xref: /openbmc/qemu/hw/arm/boot.c (revision 9543fdaf)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/error-report.h"
12 #include "qapi/error.h"
13 #include <libfdt.h>
14 #include "hw/hw.h"
15 #include "hw/arm/arm.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "hw/loader.h"
22 #include "elf.h"
23 #include "sysemu/device_tree.h"
24 #include "qemu/config-file.h"
25 #include "qemu/option.h"
26 #include "exec/address-spaces.h"
27 #include "qemu/units.h"
28 
29 /* Kernel boot protocol is specified in the kernel docs
30  * Documentation/arm/Booting and Documentation/arm64/booting.txt
31  * They have different preferred image load offsets from system RAM base.
32  */
33 #define KERNEL_ARGS_ADDR 0x100
34 #define KERNEL_LOAD_ADDR 0x00010000
35 #define KERNEL64_LOAD_ADDR 0x00080000
36 
37 #define ARM64_TEXT_OFFSET_OFFSET    8
38 #define ARM64_MAGIC_OFFSET          56
39 
40 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
41 
42 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
43                                      const struct arm_boot_info *info)
44 {
45     /* Return the address space to use for bootloader reads and writes.
46      * We prefer the secure address space if the CPU has it and we're
47      * going to boot the guest into it.
48      */
49     int asidx;
50     CPUState *cs = CPU(cpu);
51 
52     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
53         asidx = ARMASIdx_S;
54     } else {
55         asidx = ARMASIdx_NS;
56     }
57 
58     return cpu_get_address_space(cs, asidx);
59 }
60 
61 typedef enum {
62     FIXUP_NONE = 0,     /* do nothing */
63     FIXUP_TERMINATOR,   /* end of insns */
64     FIXUP_BOARDID,      /* overwrite with board ID number */
65     FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
66     FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
67     FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
68     FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
69     FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
70     FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
71     FIXUP_BOOTREG,      /* overwrite with boot register address */
72     FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
73     FIXUP_MAX,
74 } FixupType;
75 
76 typedef struct ARMInsnFixup {
77     uint32_t insn;
78     FixupType fixup;
79 } ARMInsnFixup;
80 
81 static const ARMInsnFixup bootloader_aarch64[] = {
82     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
83     { 0xaa1f03e1 }, /* mov x1, xzr */
84     { 0xaa1f03e2 }, /* mov x2, xzr */
85     { 0xaa1f03e3 }, /* mov x3, xzr */
86     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
87     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
88     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
89     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
90     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
91     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
92     { 0, FIXUP_TERMINATOR }
93 };
94 
95 /* A very small bootloader: call the board-setup code (if needed),
96  * set r0-r2, then jump to the kernel.
97  * If we're not calling boot setup code then we don't copy across
98  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
99  */
100 
101 static const ARMInsnFixup bootloader[] = {
102     { 0xe28fe004 }, /* add     lr, pc, #4 */
103     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
104     { 0, FIXUP_BOARD_SETUP },
105 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
106     { 0xe3a00000 }, /* mov     r0, #0 */
107     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
108     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
109     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
110     { 0, FIXUP_BOARDID },
111     { 0, FIXUP_ARGPTR_LO },
112     { 0, FIXUP_ENTRYPOINT_LO },
113     { 0, FIXUP_TERMINATOR }
114 };
115 
116 /* Handling for secondary CPU boot in a multicore system.
117  * Unlike the uniprocessor/primary CPU boot, this is platform
118  * dependent. The default code here is based on the secondary
119  * CPU boot protocol used on realview/vexpress boards, with
120  * some parameterisation to increase its flexibility.
121  * QEMU platform models for which this code is not appropriate
122  * should override write_secondary_boot and secondary_cpu_reset_hook
123  * instead.
124  *
125  * This code enables the interrupt controllers for the secondary
126  * CPUs and then puts all the secondary CPUs into a loop waiting
127  * for an interprocessor interrupt and polling a configurable
128  * location for the kernel secondary CPU entry point.
129  */
130 #define DSB_INSN 0xf57ff04f
131 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
132 
133 static const ARMInsnFixup smpboot[] = {
134     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
135     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
136     { 0xe3a01001 }, /* mov r1, #1 */
137     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
138     { 0xe3a010ff }, /* mov r1, #0xff */
139     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
140     { 0, FIXUP_DSB },   /* dsb */
141     { 0xe320f003 }, /* wfi */
142     { 0xe5901000 }, /* ldr     r1, [r0] */
143     { 0xe1110001 }, /* tst     r1, r1 */
144     { 0x0afffffb }, /* beq     <wfi> */
145     { 0xe12fff11 }, /* bx      r1 */
146     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
147     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
148     { 0, FIXUP_TERMINATOR }
149 };
150 
151 static void write_bootloader(const char *name, hwaddr addr,
152                              const ARMInsnFixup *insns, uint32_t *fixupcontext,
153                              AddressSpace *as)
154 {
155     /* Fix up the specified bootloader fragment and write it into
156      * guest memory using rom_add_blob_fixed(). fixupcontext is
157      * an array giving the values to write in for the fixup types
158      * which write a value into the code array.
159      */
160     int i, len;
161     uint32_t *code;
162 
163     len = 0;
164     while (insns[len].fixup != FIXUP_TERMINATOR) {
165         len++;
166     }
167 
168     code = g_new0(uint32_t, len);
169 
170     for (i = 0; i < len; i++) {
171         uint32_t insn = insns[i].insn;
172         FixupType fixup = insns[i].fixup;
173 
174         switch (fixup) {
175         case FIXUP_NONE:
176             break;
177         case FIXUP_BOARDID:
178         case FIXUP_BOARD_SETUP:
179         case FIXUP_ARGPTR_LO:
180         case FIXUP_ARGPTR_HI:
181         case FIXUP_ENTRYPOINT_LO:
182         case FIXUP_ENTRYPOINT_HI:
183         case FIXUP_GIC_CPU_IF:
184         case FIXUP_BOOTREG:
185         case FIXUP_DSB:
186             insn = fixupcontext[fixup];
187             break;
188         default:
189             abort();
190         }
191         code[i] = tswap32(insn);
192     }
193 
194     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
195 
196     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
197 
198     g_free(code);
199 }
200 
201 static void default_write_secondary(ARMCPU *cpu,
202                                     const struct arm_boot_info *info)
203 {
204     uint32_t fixupcontext[FIXUP_MAX];
205     AddressSpace *as = arm_boot_address_space(cpu, info);
206 
207     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
208     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
209     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
210         fixupcontext[FIXUP_DSB] = DSB_INSN;
211     } else {
212         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
213     }
214 
215     write_bootloader("smpboot", info->smp_loader_start,
216                      smpboot, fixupcontext, as);
217 }
218 
219 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
220                                             const struct arm_boot_info *info,
221                                             hwaddr mvbar_addr)
222 {
223     AddressSpace *as = arm_boot_address_space(cpu, info);
224     int n;
225     uint32_t mvbar_blob[] = {
226         /* mvbar_addr: secure monitor vectors
227          * Default unimplemented and unused vectors to spin. Makes it
228          * easier to debug (as opposed to the CPU running away).
229          */
230         0xeafffffe, /* (spin) */
231         0xeafffffe, /* (spin) */
232         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
233         0xeafffffe, /* (spin) */
234         0xeafffffe, /* (spin) */
235         0xeafffffe, /* (spin) */
236         0xeafffffe, /* (spin) */
237         0xeafffffe, /* (spin) */
238     };
239     uint32_t board_setup_blob[] = {
240         /* board setup addr */
241         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
242         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
243         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
244         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
245         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
246         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
247         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
248         0xe1a0f001, /* mov     pc, r1                 ;return */
249     };
250 
251     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
252     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
253 
254     /* check that these blobs don't overlap */
255     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
256           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
257 
258     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
259         mvbar_blob[n] = tswap32(mvbar_blob[n]);
260     }
261     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
262                           mvbar_addr, as);
263 
264     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
265         board_setup_blob[n] = tswap32(board_setup_blob[n]);
266     }
267     rom_add_blob_fixed_as("board-setup", board_setup_blob,
268                           sizeof(board_setup_blob), info->board_setup_addr, as);
269 }
270 
271 static void default_reset_secondary(ARMCPU *cpu,
272                                     const struct arm_boot_info *info)
273 {
274     AddressSpace *as = arm_boot_address_space(cpu, info);
275     CPUState *cs = CPU(cpu);
276 
277     address_space_stl_notdirty(as, info->smp_bootreg_addr,
278                                0, MEMTXATTRS_UNSPECIFIED, NULL);
279     cpu_set_pc(cs, info->smp_loader_start);
280 }
281 
282 static inline bool have_dtb(const struct arm_boot_info *info)
283 {
284     return info->dtb_filename || info->get_dtb;
285 }
286 
287 #define WRITE_WORD(p, value) do { \
288     address_space_stl_notdirty(as, p, value, \
289                                MEMTXATTRS_UNSPECIFIED, NULL);  \
290     p += 4;                       \
291 } while (0)
292 
293 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
294 {
295     int initrd_size = info->initrd_size;
296     hwaddr base = info->loader_start;
297     hwaddr p;
298 
299     p = base + KERNEL_ARGS_ADDR;
300     /* ATAG_CORE */
301     WRITE_WORD(p, 5);
302     WRITE_WORD(p, 0x54410001);
303     WRITE_WORD(p, 1);
304     WRITE_WORD(p, 0x1000);
305     WRITE_WORD(p, 0);
306     /* ATAG_MEM */
307     /* TODO: handle multiple chips on one ATAG list */
308     WRITE_WORD(p, 4);
309     WRITE_WORD(p, 0x54410002);
310     WRITE_WORD(p, info->ram_size);
311     WRITE_WORD(p, info->loader_start);
312     if (initrd_size) {
313         /* ATAG_INITRD2 */
314         WRITE_WORD(p, 4);
315         WRITE_WORD(p, 0x54420005);
316         WRITE_WORD(p, info->initrd_start);
317         WRITE_WORD(p, initrd_size);
318     }
319     if (info->kernel_cmdline && *info->kernel_cmdline) {
320         /* ATAG_CMDLINE */
321         int cmdline_size;
322 
323         cmdline_size = strlen(info->kernel_cmdline);
324         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
325                             (const uint8_t *)info->kernel_cmdline,
326                             cmdline_size + 1);
327         cmdline_size = (cmdline_size >> 2) + 1;
328         WRITE_WORD(p, cmdline_size + 2);
329         WRITE_WORD(p, 0x54410009);
330         p += cmdline_size * 4;
331     }
332     if (info->atag_board) {
333         /* ATAG_BOARD */
334         int atag_board_len;
335         uint8_t atag_board_buf[0x1000];
336 
337         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
338         WRITE_WORD(p, (atag_board_len + 8) >> 2);
339         WRITE_WORD(p, 0x414f4d50);
340         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
341                             atag_board_buf, atag_board_len);
342         p += atag_board_len;
343     }
344     /* ATAG_END */
345     WRITE_WORD(p, 0);
346     WRITE_WORD(p, 0);
347 }
348 
349 static void set_kernel_args_old(const struct arm_boot_info *info,
350                                 AddressSpace *as)
351 {
352     hwaddr p;
353     const char *s;
354     int initrd_size = info->initrd_size;
355     hwaddr base = info->loader_start;
356 
357     /* see linux/include/asm-arm/setup.h */
358     p = base + KERNEL_ARGS_ADDR;
359     /* page_size */
360     WRITE_WORD(p, 4096);
361     /* nr_pages */
362     WRITE_WORD(p, info->ram_size / 4096);
363     /* ramdisk_size */
364     WRITE_WORD(p, 0);
365 #define FLAG_READONLY	1
366 #define FLAG_RDLOAD	4
367 #define FLAG_RDPROMPT	8
368     /* flags */
369     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
370     /* rootdev */
371     WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
372     /* video_num_cols */
373     WRITE_WORD(p, 0);
374     /* video_num_rows */
375     WRITE_WORD(p, 0);
376     /* video_x */
377     WRITE_WORD(p, 0);
378     /* video_y */
379     WRITE_WORD(p, 0);
380     /* memc_control_reg */
381     WRITE_WORD(p, 0);
382     /* unsigned char sounddefault */
383     /* unsigned char adfsdrives */
384     /* unsigned char bytes_per_char_h */
385     /* unsigned char bytes_per_char_v */
386     WRITE_WORD(p, 0);
387     /* pages_in_bank[4] */
388     WRITE_WORD(p, 0);
389     WRITE_WORD(p, 0);
390     WRITE_WORD(p, 0);
391     WRITE_WORD(p, 0);
392     /* pages_in_vram */
393     WRITE_WORD(p, 0);
394     /* initrd_start */
395     if (initrd_size) {
396         WRITE_WORD(p, info->initrd_start);
397     } else {
398         WRITE_WORD(p, 0);
399     }
400     /* initrd_size */
401     WRITE_WORD(p, initrd_size);
402     /* rd_start */
403     WRITE_WORD(p, 0);
404     /* system_rev */
405     WRITE_WORD(p, 0);
406     /* system_serial_low */
407     WRITE_WORD(p, 0);
408     /* system_serial_high */
409     WRITE_WORD(p, 0);
410     /* mem_fclk_21285 */
411     WRITE_WORD(p, 0);
412     /* zero unused fields */
413     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
414         WRITE_WORD(p, 0);
415     }
416     s = info->kernel_cmdline;
417     if (s) {
418         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
419                             (const uint8_t *)s, strlen(s) + 1);
420     } else {
421         WRITE_WORD(p, 0);
422     }
423 }
424 
425 static void fdt_add_psci_node(void *fdt)
426 {
427     uint32_t cpu_suspend_fn;
428     uint32_t cpu_off_fn;
429     uint32_t cpu_on_fn;
430     uint32_t migrate_fn;
431     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
432     const char *psci_method;
433     int64_t psci_conduit;
434     int rc;
435 
436     psci_conduit = object_property_get_int(OBJECT(armcpu),
437                                            "psci-conduit",
438                                            &error_abort);
439     switch (psci_conduit) {
440     case QEMU_PSCI_CONDUIT_DISABLED:
441         return;
442     case QEMU_PSCI_CONDUIT_HVC:
443         psci_method = "hvc";
444         break;
445     case QEMU_PSCI_CONDUIT_SMC:
446         psci_method = "smc";
447         break;
448     default:
449         g_assert_not_reached();
450     }
451 
452     /*
453      * If /psci node is present in provided DTB, assume that no fixup
454      * is necessary and all PSCI configuration should be taken as-is
455      */
456     rc = fdt_path_offset(fdt, "/psci");
457     if (rc >= 0) {
458         return;
459     }
460 
461     qemu_fdt_add_subnode(fdt, "/psci");
462     if (armcpu->psci_version == 2) {
463         const char comp[] = "arm,psci-0.2\0arm,psci";
464         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
465 
466         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
467         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
468             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
469             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
470             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
471         } else {
472             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
473             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
474             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
475         }
476     } else {
477         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
478 
479         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
480         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
481         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
482         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
483     }
484 
485     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
486      * to the instruction that should be used to invoke PSCI functions.
487      * However, the device tree binding uses 'method' instead, so that is
488      * what we should use here.
489      */
490     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
491 
492     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
493     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
494     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
495     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
496 }
497 
498 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
499                  hwaddr addr_limit, AddressSpace *as)
500 {
501     void *fdt = NULL;
502     int size, rc, n = 0;
503     uint32_t acells, scells;
504     char *nodename;
505     unsigned int i;
506     hwaddr mem_base, mem_len;
507     char **node_path;
508     Error *err = NULL;
509 
510     if (binfo->dtb_filename) {
511         char *filename;
512         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
513         if (!filename) {
514             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
515             goto fail;
516         }
517 
518         fdt = load_device_tree(filename, &size);
519         if (!fdt) {
520             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
521             g_free(filename);
522             goto fail;
523         }
524         g_free(filename);
525     } else {
526         fdt = binfo->get_dtb(binfo, &size);
527         if (!fdt) {
528             fprintf(stderr, "Board was unable to create a dtb blob\n");
529             goto fail;
530         }
531     }
532 
533     if (addr_limit > addr && size > (addr_limit - addr)) {
534         /* Installing the device tree blob at addr would exceed addr_limit.
535          * Whether this constitutes failure is up to the caller to decide,
536          * so just return 0 as size, i.e., no error.
537          */
538         g_free(fdt);
539         return 0;
540     }
541 
542     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
543                                    NULL, &error_fatal);
544     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
545                                    NULL, &error_fatal);
546     if (acells == 0 || scells == 0) {
547         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
548         goto fail;
549     }
550 
551     if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
552         /* This is user error so deserves a friendlier error message
553          * than the failure of setprop_sized_cells would provide
554          */
555         fprintf(stderr, "qemu: dtb file not compatible with "
556                 "RAM size > 4GB\n");
557         goto fail;
558     }
559 
560     /* nop all root nodes matching /memory or /memory@unit-address */
561     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
562     if (err) {
563         error_report_err(err);
564         goto fail;
565     }
566     while (node_path[n]) {
567         if (g_str_has_prefix(node_path[n], "/memory")) {
568             qemu_fdt_nop_node(fdt, node_path[n]);
569         }
570         n++;
571     }
572     g_strfreev(node_path);
573 
574     if (nb_numa_nodes > 0) {
575         mem_base = binfo->loader_start;
576         for (i = 0; i < nb_numa_nodes; i++) {
577             mem_len = numa_info[i].node_mem;
578             nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
579             qemu_fdt_add_subnode(fdt, nodename);
580             qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
581             rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
582                                               acells, mem_base,
583                                               scells, mem_len);
584             if (rc < 0) {
585                 fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
586                         i);
587                 goto fail;
588             }
589 
590             qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
591             mem_base += mem_len;
592             g_free(nodename);
593         }
594     } else {
595         nodename = g_strdup_printf("/memory@%" PRIx64, binfo->loader_start);
596         qemu_fdt_add_subnode(fdt, nodename);
597         qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
598 
599         rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
600                                           acells, binfo->loader_start,
601                                           scells, binfo->ram_size);
602         if (rc < 0) {
603             fprintf(stderr, "couldn't set %s reg\n", nodename);
604             goto fail;
605         }
606         g_free(nodename);
607     }
608 
609     rc = fdt_path_offset(fdt, "/chosen");
610     if (rc < 0) {
611         qemu_fdt_add_subnode(fdt, "/chosen");
612     }
613 
614     if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
615         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
616                                      binfo->kernel_cmdline);
617         if (rc < 0) {
618             fprintf(stderr, "couldn't set /chosen/bootargs\n");
619             goto fail;
620         }
621     }
622 
623     if (binfo->initrd_size) {
624         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
625                                    binfo->initrd_start);
626         if (rc < 0) {
627             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
628             goto fail;
629         }
630 
631         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
632                                    binfo->initrd_start + binfo->initrd_size);
633         if (rc < 0) {
634             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
635             goto fail;
636         }
637     }
638 
639     fdt_add_psci_node(fdt);
640 
641     if (binfo->modify_dtb) {
642         binfo->modify_dtb(binfo, fdt);
643     }
644 
645     qemu_fdt_dumpdtb(fdt, size);
646 
647     /* Put the DTB into the memory map as a ROM image: this will ensure
648      * the DTB is copied again upon reset, even if addr points into RAM.
649      */
650     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
651 
652     g_free(fdt);
653 
654     return size;
655 
656 fail:
657     g_free(fdt);
658     return -1;
659 }
660 
661 static void do_cpu_reset(void *opaque)
662 {
663     ARMCPU *cpu = opaque;
664     CPUState *cs = CPU(cpu);
665     CPUARMState *env = &cpu->env;
666     const struct arm_boot_info *info = env->boot_info;
667 
668     cpu_reset(cs);
669     if (info) {
670         if (!info->is_linux) {
671             int i;
672             /* Jump to the entry point.  */
673             uint64_t entry = info->entry;
674 
675             switch (info->endianness) {
676             case ARM_ENDIANNESS_LE:
677                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
678                 for (i = 1; i < 4; ++i) {
679                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
680                 }
681                 env->uncached_cpsr &= ~CPSR_E;
682                 break;
683             case ARM_ENDIANNESS_BE8:
684                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
685                 for (i = 1; i < 4; ++i) {
686                     env->cp15.sctlr_el[i] |= SCTLR_EE;
687                 }
688                 env->uncached_cpsr |= CPSR_E;
689                 break;
690             case ARM_ENDIANNESS_BE32:
691                 env->cp15.sctlr_el[1] |= SCTLR_B;
692                 break;
693             case ARM_ENDIANNESS_UNKNOWN:
694                 break; /* Board's decision */
695             default:
696                 g_assert_not_reached();
697             }
698 
699             if (!env->aarch64) {
700                 env->thumb = info->entry & 1;
701                 entry &= 0xfffffffe;
702             }
703             cpu_set_pc(cs, entry);
704         } else {
705             /* If we are booting Linux then we need to check whether we are
706              * booting into secure or non-secure state and adjust the state
707              * accordingly.  Out of reset, ARM is defined to be in secure state
708              * (SCR.NS = 0), we change that here if non-secure boot has been
709              * requested.
710              */
711             if (arm_feature(env, ARM_FEATURE_EL3)) {
712                 /* AArch64 is defined to come out of reset into EL3 if enabled.
713                  * If we are booting Linux then we need to adjust our EL as
714                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
715                  * SVC, which Linux expects, so no privilege/exception level to
716                  * adjust.
717                  */
718                 if (env->aarch64) {
719                     env->cp15.scr_el3 |= SCR_RW;
720                     if (arm_feature(env, ARM_FEATURE_EL2)) {
721                         env->cp15.hcr_el2 |= HCR_RW;
722                         env->pstate = PSTATE_MODE_EL2h;
723                     } else {
724                         env->pstate = PSTATE_MODE_EL1h;
725                     }
726                     /* AArch64 kernels never boot in secure mode */
727                     assert(!info->secure_boot);
728                     /* This hook is only supported for AArch32 currently:
729                      * bootloader_aarch64[] will not call the hook, and
730                      * the code above has already dropped us into EL2 or EL1.
731                      */
732                     assert(!info->secure_board_setup);
733                 }
734 
735                 if (arm_feature(env, ARM_FEATURE_EL2)) {
736                     /* If we have EL2 then Linux expects the HVC insn to work */
737                     env->cp15.scr_el3 |= SCR_HCE;
738                 }
739 
740                 /* Set to non-secure if not a secure boot */
741                 if (!info->secure_boot &&
742                     (cs != first_cpu || !info->secure_board_setup)) {
743                     /* Linux expects non-secure state */
744                     env->cp15.scr_el3 |= SCR_NS;
745                 }
746             }
747 
748             if (!env->aarch64 && !info->secure_boot &&
749                 arm_feature(env, ARM_FEATURE_EL2)) {
750                 /*
751                  * This is an AArch32 boot not to Secure state, and
752                  * we have Hyp mode available, so boot the kernel into
753                  * Hyp mode. This is not how the CPU comes out of reset,
754                  * so we need to manually put it there.
755                  */
756                 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
757             }
758 
759             if (cs == first_cpu) {
760                 AddressSpace *as = arm_boot_address_space(cpu, info);
761 
762                 cpu_set_pc(cs, info->loader_start);
763 
764                 if (!have_dtb(info)) {
765                     if (old_param) {
766                         set_kernel_args_old(info, as);
767                     } else {
768                         set_kernel_args(info, as);
769                     }
770                 }
771             } else {
772                 info->secondary_cpu_reset_hook(cpu, info);
773             }
774         }
775     }
776 }
777 
778 /**
779  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
780  *                          by key.
781  * @fw_cfg:         The firmware config instance to store the data in.
782  * @size_key:       The firmware config key to store the size of the loaded
783  *                  data under, with fw_cfg_add_i32().
784  * @data_key:       The firmware config key to store the loaded data under,
785  *                  with fw_cfg_add_bytes().
786  * @image_name:     The name of the image file to load. If it is NULL, the
787  *                  function returns without doing anything.
788  * @try_decompress: Whether the image should be decompressed (gunzipped) before
789  *                  adding it to fw_cfg. If decompression fails, the image is
790  *                  loaded as-is.
791  *
792  * In case of failure, the function prints an error message to stderr and the
793  * process exits with status 1.
794  */
795 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
796                                  uint16_t data_key, const char *image_name,
797                                  bool try_decompress)
798 {
799     size_t size = -1;
800     uint8_t *data;
801 
802     if (image_name == NULL) {
803         return;
804     }
805 
806     if (try_decompress) {
807         size = load_image_gzipped_buffer(image_name,
808                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
809     }
810 
811     if (size == (size_t)-1) {
812         gchar *contents;
813         gsize length;
814 
815         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
816             error_report("failed to load \"%s\"", image_name);
817             exit(1);
818         }
819         size = length;
820         data = (uint8_t *)contents;
821     }
822 
823     fw_cfg_add_i32(fw_cfg, size_key, size);
824     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
825 }
826 
827 static int do_arm_linux_init(Object *obj, void *opaque)
828 {
829     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
830         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
831         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
832         struct arm_boot_info *info = opaque;
833 
834         if (albifc->arm_linux_init) {
835             albifc->arm_linux_init(albif, info->secure_boot);
836         }
837     }
838     return 0;
839 }
840 
841 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
842                             uint64_t *lowaddr, uint64_t *highaddr,
843                             int elf_machine, AddressSpace *as)
844 {
845     bool elf_is64;
846     union {
847         Elf32_Ehdr h32;
848         Elf64_Ehdr h64;
849     } elf_header;
850     int data_swab = 0;
851     bool big_endian;
852     int64_t ret = -1;
853     Error *err = NULL;
854 
855 
856     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
857     if (err) {
858         error_free(err);
859         return ret;
860     }
861 
862     if (elf_is64) {
863         big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
864         info->endianness = big_endian ? ARM_ENDIANNESS_BE8
865                                       : ARM_ENDIANNESS_LE;
866     } else {
867         big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
868         if (big_endian) {
869             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
870                 info->endianness = ARM_ENDIANNESS_BE8;
871             } else {
872                 info->endianness = ARM_ENDIANNESS_BE32;
873                 /* In BE32, the CPU has a different view of the per-byte
874                  * address map than the rest of the system. BE32 ELF files
875                  * are organised such that they can be programmed through
876                  * the CPU's per-word byte-reversed view of the world. QEMU
877                  * however loads ELF files independently of the CPU. So
878                  * tell the ELF loader to byte reverse the data for us.
879                  */
880                 data_swab = 2;
881             }
882         } else {
883             info->endianness = ARM_ENDIANNESS_LE;
884         }
885     }
886 
887     ret = load_elf_as(info->kernel_filename, NULL, NULL,
888                       pentry, lowaddr, highaddr, big_endian, elf_machine,
889                       1, data_swab, as);
890     if (ret <= 0) {
891         /* The header loaded but the image didn't */
892         exit(1);
893     }
894 
895     return ret;
896 }
897 
898 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
899                                    hwaddr *entry, AddressSpace *as)
900 {
901     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
902     uint8_t *buffer;
903     int size;
904 
905     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
906     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
907                                      &buffer);
908 
909     if (size < 0) {
910         gsize len;
911 
912         /* Load as raw file otherwise */
913         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
914             return -1;
915         }
916         size = len;
917     }
918 
919     /* check the arm64 magic header value -- very old kernels may not have it */
920     if (size > ARM64_MAGIC_OFFSET + 4 &&
921         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
922         uint64_t hdrvals[2];
923 
924         /* The arm64 Image header has text_offset and image_size fields at 8 and
925          * 16 bytes into the Image header, respectively. The text_offset field
926          * is only valid if the image_size is non-zero.
927          */
928         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
929         if (hdrvals[1] != 0) {
930             kernel_load_offset = le64_to_cpu(hdrvals[0]);
931 
932             /*
933              * We write our startup "bootloader" at the very bottom of RAM,
934              * so that bit can't be used for the image. Luckily the Image
935              * format specification is that the image requests only an offset
936              * from a 2MB boundary, not an absolute load address. So if the
937              * image requests an offset that might mean it overlaps with the
938              * bootloader, we can just load it starting at 2MB+offset rather
939              * than 0MB + offset.
940              */
941             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
942                 kernel_load_offset += 2 * MiB;
943             }
944         }
945     }
946 
947     *entry = mem_base + kernel_load_offset;
948     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
949 
950     g_free(buffer);
951 
952     return size;
953 }
954 
955 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
956 {
957     CPUState *cs;
958     int kernel_size;
959     int initrd_size;
960     int is_linux = 0;
961     uint64_t elf_entry, elf_low_addr, elf_high_addr;
962     int elf_machine;
963     hwaddr entry;
964     static const ARMInsnFixup *primary_loader;
965     AddressSpace *as = arm_boot_address_space(cpu, info);
966 
967     /* CPU objects (unlike devices) are not automatically reset on system
968      * reset, so we must always register a handler to do so. If we're
969      * actually loading a kernel, the handler is also responsible for
970      * arranging that we start it correctly.
971      */
972     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
973         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
974     }
975 
976     /* The board code is not supposed to set secure_board_setup unless
977      * running its code in secure mode is actually possible, and KVM
978      * doesn't support secure.
979      */
980     assert(!(info->secure_board_setup && kvm_enabled()));
981 
982     info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
983     info->dtb_limit = 0;
984 
985     /* Load the kernel.  */
986     if (!info->kernel_filename || info->firmware_loaded) {
987 
988         if (have_dtb(info)) {
989             /* If we have a device tree blob, but no kernel to supply it to (or
990              * the kernel is supposed to be loaded by the bootloader), copy the
991              * DTB to the base of RAM for the bootloader to pick up.
992              */
993             info->dtb_start = info->loader_start;
994         }
995 
996         if (info->kernel_filename) {
997             FWCfgState *fw_cfg;
998             bool try_decompressing_kernel;
999 
1000             fw_cfg = fw_cfg_find();
1001             try_decompressing_kernel = arm_feature(&cpu->env,
1002                                                    ARM_FEATURE_AARCH64);
1003 
1004             /* Expose the kernel, the command line, and the initrd in fw_cfg.
1005              * We don't process them here at all, it's all left to the
1006              * firmware.
1007              */
1008             load_image_to_fw_cfg(fw_cfg,
1009                                  FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1010                                  info->kernel_filename,
1011                                  try_decompressing_kernel);
1012             load_image_to_fw_cfg(fw_cfg,
1013                                  FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1014                                  info->initrd_filename, false);
1015 
1016             if (info->kernel_cmdline) {
1017                 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1018                                strlen(info->kernel_cmdline) + 1);
1019                 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1020                                   info->kernel_cmdline);
1021             }
1022         }
1023 
1024         /* We will start from address 0 (typically a boot ROM image) in the
1025          * same way as hardware.
1026          */
1027         return;
1028     }
1029 
1030     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1031         primary_loader = bootloader_aarch64;
1032         elf_machine = EM_AARCH64;
1033     } else {
1034         primary_loader = bootloader;
1035         if (!info->write_board_setup) {
1036             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1037         }
1038         elf_machine = EM_ARM;
1039     }
1040 
1041     if (!info->secondary_cpu_reset_hook) {
1042         info->secondary_cpu_reset_hook = default_reset_secondary;
1043     }
1044     if (!info->write_secondary_boot) {
1045         info->write_secondary_boot = default_write_secondary;
1046     }
1047 
1048     if (info->nb_cpus == 0)
1049         info->nb_cpus = 1;
1050 
1051     /* We want to put the initrd far enough into RAM that when the
1052      * kernel is uncompressed it will not clobber the initrd. However
1053      * on boards without much RAM we must ensure that we still leave
1054      * enough room for a decent sized initrd, and on boards with large
1055      * amounts of RAM we must avoid the initrd being so far up in RAM
1056      * that it is outside lowmem and inaccessible to the kernel.
1057      * So for boards with less  than 256MB of RAM we put the initrd
1058      * halfway into RAM, and for boards with 256MB of RAM or more we put
1059      * the initrd at 128MB.
1060      */
1061     info->initrd_start = info->loader_start +
1062         MIN(info->ram_size / 2, 128 * 1024 * 1024);
1063 
1064     /* Assume that raw images are linux kernels, and ELF images are not.  */
1065     kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
1066                                &elf_high_addr, elf_machine, as);
1067     if (kernel_size > 0 && have_dtb(info)) {
1068         /* If there is still some room left at the base of RAM, try and put
1069          * the DTB there like we do for images loaded with -bios or -pflash.
1070          */
1071         if (elf_low_addr > info->loader_start
1072             || elf_high_addr < info->loader_start) {
1073             /* Set elf_low_addr as address limit for arm_load_dtb if it may be
1074              * pointing into RAM, otherwise pass '0' (no limit)
1075              */
1076             if (elf_low_addr < info->loader_start) {
1077                 elf_low_addr = 0;
1078             }
1079             info->dtb_start = info->loader_start;
1080             info->dtb_limit = elf_low_addr;
1081         }
1082     }
1083     entry = elf_entry;
1084     if (kernel_size < 0) {
1085         kernel_size = load_uimage_as(info->kernel_filename, &entry, NULL,
1086                                      &is_linux, NULL, NULL, as);
1087     }
1088     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1089         kernel_size = load_aarch64_image(info->kernel_filename,
1090                                          info->loader_start, &entry, as);
1091         is_linux = 1;
1092     } else if (kernel_size < 0) {
1093         /* 32-bit ARM */
1094         entry = info->loader_start + KERNEL_LOAD_ADDR;
1095         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1096                                              info->ram_size - KERNEL_LOAD_ADDR,
1097                                              as);
1098         is_linux = 1;
1099     }
1100     if (kernel_size < 0) {
1101         error_report("could not load kernel '%s'", info->kernel_filename);
1102         exit(1);
1103     }
1104     info->entry = entry;
1105     if (is_linux) {
1106         uint32_t fixupcontext[FIXUP_MAX];
1107 
1108         if (info->initrd_filename) {
1109             initrd_size = load_ramdisk_as(info->initrd_filename,
1110                                           info->initrd_start,
1111                                           info->ram_size - info->initrd_start,
1112                                           as);
1113             if (initrd_size < 0) {
1114                 initrd_size = load_image_targphys_as(info->initrd_filename,
1115                                                      info->initrd_start,
1116                                                      info->ram_size -
1117                                                      info->initrd_start,
1118                                                      as);
1119             }
1120             if (initrd_size < 0) {
1121                 error_report("could not load initrd '%s'",
1122                              info->initrd_filename);
1123                 exit(1);
1124             }
1125         } else {
1126             initrd_size = 0;
1127         }
1128         info->initrd_size = initrd_size;
1129 
1130         fixupcontext[FIXUP_BOARDID] = info->board_id;
1131         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1132 
1133         /* for device tree boot, we pass the DTB directly in r2. Otherwise
1134          * we point to the kernel args.
1135          */
1136         if (have_dtb(info)) {
1137             hwaddr align;
1138 
1139             if (elf_machine == EM_AARCH64) {
1140                 /*
1141                  * Some AArch64 kernels on early bootup map the fdt region as
1142                  *
1143                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1144                  *
1145                  * Let's play safe and prealign it to 2MB to give us some space.
1146                  */
1147                 align = 2 * 1024 * 1024;
1148             } else {
1149                 /*
1150                  * Some 32bit kernels will trash anything in the 4K page the
1151                  * initrd ends in, so make sure the DTB isn't caught up in that.
1152                  */
1153                 align = 4096;
1154             }
1155 
1156             /* Place the DTB after the initrd in memory with alignment. */
1157             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1158                                            align);
1159             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1160             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1161         } else {
1162             fixupcontext[FIXUP_ARGPTR_LO] =
1163                 info->loader_start + KERNEL_ARGS_ADDR;
1164             fixupcontext[FIXUP_ARGPTR_HI] =
1165                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1166             if (info->ram_size >= (1ULL << 32)) {
1167                 error_report("RAM size must be less than 4GB to boot"
1168                              " Linux kernel using ATAGS (try passing a device tree"
1169                              " using -dtb)");
1170                 exit(1);
1171             }
1172         }
1173         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1174         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1175 
1176         write_bootloader("bootloader", info->loader_start,
1177                          primary_loader, fixupcontext, as);
1178 
1179         if (info->nb_cpus > 1) {
1180             info->write_secondary_boot(cpu, info);
1181         }
1182         if (info->write_board_setup) {
1183             info->write_board_setup(cpu, info);
1184         }
1185 
1186         /* Notify devices which need to fake up firmware initialization
1187          * that we're doing a direct kernel boot.
1188          */
1189         object_child_foreach_recursive(object_get_root(),
1190                                        do_arm_linux_init, info);
1191     }
1192     info->is_linux = is_linux;
1193 
1194     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1195         ARM_CPU(cs)->env.boot_info = info;
1196     }
1197 
1198     if (!info->skip_dtb_autoload && have_dtb(info)) {
1199         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1200             exit(1);
1201         }
1202     }
1203 }
1204 
1205 static const TypeInfo arm_linux_boot_if_info = {
1206     .name = TYPE_ARM_LINUX_BOOT_IF,
1207     .parent = TYPE_INTERFACE,
1208     .class_size = sizeof(ARMLinuxBootIfClass),
1209 };
1210 
1211 static void arm_linux_boot_register_types(void)
1212 {
1213     type_register_static(&arm_linux_boot_if_info);
1214 }
1215 
1216 type_init(arm_linux_boot_register_types)
1217