xref: /openbmc/qemu/hw/arm/boot.c (revision 9c2ff9cdc9b33472333e9431cbf4417f5f228883)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/datadir.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "exec/target_page.h"
18 #include "system/kvm.h"
19 #include "system/tcg.h"
20 #include "system/system.h"
21 #include "system/numa.h"
22 #include "hw/boards.h"
23 #include "system/reset.h"
24 #include "hw/loader.h"
25 #include "elf.h"
26 #include "system/device_tree.h"
27 #include "qemu/config-file.h"
28 #include "qemu/option.h"
29 #include "qemu/units.h"
30 
31 /* Kernel boot protocol is specified in the kernel docs
32  * Documentation/arm/Booting and Documentation/arm64/booting.txt
33  * They have different preferred image load offsets from system RAM base.
34  */
35 #define KERNEL_ARGS_ADDR   0x100
36 #define KERNEL_NOLOAD_ADDR 0x02000000
37 #define KERNEL_LOAD_ADDR   0x00010000
38 #define KERNEL64_LOAD_ADDR 0x00080000
39 
40 #define ARM64_TEXT_OFFSET_OFFSET    8
41 #define ARM64_MAGIC_OFFSET          56
42 
43 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
44 
45 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
46                                      const struct arm_boot_info *info)
47 {
48     /* Return the address space to use for bootloader reads and writes.
49      * We prefer the secure address space if the CPU has it and we're
50      * going to boot the guest into it.
51      */
52     int asidx;
53     CPUState *cs = CPU(cpu);
54 
55     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
56         asidx = ARMASIdx_S;
57     } else {
58         asidx = ARMASIdx_NS;
59     }
60 
61     return cpu_get_address_space(cs, asidx);
62 }
63 
64 static const ARMInsnFixup bootloader_aarch64[] = {
65     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
66     { 0xaa1f03e1 }, /* mov x1, xzr */
67     { 0xaa1f03e2 }, /* mov x2, xzr */
68     { 0xaa1f03e3 }, /* mov x3, xzr */
69     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
70     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
71     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
72     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
73     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
74     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
75     { 0, FIXUP_TERMINATOR }
76 };
77 
78 /* A very small bootloader: call the board-setup code (if needed),
79  * set r0-r2, then jump to the kernel.
80  * If we're not calling boot setup code then we don't copy across
81  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
82  */
83 
84 static const ARMInsnFixup bootloader[] = {
85     { 0xe28fe004 }, /* add     lr, pc, #4 */
86     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
87     { 0, FIXUP_BOARD_SETUP },
88 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
89     { 0xe3a00000 }, /* mov     r0, #0 */
90     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
91     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
92     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
93     { 0, FIXUP_BOARDID },
94     { 0, FIXUP_ARGPTR_LO },
95     { 0, FIXUP_ENTRYPOINT_LO },
96     { 0, FIXUP_TERMINATOR }
97 };
98 
99 /* Handling for secondary CPU boot in a multicore system.
100  * Unlike the uniprocessor/primary CPU boot, this is platform
101  * dependent. The default code here is based on the secondary
102  * CPU boot protocol used on realview/vexpress boards, with
103  * some parameterisation to increase its flexibility.
104  * QEMU platform models for which this code is not appropriate
105  * should override write_secondary_boot and secondary_cpu_reset_hook
106  * instead.
107  *
108  * This code enables the interrupt controllers for the secondary
109  * CPUs and then puts all the secondary CPUs into a loop waiting
110  * for an interprocessor interrupt and polling a configurable
111  * location for the kernel secondary CPU entry point.
112  */
113 #define DSB_INSN 0xf57ff04f
114 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
115 
116 static const ARMInsnFixup smpboot[] = {
117     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
118     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
119     { 0xe3a01001 }, /* mov r1, #1 */
120     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
121     { 0xe3a010ff }, /* mov r1, #0xff */
122     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
123     { 0, FIXUP_DSB },   /* dsb */
124     { 0xe320f003 }, /* wfi */
125     { 0xe5901000 }, /* ldr     r1, [r0] */
126     { 0xe1110001 }, /* tst     r1, r1 */
127     { 0x0afffffb }, /* beq     <wfi> */
128     { 0xe12fff11 }, /* bx      r1 */
129     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
130     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
131     { 0, FIXUP_TERMINATOR }
132 };
133 
134 void arm_write_bootloader(const char *name,
135                           AddressSpace *as, hwaddr addr,
136                           const ARMInsnFixup *insns,
137                           const uint32_t *fixupcontext)
138 {
139     /* Fix up the specified bootloader fragment and write it into
140      * guest memory using rom_add_blob_fixed(). fixupcontext is
141      * an array giving the values to write in for the fixup types
142      * which write a value into the code array.
143      */
144     int i, len;
145     uint32_t *code;
146 
147     len = 0;
148     while (insns[len].fixup != FIXUP_TERMINATOR) {
149         len++;
150     }
151 
152     code = g_new0(uint32_t, len);
153 
154     for (i = 0; i < len; i++) {
155         uint32_t insn = insns[i].insn;
156         FixupType fixup = insns[i].fixup;
157 
158         switch (fixup) {
159         case FIXUP_NONE:
160             break;
161         case FIXUP_BOARDID:
162         case FIXUP_BOARD_SETUP:
163         case FIXUP_ARGPTR_LO:
164         case FIXUP_ARGPTR_HI:
165         case FIXUP_ENTRYPOINT_LO:
166         case FIXUP_ENTRYPOINT_HI:
167         case FIXUP_GIC_CPU_IF:
168         case FIXUP_BOOTREG:
169         case FIXUP_DSB:
170             insn = fixupcontext[fixup];
171             break;
172         default:
173             abort();
174         }
175         code[i] = tswap32(insn);
176     }
177 
178     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
179 
180     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
181 
182     g_free(code);
183 }
184 
185 static void default_write_secondary(ARMCPU *cpu,
186                                     const struct arm_boot_info *info)
187 {
188     uint32_t fixupcontext[FIXUP_MAX];
189     AddressSpace *as = arm_boot_address_space(cpu, info);
190 
191     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
192     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
193     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
194         fixupcontext[FIXUP_DSB] = DSB_INSN;
195     } else {
196         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
197     }
198 
199     arm_write_bootloader("smpboot", as, info->smp_loader_start,
200                          smpboot, fixupcontext);
201 }
202 
203 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
204                                             const struct arm_boot_info *info,
205                                             hwaddr mvbar_addr)
206 {
207     AddressSpace *as = arm_boot_address_space(cpu, info);
208     int n;
209     uint32_t mvbar_blob[] = {
210         /* mvbar_addr: secure monitor vectors
211          * Default unimplemented and unused vectors to spin. Makes it
212          * easier to debug (as opposed to the CPU running away).
213          */
214         0xeafffffe, /* (spin) */
215         0xeafffffe, /* (spin) */
216         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
217         0xeafffffe, /* (spin) */
218         0xeafffffe, /* (spin) */
219         0xeafffffe, /* (spin) */
220         0xeafffffe, /* (spin) */
221         0xeafffffe, /* (spin) */
222     };
223     uint32_t board_setup_blob[] = {
224         /* board setup addr */
225         0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
226         0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
227         0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
228         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
229         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
230         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
231         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
232         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
233         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
234         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
235         0xe1a0f001, /* mov     pc, r1                 ;return */
236     };
237 
238     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
239     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
240 
241     /* check that these blobs don't overlap */
242     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
243           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
244 
245     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
246         mvbar_blob[n] = tswap32(mvbar_blob[n]);
247     }
248     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
249                           mvbar_addr, as);
250 
251     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
252         board_setup_blob[n] = tswap32(board_setup_blob[n]);
253     }
254     rom_add_blob_fixed_as("board-setup", board_setup_blob,
255                           sizeof(board_setup_blob), info->board_setup_addr, as);
256 }
257 
258 static void default_reset_secondary(ARMCPU *cpu,
259                                     const struct arm_boot_info *info)
260 {
261     AddressSpace *as = arm_boot_address_space(cpu, info);
262     CPUState *cs = CPU(cpu);
263 
264     address_space_stl_notdirty(as, info->smp_bootreg_addr,
265                                0, MEMTXATTRS_UNSPECIFIED, NULL);
266     cpu_set_pc(cs, info->smp_loader_start);
267 }
268 
269 static inline bool have_dtb(const struct arm_boot_info *info)
270 {
271     return info->dtb_filename || info->get_dtb;
272 }
273 
274 #define WRITE_WORD(p, value) do { \
275     address_space_stl_notdirty(as, p, value, \
276                                MEMTXATTRS_UNSPECIFIED, NULL);  \
277     p += 4;                       \
278 } while (0)
279 
280 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
281 {
282     int initrd_size = info->initrd_size;
283     hwaddr base = info->loader_start;
284     hwaddr p;
285 
286     p = base + KERNEL_ARGS_ADDR;
287     /* ATAG_CORE */
288     WRITE_WORD(p, 5);
289     WRITE_WORD(p, 0x54410001);
290     WRITE_WORD(p, 1);
291     WRITE_WORD(p, 0x1000);
292     WRITE_WORD(p, 0);
293     /* ATAG_MEM */
294     /* TODO: handle multiple chips on one ATAG list */
295     WRITE_WORD(p, 4);
296     WRITE_WORD(p, 0x54410002);
297     WRITE_WORD(p, info->ram_size);
298     WRITE_WORD(p, info->loader_start);
299     if (initrd_size) {
300         /* ATAG_INITRD2 */
301         WRITE_WORD(p, 4);
302         WRITE_WORD(p, 0x54420005);
303         WRITE_WORD(p, info->initrd_start);
304         WRITE_WORD(p, initrd_size);
305     }
306     if (info->kernel_cmdline && *info->kernel_cmdline) {
307         /* ATAG_CMDLINE */
308         int cmdline_size;
309 
310         cmdline_size = strlen(info->kernel_cmdline);
311         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
312                             info->kernel_cmdline, cmdline_size + 1);
313         cmdline_size = (cmdline_size >> 2) + 1;
314         WRITE_WORD(p, cmdline_size + 2);
315         WRITE_WORD(p, 0x54410009);
316         p += cmdline_size * 4;
317     }
318     if (info->atag_board) {
319         /* ATAG_BOARD */
320         int atag_board_len;
321         uint8_t atag_board_buf[0x1000];
322 
323         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
324         WRITE_WORD(p, (atag_board_len + 8) >> 2);
325         WRITE_WORD(p, 0x414f4d50);
326         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
327                             atag_board_buf, atag_board_len);
328         p += atag_board_len;
329     }
330     /* ATAG_END */
331     WRITE_WORD(p, 0);
332     WRITE_WORD(p, 0);
333 }
334 
335 static void set_kernel_args_old(const struct arm_boot_info *info,
336                                 AddressSpace *as)
337 {
338     hwaddr p;
339     const char *s;
340     int initrd_size = info->initrd_size;
341     hwaddr base = info->loader_start;
342 
343     /* see linux/include/asm-arm/setup.h */
344     p = base + KERNEL_ARGS_ADDR;
345     /* page_size */
346     WRITE_WORD(p, 4096);
347     /* nr_pages */
348     WRITE_WORD(p, info->ram_size / 4096);
349     /* ramdisk_size */
350     WRITE_WORD(p, 0);
351 #define FLAG_READONLY 1
352 #define FLAG_RDLOAD   4
353 #define FLAG_RDPROMPT 8
354     /* flags */
355     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
356     /* rootdev */
357     WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
358     /* video_num_cols */
359     WRITE_WORD(p, 0);
360     /* video_num_rows */
361     WRITE_WORD(p, 0);
362     /* video_x */
363     WRITE_WORD(p, 0);
364     /* video_y */
365     WRITE_WORD(p, 0);
366     /* memc_control_reg */
367     WRITE_WORD(p, 0);
368     /* unsigned char sounddefault */
369     /* unsigned char adfsdrives */
370     /* unsigned char bytes_per_char_h */
371     /* unsigned char bytes_per_char_v */
372     WRITE_WORD(p, 0);
373     /* pages_in_bank[4] */
374     WRITE_WORD(p, 0);
375     WRITE_WORD(p, 0);
376     WRITE_WORD(p, 0);
377     WRITE_WORD(p, 0);
378     /* pages_in_vram */
379     WRITE_WORD(p, 0);
380     /* initrd_start */
381     if (initrd_size) {
382         WRITE_WORD(p, info->initrd_start);
383     } else {
384         WRITE_WORD(p, 0);
385     }
386     /* initrd_size */
387     WRITE_WORD(p, initrd_size);
388     /* rd_start */
389     WRITE_WORD(p, 0);
390     /* system_rev */
391     WRITE_WORD(p, 0);
392     /* system_serial_low */
393     WRITE_WORD(p, 0);
394     /* system_serial_high */
395     WRITE_WORD(p, 0);
396     /* mem_fclk_21285 */
397     WRITE_WORD(p, 0);
398     /* zero unused fields */
399     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
400         WRITE_WORD(p, 0);
401     }
402     s = info->kernel_cmdline;
403     if (s) {
404         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
405     } else {
406         WRITE_WORD(p, 0);
407     }
408 }
409 
410 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
411                                uint32_t scells, hwaddr mem_len,
412                                int numa_node_id)
413 {
414     char *nodename;
415     int ret;
416 
417     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
418     qemu_fdt_add_subnode(fdt, nodename);
419     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
420     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
421                                        scells, mem_len);
422     if (ret < 0) {
423         goto out;
424     }
425 
426     /* only set the NUMA ID if it is specified */
427     if (numa_node_id >= 0) {
428         ret = qemu_fdt_setprop_cell(fdt, nodename,
429                                     "numa-node-id", numa_node_id);
430     }
431 out:
432     g_free(nodename);
433     return ret;
434 }
435 
436 static void fdt_add_psci_node(void *fdt, ARMCPU *armcpu)
437 {
438     uint32_t cpu_suspend_fn;
439     uint32_t cpu_off_fn;
440     uint32_t cpu_on_fn;
441     uint32_t migrate_fn;
442     const char *psci_method;
443     int64_t psci_conduit;
444     int rc;
445 
446     psci_conduit = object_property_get_int(OBJECT(armcpu),
447                                            "psci-conduit",
448                                            &error_abort);
449     switch (psci_conduit) {
450     case QEMU_PSCI_CONDUIT_DISABLED:
451         return;
452     case QEMU_PSCI_CONDUIT_HVC:
453         psci_method = "hvc";
454         break;
455     case QEMU_PSCI_CONDUIT_SMC:
456         psci_method = "smc";
457         break;
458     default:
459         g_assert_not_reached();
460     }
461 
462     /*
463      * A pre-existing /psci node might specify function ID values
464      * that don't match QEMU's PSCI implementation. Delete the whole
465      * node and put our own in instead.
466      */
467     rc = fdt_path_offset(fdt, "/psci");
468     if (rc >= 0) {
469         qemu_fdt_nop_node(fdt, "/psci");
470     }
471 
472     qemu_fdt_add_subnode(fdt, "/psci");
473     if (armcpu->psci_version >= QEMU_PSCI_VERSION_0_2) {
474         if (armcpu->psci_version < QEMU_PSCI_VERSION_1_0) {
475             const char comp[] = "arm,psci-0.2\0arm,psci";
476             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
477         } else {
478             const char comp[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci";
479             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
480         }
481 
482         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
483         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
484             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
485             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
486             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
487         } else {
488             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
489             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
490             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
491         }
492     } else {
493         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
494 
495         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
496         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
497         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
498         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
499     }
500 
501     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
502      * to the instruction that should be used to invoke PSCI functions.
503      * However, the device tree binding uses 'method' instead, so that is
504      * what we should use here.
505      */
506     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
507 
508     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
509     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
510     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
511     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
512 }
513 
514 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
515                  hwaddr addr_limit, AddressSpace *as, MachineState *ms,
516                  ARMCPU *cpu)
517 {
518     void *fdt = NULL;
519     int size, rc, n = 0;
520     uint32_t acells, scells;
521     unsigned int i;
522     hwaddr mem_base, mem_len;
523     char **node_path;
524     Error *err = NULL;
525 
526     if (binfo->dtb_filename) {
527         char *filename;
528         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
529         if (!filename) {
530             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
531             goto fail;
532         }
533 
534         fdt = load_device_tree(filename, &size);
535         if (!fdt) {
536             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
537             g_free(filename);
538             goto fail;
539         }
540         g_free(filename);
541     } else {
542         fdt = binfo->get_dtb(binfo, &size);
543         if (!fdt) {
544             fprintf(stderr, "Board was unable to create a dtb blob\n");
545             goto fail;
546         }
547     }
548 
549     if (addr_limit > addr && size > (addr_limit - addr)) {
550         /* Installing the device tree blob at addr would exceed addr_limit.
551          * Whether this constitutes failure is up to the caller to decide,
552          * so just return 0 as size, i.e., no error.
553          */
554         g_free(fdt);
555         return 0;
556     }
557 
558     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
559                                    NULL, &error_fatal);
560     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
561                                    NULL, &error_fatal);
562     if (acells == 0 || scells == 0) {
563         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
564         goto fail;
565     }
566 
567     if (scells < 2 && binfo->ram_size >= 4 * GiB) {
568         /* This is user error so deserves a friendlier error message
569          * than the failure of setprop_sized_cells would provide
570          */
571         fprintf(stderr, "qemu: dtb file not compatible with "
572                 "RAM size > 4GB\n");
573         goto fail;
574     }
575 
576     /* nop all root nodes matching /memory or /memory@unit-address */
577     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
578     if (err) {
579         error_report_err(err);
580         goto fail;
581     }
582     while (node_path[n]) {
583         if (g_str_has_prefix(node_path[n], "/memory")) {
584             qemu_fdt_nop_node(fdt, node_path[n]);
585         }
586         n++;
587     }
588     g_strfreev(node_path);
589 
590     /*
591      * We drop all the memory nodes which correspond to empty NUMA nodes
592      * from the device tree, because the Linux NUMA binding document
593      * states they should not be generated. Linux will get the NUMA node
594      * IDs of the empty NUMA nodes from the distance map if they are needed.
595      * This means QEMU users may be obliged to provide command lines which
596      * configure distance maps when the empty NUMA node IDs are needed and
597      * Linux's default distance map isn't sufficient.
598      */
599     if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
600         mem_base = binfo->loader_start;
601         for (i = 0; i < ms->numa_state->num_nodes; i++) {
602             mem_len = ms->numa_state->nodes[i].node_mem;
603             if (!mem_len) {
604                 continue;
605             }
606 
607             rc = fdt_add_memory_node(fdt, acells, mem_base,
608                                      scells, mem_len, i);
609             if (rc < 0) {
610                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
611                         mem_base);
612                 goto fail;
613             }
614 
615             mem_base += mem_len;
616         }
617     } else {
618         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
619                                  scells, binfo->ram_size, -1);
620         if (rc < 0) {
621             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
622                     binfo->loader_start);
623             goto fail;
624         }
625     }
626 
627     rc = fdt_path_offset(fdt, "/chosen");
628     if (rc < 0) {
629         qemu_fdt_add_subnode(fdt, "/chosen");
630     }
631 
632     if (ms->kernel_cmdline && *ms->kernel_cmdline) {
633         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
634                                      ms->kernel_cmdline);
635         if (rc < 0) {
636             fprintf(stderr, "couldn't set /chosen/bootargs\n");
637             goto fail;
638         }
639     }
640 
641     if (binfo->initrd_size) {
642         rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-start",
643                                           acells, binfo->initrd_start);
644         if (rc < 0) {
645             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
646             goto fail;
647         }
648 
649         rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-end",
650                                           acells,
651                                           binfo->initrd_start +
652                                           binfo->initrd_size);
653         if (rc < 0) {
654             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
655             goto fail;
656         }
657     }
658 
659     fdt_add_psci_node(fdt, cpu);
660 
661     if (binfo->modify_dtb) {
662         binfo->modify_dtb(binfo, fdt);
663     }
664 
665     /* Put the DTB into the memory map as a ROM image: this will ensure
666      * the DTB is copied again upon reset, even if addr points into RAM.
667      */
668     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
669     qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
670                                        rom_ptr_for_as(as, addr, size));
671 
672     if (fdt != ms->fdt) {
673         g_free(ms->fdt);
674         ms->fdt = fdt;
675     }
676 
677     return size;
678 
679 fail:
680     g_free(fdt);
681     return -1;
682 }
683 
684 static void do_cpu_reset(void *opaque)
685 {
686     ARMCPU *cpu = opaque;
687     CPUState *cs = CPU(cpu);
688     CPUARMState *env = &cpu->env;
689     const struct arm_boot_info *info = env->boot_info;
690 
691     cpu_reset(cs);
692     if (info) {
693         if (!info->is_linux) {
694             int i;
695             /* Jump to the entry point.  */
696             uint64_t entry = info->entry;
697 
698             switch (info->endianness) {
699             case ARM_ENDIANNESS_LE:
700                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
701                 for (i = 1; i < 4; ++i) {
702                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
703                 }
704                 env->uncached_cpsr &= ~CPSR_E;
705                 break;
706             case ARM_ENDIANNESS_BE8:
707                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
708                 for (i = 1; i < 4; ++i) {
709                     env->cp15.sctlr_el[i] |= SCTLR_EE;
710                 }
711                 env->uncached_cpsr |= CPSR_E;
712                 break;
713             case ARM_ENDIANNESS_BE32:
714                 env->cp15.sctlr_el[1] |= SCTLR_B;
715                 break;
716             case ARM_ENDIANNESS_UNKNOWN:
717                 break; /* Board's decision */
718             default:
719                 g_assert_not_reached();
720             }
721 
722             cpu_set_pc(cs, entry);
723         } else {
724             /*
725              * If we are booting Linux then we might need to do so at:
726              *  - AArch64 NS EL2 or NS EL1
727              *  - AArch32 Secure SVC (EL3)
728              *  - AArch32 NS Hyp (EL2)
729              *  - AArch32 NS SVC (EL1)
730              * Configure the CPU in the way boot firmware would do to
731              * drop us down to the appropriate level.
732              */
733             int target_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
734 
735             if (env->aarch64) {
736                 /*
737                  * AArch64 kernels never boot in secure mode, and we don't
738                  * support the secure_board_setup hook for AArch64.
739                  */
740                 assert(!info->secure_boot);
741                 assert(!info->secure_board_setup);
742             } else {
743                 if (arm_feature(env, ARM_FEATURE_EL3) &&
744                     (info->secure_boot ||
745                      (info->secure_board_setup && cs == first_cpu))) {
746                     /* Start this CPU in Secure SVC */
747                     target_el = 3;
748                 }
749             }
750 
751             arm_emulate_firmware_reset(cs, target_el);
752 
753             if (cs == first_cpu) {
754                 AddressSpace *as = arm_boot_address_space(cpu, info);
755 
756                 cpu_set_pc(cs, info->loader_start);
757 
758                 if (!have_dtb(info)) {
759                     if (old_param) {
760                         set_kernel_args_old(info, as);
761                     } else {
762                         set_kernel_args(info, as);
763                     }
764                 }
765             } else if (info->secondary_cpu_reset_hook) {
766                 info->secondary_cpu_reset_hook(cpu, info);
767             }
768         }
769 
770         if (tcg_enabled()) {
771             arm_rebuild_hflags(env);
772         }
773     }
774 }
775 
776 static int do_arm_linux_init(Object *obj, void *opaque)
777 {
778     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
779         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
780         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
781         struct arm_boot_info *info = opaque;
782 
783         if (albifc->arm_linux_init) {
784             albifc->arm_linux_init(albif, info->secure_boot);
785         }
786     }
787     return 0;
788 }
789 
790 static ssize_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
791                             uint64_t *lowaddr, uint64_t *highaddr,
792                             int elf_machine, AddressSpace *as)
793 {
794     bool elf_is64;
795     union {
796         Elf32_Ehdr h32;
797         Elf64_Ehdr h64;
798     } elf_header;
799     int data_swab = 0;
800     int elf_data_order;
801     ssize_t ret;
802     Error *err = NULL;
803 
804 
805     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
806     if (err) {
807         /*
808          * If the file is not an ELF file we silently return.
809          * The caller will fall back to try other formats.
810          */
811         error_free(err);
812         return -1;
813     }
814 
815     if (elf_is64) {
816         elf_data_order = elf_header.h64.e_ident[EI_DATA];
817         info->endianness = elf_data_order == ELFDATA2MSB ? ARM_ENDIANNESS_BE8
818                                                          : ARM_ENDIANNESS_LE;
819     } else {
820         elf_data_order = elf_header.h32.e_ident[EI_DATA];
821         if (elf_data_order == ELFDATA2MSB) {
822             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
823                 info->endianness = ARM_ENDIANNESS_BE8;
824             } else {
825                 info->endianness = ARM_ENDIANNESS_BE32;
826                 /* In BE32, the CPU has a different view of the per-byte
827                  * address map than the rest of the system. BE32 ELF files
828                  * are organised such that they can be programmed through
829                  * the CPU's per-word byte-reversed view of the world. QEMU
830                  * however loads ELF files independently of the CPU. So
831                  * tell the ELF loader to byte reverse the data for us.
832                  */
833                 data_swab = 2;
834             }
835         } else {
836             info->endianness = ARM_ENDIANNESS_LE;
837         }
838     }
839 
840     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
841                       pentry, lowaddr, highaddr, NULL, elf_data_order,
842                       elf_machine, 1, data_swab, as);
843     if (ret <= 0) {
844         /* The header loaded but the image didn't */
845         error_report("Couldn't load elf '%s': %s",
846                      info->kernel_filename, load_elf_strerror(ret));
847         exit(1);
848     }
849 
850     return ret;
851 }
852 
853 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
854                                    hwaddr *entry, AddressSpace *as)
855 {
856     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
857     uint64_t kernel_size = 0;
858     uint8_t *buffer;
859     ssize_t size;
860 
861     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
862     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
863                                      &buffer);
864 
865     if (size < 0) {
866         gsize len;
867 
868         /* Load as raw file otherwise */
869         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
870             return -1;
871         }
872         size = len;
873 
874         /* Unpack the image if it is a EFI zboot image */
875         if (unpack_efi_zboot_image(&buffer, &size) < 0) {
876             g_free(buffer);
877             return -1;
878         }
879     }
880 
881     /* check the arm64 magic header value -- very old kernels may not have it */
882     if (size > ARM64_MAGIC_OFFSET + 4 &&
883         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
884         uint64_t hdrvals[2];
885 
886         /* The arm64 Image header has text_offset and image_size fields at 8 and
887          * 16 bytes into the Image header, respectively. The text_offset field
888          * is only valid if the image_size is non-zero.
889          */
890         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
891 
892         kernel_size = le64_to_cpu(hdrvals[1]);
893 
894         if (kernel_size != 0) {
895             kernel_load_offset = le64_to_cpu(hdrvals[0]);
896 
897             /*
898              * We write our startup "bootloader" at the very bottom of RAM,
899              * so that bit can't be used for the image. Luckily the Image
900              * format specification is that the image requests only an offset
901              * from a 2MB boundary, not an absolute load address. So if the
902              * image requests an offset that might mean it overlaps with the
903              * bootloader, we can just load it starting at 2MB+offset rather
904              * than 0MB + offset.
905              */
906             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
907                 kernel_load_offset += 2 * MiB;
908             }
909         }
910     }
911 
912     /*
913      * Kernels before v3.17 don't populate the image_size field, and
914      * raw images have no header. For those our best guess at the size
915      * is the size of the Image file itself.
916      */
917     if (kernel_size == 0) {
918         kernel_size = size;
919     }
920 
921     *entry = mem_base + kernel_load_offset;
922     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
923 
924     g_free(buffer);
925 
926     return kernel_size;
927 }
928 
929 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
930                                          struct arm_boot_info *info)
931 {
932     /* Set up for a direct boot of a kernel image file. */
933     CPUState *cs;
934     AddressSpace *as = arm_boot_address_space(cpu, info);
935     ssize_t kernel_size;
936     int initrd_size;
937     int is_linux = 0;
938     uint64_t elf_entry;
939     /* Addresses of first byte used and first byte not used by the image */
940     uint64_t image_low_addr = 0, image_high_addr = 0;
941     int elf_machine;
942     hwaddr entry;
943     static const ARMInsnFixup *primary_loader;
944     uint64_t ram_end = info->loader_start + info->ram_size;
945 
946     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
947         primary_loader = bootloader_aarch64;
948         elf_machine = EM_AARCH64;
949     } else {
950         primary_loader = bootloader;
951         if (!info->write_board_setup) {
952             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
953         }
954         elf_machine = EM_ARM;
955     }
956 
957     /* Assume that raw images are linux kernels, and ELF images are not.  */
958     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
959                                &image_high_addr, elf_machine, as);
960     if (kernel_size > 0 && have_dtb(info)) {
961         /*
962          * If there is still some room left at the base of RAM, try and put
963          * the DTB there like we do for images loaded with -bios or -pflash.
964          */
965         if (image_low_addr > info->loader_start
966             || image_high_addr < info->loader_start) {
967             /*
968              * Set image_low_addr as address limit for arm_load_dtb if it may be
969              * pointing into RAM, otherwise pass '0' (no limit)
970              */
971             if (image_low_addr < info->loader_start) {
972                 image_low_addr = 0;
973             }
974             info->dtb_start = info->loader_start;
975             info->dtb_limit = image_low_addr;
976         }
977     }
978     entry = elf_entry;
979     if (kernel_size < 0) {
980         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
981         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
982                                      &is_linux, NULL, NULL, as);
983         if (kernel_size >= 0) {
984             image_low_addr = loadaddr;
985             image_high_addr = image_low_addr + kernel_size;
986         }
987     }
988     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
989         kernel_size = load_aarch64_image(info->kernel_filename,
990                                          info->loader_start, &entry, as);
991         is_linux = 1;
992         if (kernel_size >= 0) {
993             image_low_addr = entry;
994             image_high_addr = image_low_addr + kernel_size;
995         }
996     } else if (kernel_size < 0) {
997         /* 32-bit ARM */
998         entry = info->loader_start + KERNEL_LOAD_ADDR;
999         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1000                                              ram_end - KERNEL_LOAD_ADDR, as);
1001         is_linux = 1;
1002         if (kernel_size >= 0) {
1003             image_low_addr = entry;
1004             image_high_addr = image_low_addr + kernel_size;
1005         }
1006     }
1007     if (kernel_size < 0) {
1008         error_report("could not load kernel '%s'", info->kernel_filename);
1009         exit(1);
1010     }
1011 
1012     if (kernel_size > info->ram_size) {
1013         error_report("kernel '%s' is too large to fit in RAM "
1014                      "(kernel size %zd, RAM size %" PRId64 ")",
1015                      info->kernel_filename, kernel_size, info->ram_size);
1016         exit(1);
1017     }
1018 
1019     info->entry = entry;
1020 
1021     /*
1022      * We want to put the initrd far enough into RAM that when the
1023      * kernel is uncompressed it will not clobber the initrd. However
1024      * on boards without much RAM we must ensure that we still leave
1025      * enough room for a decent sized initrd, and on boards with large
1026      * amounts of RAM we must avoid the initrd being so far up in RAM
1027      * that it is outside lowmem and inaccessible to the kernel.
1028      * So for boards with less  than 256MB of RAM we put the initrd
1029      * halfway into RAM, and for boards with 256MB of RAM or more we put
1030      * the initrd at 128MB.
1031      * We also refuse to put the initrd somewhere that will definitely
1032      * overlay the kernel we just loaded, though for kernel formats which
1033      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1034      * we might still make a bad choice here.
1035      */
1036     info->initrd_start = info->loader_start +
1037         MIN(info->ram_size / 2, 128 * MiB);
1038     if (image_high_addr) {
1039         info->initrd_start = MAX(info->initrd_start, image_high_addr);
1040     }
1041     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1042 
1043     if (is_linux) {
1044         uint32_t fixupcontext[FIXUP_MAX];
1045 
1046         if (info->initrd_filename) {
1047 
1048             if (info->initrd_start >= ram_end) {
1049                 error_report("not enough space after kernel to load initrd");
1050                 exit(1);
1051             }
1052 
1053             initrd_size = load_ramdisk_as(info->initrd_filename,
1054                                           info->initrd_start,
1055                                           ram_end - info->initrd_start, as);
1056             if (initrd_size < 0) {
1057                 initrd_size = load_image_targphys_as(info->initrd_filename,
1058                                                      info->initrd_start,
1059                                                      ram_end -
1060                                                      info->initrd_start,
1061                                                      as);
1062             }
1063             if (initrd_size < 0) {
1064                 error_report("could not load initrd '%s'",
1065                              info->initrd_filename);
1066                 exit(1);
1067             }
1068             if (info->initrd_start + initrd_size > ram_end) {
1069                 error_report("could not load initrd '%s': "
1070                              "too big to fit into RAM after the kernel",
1071                              info->initrd_filename);
1072                 exit(1);
1073             }
1074         } else {
1075             initrd_size = 0;
1076         }
1077         info->initrd_size = initrd_size;
1078 
1079         fixupcontext[FIXUP_BOARDID] = info->board_id;
1080         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1081 
1082         /*
1083          * for device tree boot, we pass the DTB directly in r2. Otherwise
1084          * we point to the kernel args.
1085          */
1086         if (have_dtb(info)) {
1087             hwaddr align;
1088 
1089             if (elf_machine == EM_AARCH64) {
1090                 /*
1091                  * Some AArch64 kernels on early bootup map the fdt region as
1092                  *
1093                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1094                  *
1095                  * Let's play safe and prealign it to 2MB to give us some space.
1096                  */
1097                 align = 2 * MiB;
1098             } else {
1099                 /*
1100                  * Some 32bit kernels will trash anything in the 4K page the
1101                  * initrd ends in, so make sure the DTB isn't caught up in that.
1102                  */
1103                 align = 4 * KiB;
1104             }
1105 
1106             /* Place the DTB after the initrd in memory with alignment. */
1107             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1108                                            align);
1109             if (info->dtb_start >= ram_end) {
1110                 error_report("Not enough space for DTB after kernel/initrd");
1111                 exit(1);
1112             }
1113             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1114             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1115         } else {
1116             fixupcontext[FIXUP_ARGPTR_LO] =
1117                 info->loader_start + KERNEL_ARGS_ADDR;
1118             fixupcontext[FIXUP_ARGPTR_HI] =
1119                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1120             if (info->ram_size >= 4 * GiB) {
1121                 error_report("RAM size must be less than 4GB to boot"
1122                              " Linux kernel using ATAGS (try passing a device tree"
1123                              " using -dtb)");
1124                 exit(1);
1125             }
1126         }
1127         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1128         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1129 
1130         arm_write_bootloader("bootloader", as, info->loader_start,
1131                              primary_loader, fixupcontext);
1132 
1133         if (info->write_board_setup) {
1134             info->write_board_setup(cpu, info);
1135         }
1136 
1137         /*
1138          * Notify devices which need to fake up firmware initialization
1139          * that we're doing a direct kernel boot.
1140          */
1141         object_child_foreach_recursive(object_get_root(),
1142                                        do_arm_linux_init, info);
1143     }
1144     info->is_linux = is_linux;
1145 
1146     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1147         ARM_CPU(cs)->env.boot_info = info;
1148     }
1149 }
1150 
1151 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1152 {
1153     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1154 
1155     if (have_dtb(info)) {
1156         /*
1157          * If we have a device tree blob, but no kernel to supply it to (or
1158          * the kernel is supposed to be loaded by the bootloader), copy the
1159          * DTB to the base of RAM for the bootloader to pick up.
1160          */
1161         info->dtb_start = info->loader_start;
1162     }
1163 
1164     if (info->kernel_filename) {
1165         FWCfgState *fw_cfg;
1166         bool try_decompressing_kernel;
1167 
1168         fw_cfg = fw_cfg_find();
1169 
1170         if (!fw_cfg) {
1171             error_report("This machine type does not support loading both "
1172                          "a guest firmware/BIOS image and a guest kernel at "
1173                          "the same time. You should change your QEMU command "
1174                          "line to specify one or the other, but not both.");
1175             exit(1);
1176         }
1177 
1178         try_decompressing_kernel = arm_feature(&cpu->env,
1179                                                ARM_FEATURE_AARCH64);
1180 
1181         /*
1182          * Expose the kernel, the command line, and the initrd in fw_cfg.
1183          * We don't process them here at all, it's all left to the
1184          * firmware.
1185          */
1186         load_image_to_fw_cfg(fw_cfg,
1187                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1188                              info->kernel_filename,
1189                              try_decompressing_kernel);
1190         load_image_to_fw_cfg(fw_cfg,
1191                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1192                              info->initrd_filename, false);
1193 
1194         if (info->kernel_cmdline) {
1195             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1196                            strlen(info->kernel_cmdline) + 1);
1197             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1198                               info->kernel_cmdline);
1199         }
1200     }
1201 
1202     /*
1203      * We will start from address 0 (typically a boot ROM image) in the
1204      * same way as hardware. Leave env->boot_info NULL, so that
1205      * do_cpu_reset() knows it does not need to alter the PC on reset.
1206      */
1207 }
1208 
1209 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1210 {
1211     CPUState *cs;
1212     AddressSpace *as = arm_boot_address_space(cpu, info);
1213     int boot_el;
1214     CPUARMState *env = &cpu->env;
1215     int nb_cpus = 0;
1216 
1217     /*
1218      * CPU objects (unlike devices) are not automatically reset on system
1219      * reset, so we must always register a handler to do so. If we're
1220      * actually loading a kernel, the handler is also responsible for
1221      * arranging that we start it correctly.
1222      */
1223     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1224         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1225         nb_cpus++;
1226     }
1227 
1228     /*
1229      * The board code is not supposed to set secure_board_setup unless
1230      * running its code in secure mode is actually possible, and KVM
1231      * doesn't support secure.
1232      */
1233     assert(!(info->secure_board_setup && kvm_enabled()));
1234     info->kernel_filename = ms->kernel_filename;
1235     info->kernel_cmdline = ms->kernel_cmdline;
1236     info->initrd_filename = ms->initrd_filename;
1237     info->dtb_filename = ms->dtb;
1238     info->dtb_limit = 0;
1239 
1240     /* Load the kernel.  */
1241     if (!info->kernel_filename || info->firmware_loaded) {
1242         arm_setup_firmware_boot(cpu, info);
1243     } else {
1244         arm_setup_direct_kernel_boot(cpu, info);
1245     }
1246 
1247     /*
1248      * Disable the PSCI conduit if it is set up to target the same
1249      * or a lower EL than the one we're going to start the guest code in.
1250      * This logic needs to agree with the code in do_cpu_reset() which
1251      * decides whether we're going to boot the guest in the highest
1252      * supported exception level or in a lower one.
1253      */
1254 
1255     /*
1256      * If PSCI is enabled, then SMC calls all go to the PSCI handler and
1257      * are never emulated to trap into guest code. It therefore does not
1258      * make sense for the board to have a setup code fragment that runs
1259      * in Secure, because this will probably need to itself issue an SMC of some
1260      * kind as part of its operation.
1261      */
1262     assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED ||
1263            !info->secure_board_setup);
1264 
1265     /* Boot into highest supported EL ... */
1266     if (arm_feature(env, ARM_FEATURE_EL3)) {
1267         boot_el = 3;
1268     } else if (arm_feature(env, ARM_FEATURE_EL2)) {
1269         boot_el = 2;
1270     } else {
1271         boot_el = 1;
1272     }
1273     /* ...except that if we're booting Linux we adjust the EL we boot into */
1274     if (info->is_linux && !info->secure_boot) {
1275         boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
1276     }
1277 
1278     if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) ||
1279         (info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) {
1280         info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1281     }
1282 
1283     if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1284         for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1285             Object *cpuobj = OBJECT(cs);
1286 
1287             object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit,
1288                                     &error_abort);
1289             /*
1290              * Secondary CPUs start in PSCI powered-down state. Like the
1291              * code in do_cpu_reset(), we assume first_cpu is the primary
1292              * CPU.
1293              */
1294             if (cs != first_cpu) {
1295                 object_property_set_bool(cpuobj, "start-powered-off", true,
1296                                          &error_abort);
1297             }
1298         }
1299     }
1300 
1301     if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED &&
1302         info->is_linux && nb_cpus > 1) {
1303         /*
1304          * We're booting Linux but not using PSCI, so for SMP we need
1305          * to write a custom secondary CPU boot loader stub, and arrange
1306          * for the secondary CPU reset to make the accompanying initialization.
1307          */
1308         if (!info->secondary_cpu_reset_hook) {
1309             info->secondary_cpu_reset_hook = default_reset_secondary;
1310         }
1311         if (!info->write_secondary_boot) {
1312             info->write_secondary_boot = default_write_secondary;
1313         }
1314         info->write_secondary_boot(cpu, info);
1315     } else {
1316         /*
1317          * No secondary boot stub; don't use the reset hook that would
1318          * have set the CPU up to call it
1319          */
1320         info->write_secondary_boot = NULL;
1321         info->secondary_cpu_reset_hook = NULL;
1322     }
1323 
1324     /*
1325      * arm_load_dtb() may add a PSCI node so it must be called after we have
1326      * decided whether to enable PSCI and set the psci-conduit CPU properties.
1327      */
1328     if (!info->skip_dtb_autoload && have_dtb(info)) {
1329         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit,
1330                          as, ms, cpu) < 0) {
1331             exit(1);
1332         }
1333     }
1334 }
1335 
1336 static const TypeInfo arm_linux_boot_if_info = {
1337     .name = TYPE_ARM_LINUX_BOOT_IF,
1338     .parent = TYPE_INTERFACE,
1339     .class_size = sizeof(ARMLinuxBootIfClass),
1340 };
1341 
1342 static void arm_linux_boot_register_types(void)
1343 {
1344     type_register_static(&arm_linux_boot_if_info);
1345 }
1346 
1347 type_init(arm_linux_boot_register_types)
1348