 int kernel_size; 562 int initrd_size; 563 int is_linux = 0; 564 uint64_t elf_entry, elf_low_addr, elf_high_addr; 565 int elf_machine; 566 hwaddr entry, kernel_load_offset; 567 int big_endian; 568 static const ARMInsnFixup *primary_loader; 569 ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier, 570 notifier, notifier); 571 ARMCPU *cpu = n->cpu; 572 struct arm_boot_info *info = 573 container_of(n, struct arm_boot_info, load_kernel_notifier); 574 575 /* Load the kernel. */ 576 if (!info->kernel_filename || info->firmware_loaded) { 577 578 if (have_dtb(info)) { 579 /* If we have a device tree blob, but no kernel to supply it to (or 580 * the kernel is supposed to be loaded by the bootloader), copy the 581 * DTB to the base of RAM for the bootloader to pick up. 582 */ 583 if (load_dtb(info->loader_start, info, 0) < 0) { 584 exit(1); 585 } 586 } 587 588 if (info->kernel_filename) { 589 FWCfgState *fw_cfg; 590 bool try_decompressing_kernel; 591 592 fw_cfg = fw_cfg_find(); 593 try_decompressing_kernel = arm_feature(&cpu->env, 594 ARM_FEATURE_AARCH64); 595 596 /* Expose the kernel, the command line, and the initrd in fw_cfg. 597 * We don't process them here at all, it's all left to the 598 * firmware. 599 */ 600 load_image_to_fw_cfg(fw_cfg, 601 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, 602 info->kernel_filename, 603 try_decompressing_kernel); 604 load_image_to_fw_cfg(fw_cfg, 605 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, 606 info->initrd_filename, false); 607 608 if (info->kernel_cmdline) { 609 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 610 strlen(info->kernel_cmdline) + 1); 611 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, 612 info->kernel_cmdline); 613 } 614 } 615 616 /* We will start from address 0 (typically a boot ROM image) in the 617 * same way as hardware. 618 */ 619 return; 620 } 621 622 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 623 primary_loader = bootloader_aarch64; 624 kernel_load_offset = KERNEL64_LOAD_ADDR; 625 elf_machine = EM_AARCH64; 626 } else { 627 primary_loader = bootloader; 628 kernel_load_offset = KERNEL_LOAD_ADDR; 629 elf_machine = EM_ARM; 630 } 631 632 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb"); 633 634 if (!info->secondary_cpu_reset_hook) { 635 info->secondary_cpu_reset_hook = default_reset_secondary; 636 } 637 if (!info->write_secondary_boot) { 638 info->write_secondary_boot = default_write_secondary; 639 } 640 641 if (info->nb_cpus == 0) 642 info->nb_cpus = 1; 643 644 #ifdef TARGET_WORDS_BIGENDIAN 645 big_endian = 1; 646 #else 647 big_endian = 0; 648 #endif 649 650 /* We want to put the initrd far enough into RAM that when the 651 * kernel is uncompressed it will not clobber the initrd. However 652 * on boards without much RAM we must ensure that we still leave 653 * enough room for a decent sized initrd, and on boards with large 654 * amounts of RAM we must avoid the initrd being so far up in RAM 655 * that it is outside lowmem and inaccessible to the kernel. 656 * So for boards with less than 256MB of RAM we put the initrd 657 * halfway into RAM, and for boards with 256MB of RAM or more we put 658 * the initrd at 128MB. 659 */ 660 info->initrd_start = info->loader_start + 661 MIN(info->ram_size / 2, 128 * 1024 * 1024); 662 663 /* Assume that raw images are linux kernels, and ELF images are not. */ 664 kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry, 665 &elf_low_addr, &elf_high_addr, big_endian, 666 elf_machine, 1); 667 if (kernel_size > 0 && have_dtb(info)) { 668 /* If there is still some room left at the base of RAM, try and put 669 * the DTB there like we do for images loaded with -bios or -pflash. 670 */ 671 if (elf_low_addr > info->loader_start 672 || elf_high_addr < info->loader_start) { 673 /* Pass elf_low_addr as address limit to load_dtb if it may be 674 * pointing into RAM, otherwise pass '0' (no limit) 675 */ 676 if (elf_low_addr < info->loader_start) { 677 elf_low_addr = 0; 678 } 679 if (load_dtb(info->loader_start, info, elf_low_addr) < 0) { 680 exit(1); 681 } 682 } 683 } 684 entry = elf_entry; 685 if (kernel_size < 0) { 686 kernel_size = load_uimage(info->kernel_filename, &entry, NULL, 687 &is_linux, NULL, NULL); 688 } 689 /* On aarch64, it's the bootloader's job to uncompress the kernel. */ 690 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { 691 entry = info->loader_start + kernel_load_offset; 692 kernel_size = load_image_gzipped(info->kernel_filename, entry, 693 info->ram_size - kernel_load_offset); 694 is_linux = 1; 695 } 696 if (kernel_size < 0) { 697 entry = info->loader_start + kernel_load_offset; 698 kernel_size = load_image_targphys(info->kernel_filename, entry, 699 info->ram_size - kernel_load_offset); 700 is_linux = 1; 701 } 702 if (kernel_size < 0) { 703 fprintf(stderr, "qemu: could not load kernel '%s'\n", 704 info->kernel_filename); 705 exit(1); 706 } 707 info->entry = entry; 708 if (is_linux) { 709 uint32_t fixupcontext[FIXUP_MAX]; 710 711 if (info->initrd_filename) { 712 initrd_size = load_ramdisk(info->initrd_filename, 713 info->initrd_start, 714 info->ram_size - 715 info->initrd_start); 716 if (initrd_size < 0) { 717 initrd_size = load_image_targphys(info->initrd_filename, 718 info->initrd_start, 719 info->ram_size - 720 info->initrd_start); 721 } 722 if (initrd_size < 0) { 723 fprintf(stderr, "qemu: could not load initrd '%s'\n", 724 info->initrd_filename); 725 exit(1); 726 } 727 } else { 728 initrd_size = 0; 729 } 730 info->initrd_size = initrd_size; 731 732 fixupcontext[FIXUP_BOARDID] = info->board_id; 733 734 /* for device tree boot, we pass the DTB directly in r2. Otherwise 735 * we point to the kernel args. 736 */ 737 if (have_dtb(info)) { 738 hwaddr align; 739 hwaddr dtb_start; 740 741 if (elf_machine == EM_AARCH64) { 742 /* 743 * Some AArch64 kernels on early bootup map the fdt region as 744 * 745 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] 746 * 747 * Let's play safe and prealign it to 2MB to give us some space. 748 */ 749 align = 2 * 1024 * 1024; 750 } else { 751 /* 752 * Some 32bit kernels will trash anything in the 4K page the 753 * initrd ends in, so make sure the DTB isn't caught up in that. 754 */ 755 align = 4096; 756 } 757 758 /* Place the DTB after the initrd in memory with alignment. */ 759 dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align); 760 if (load_dtb(dtb_start, info, 0) < 0) { 761 exit(1); 762 } 763 fixupcontext[FIXUP_ARGPTR] = dtb_start; 764 } else { 765 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR; 766 if (info->ram_size >= (1ULL << 32)) { 767 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot" 768 " Linux kernel using ATAGS (try passing a device tree" 769 " using -dtb)\n"); 770 exit(1); 771 } 772 } 773 fixupcontext[FIXUP_ENTRYPOINT] = entry; 774 775 write_bootloader("bootloader", info->loader_start, 776 primary_loader, fixupcontext); 777 778 if (info->nb_cpus > 1) { 779 info->write_secondary_boot(cpu, info); 780 } 781 } 782 info->is_linux = is_linux; 783 784 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { 785 ARM_CPU(cs)->env.boot_info = info; 786 } 787 } 788 789 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) 790 { 791 CPUState *cs; 792 793 info->load_kernel_notifier.cpu = cpu; 794 info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify; 795 qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier); 796 797 /* CPU objects (unlike devices) are not automatically reset on system 798 * reset, so we must always register a handler to do so. If we're 799 * actually loading a kernel, the handler is also responsible for 800 * arranging that we start it correctly. 801 */ 802 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { 803 qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); 804 } 805 } 806