1 /* 2 * ARM kernel loader. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "config.h" 11 #include "hw/hw.h" 12 #include "hw/arm/arm.h" 13 #include "sysemu/sysemu.h" 14 #include "hw/boards.h" 15 #include "hw/loader.h" 16 #include "elf.h" 17 #include "sysemu/device_tree.h" 18 #include "qemu/config-file.h" 19 #include "exec/address-spaces.h" 20 21 /* Kernel boot protocol is specified in the kernel docs 22 * Documentation/arm/Booting and Documentation/arm64/booting.txt 23 * They have different preferred image load offsets from system RAM base. 24 */ 25 #define KERNEL_ARGS_ADDR 0x100 26 #define KERNEL_LOAD_ADDR 0x00010000 27 #define KERNEL64_LOAD_ADDR 0x00080000 28 29 typedef enum { 30 FIXUP_NONE = 0, /* do nothing */ 31 FIXUP_TERMINATOR, /* end of insns */ 32 FIXUP_BOARDID, /* overwrite with board ID number */ 33 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */ 34 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */ 35 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ 36 FIXUP_BOOTREG, /* overwrite with boot register address */ 37 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ 38 FIXUP_MAX, 39 } FixupType; 40 41 typedef struct ARMInsnFixup { 42 uint32_t insn; 43 FixupType fixup; 44 } ARMInsnFixup; 45 46 static const ARMInsnFixup bootloader_aarch64[] = { 47 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ 48 { 0xaa1f03e1 }, /* mov x1, xzr */ 49 { 0xaa1f03e2 }, /* mov x2, xzr */ 50 { 0xaa1f03e3 }, /* mov x3, xzr */ 51 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ 52 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ 53 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */ 54 { 0 }, /* .word @DTB Higher 32-bits */ 55 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */ 56 { 0 }, /* .word @Kernel Entry Higher 32-bits */ 57 { 0, FIXUP_TERMINATOR } 58 }; 59 60 /* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */ 61 static const ARMInsnFixup bootloader[] = { 62 { 0xe3a00000 }, /* mov r0, #0 */ 63 { 0xe59f1004 }, /* ldr r1, [pc, #4] */ 64 { 0xe59f2004 }, /* ldr r2, [pc, #4] */ 65 { 0xe59ff004 }, /* ldr pc, [pc, #4] */ 66 { 0, FIXUP_BOARDID }, 67 { 0, FIXUP_ARGPTR }, 68 { 0, FIXUP_ENTRYPOINT }, 69 { 0, FIXUP_TERMINATOR } 70 }; 71 72 /* Handling for secondary CPU boot in a multicore system. 73 * Unlike the uniprocessor/primary CPU boot, this is platform 74 * dependent. The default code here is based on the secondary 75 * CPU boot protocol used on realview/vexpress boards, with 76 * some parameterisation to increase its flexibility. 77 * QEMU platform models for which this code is not appropriate 78 * should override write_secondary_boot and secondary_cpu_reset_hook 79 * instead. 80 * 81 * This code enables the interrupt controllers for the secondary 82 * CPUs and then puts all the secondary CPUs into a loop waiting 83 * for an interprocessor interrupt and polling a configurable 84 * location for the kernel secondary CPU entry point. 85 */ 86 #define DSB_INSN 0xf57ff04f 87 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ 88 89 static const ARMInsnFixup smpboot[] = { 90 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ 91 { 0xe59f0028 }, /* ldr r0, bootreg_addr */ 92 { 0xe3a01001 }, /* mov r1, #1 */ 93 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ 94 { 0xe3a010ff }, /* mov r1, #0xff */ 95 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ 96 { 0, FIXUP_DSB }, /* dsb */ 97 { 0xe320f003 }, /* wfi */ 98 { 0xe5901000 }, /* ldr r1, [r0] */ 99 { 0xe1110001 }, /* tst r1, r1 */ 100 { 0x0afffffb }, /* beq <wfi> */ 101 { 0xe12fff11 }, /* bx r1 */ 102 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ 103 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ 104 { 0, FIXUP_TERMINATOR } 105 }; 106 107 static void write_bootloader(const char *name, hwaddr addr, 108 const ARMInsnFixup *insns, uint32_t *fixupcontext) 109 { 110 /* Fix up the specified bootloader fragment and write it into 111 * guest memory using rom_add_blob_fixed(). fixupcontext is 112 * an array giving the values to write in for the fixup types 113 * which write a value into the code array. 114 */ 115 int i, len; 116 uint32_t *code; 117 118 len = 0; 119 while (insns[len].fixup != FIXUP_TERMINATOR) { 120 len++; 121 } 122 123 code = g_new0(uint32_t, len); 124 125 for (i = 0; i < len; i++) { 126 uint32_t insn = insns[i].insn; 127 FixupType fixup = insns[i].fixup; 128 129 switch (fixup) { 130 case FIXUP_NONE: 131 break; 132 case FIXUP_BOARDID: 133 case FIXUP_ARGPTR: 134 case FIXUP_ENTRYPOINT: 135 case FIXUP_GIC_CPU_IF: 136 case FIXUP_BOOTREG: 137 case FIXUP_DSB: 138 insn = fixupcontext[fixup]; 139 break; 140 default: 141 abort(); 142 } 143 code[i] = tswap32(insn); 144 } 145 146 rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr); 147 148 g_free(code); 149 } 150 151 static void default_write_secondary(ARMCPU *cpu, 152 const struct arm_boot_info *info) 153 { 154 uint32_t fixupcontext[FIXUP_MAX]; 155 156 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; 157 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; 158 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 159 fixupcontext[FIXUP_DSB] = DSB_INSN; 160 } else { 161 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; 162 } 163 164 write_bootloader("smpboot", info->smp_loader_start, 165 smpboot, fixupcontext); 166 } 167 168 static void default_reset_secondary(ARMCPU *cpu, 169 const struct arm_boot_info *info) 170 { 171 CPUARMState *env = &cpu->env; 172 173 stl_phys_notdirty(&address_space_memory, info->smp_bootreg_addr, 0); 174 env->regs[15] = info->smp_loader_start; 175 } 176 177 static inline bool have_dtb(const struct arm_boot_info *info) 178 { 179 return info->dtb_filename || info->get_dtb; 180 } 181 182 #define WRITE_WORD(p, value) do { \ 183 stl_phys_notdirty(&address_space_memory, p, value); \ 184 p += 4; \ 185 } while (0) 186 187 static void set_kernel_args(const struct arm_boot_info *info) 188 { 189 int initrd_size = info->initrd_size; 190 hwaddr base = info->loader_start; 191 hwaddr p; 192 193 p = base + KERNEL_ARGS_ADDR; 194 /* ATAG_CORE */ 195 WRITE_WORD(p, 5); 196 WRITE_WORD(p, 0x54410001); 197 WRITE_WORD(p, 1); 198 WRITE_WORD(p, 0x1000); 199 WRITE_WORD(p, 0); 200 /* ATAG_MEM */ 201 /* TODO: handle multiple chips on one ATAG list */ 202 WRITE_WORD(p, 4); 203 WRITE_WORD(p, 0x54410002); 204 WRITE_WORD(p, info->ram_size); 205 WRITE_WORD(p, info->loader_start); 206 if (initrd_size) { 207 /* ATAG_INITRD2 */ 208 WRITE_WORD(p, 4); 209 WRITE_WORD(p, 0x54420005); 210 WRITE_WORD(p, info->initrd_start); 211 WRITE_WORD(p, initrd_size); 212 } 213 if (info->kernel_cmdline && *info->kernel_cmdline) { 214 /* ATAG_CMDLINE */ 215 int cmdline_size; 216 217 cmdline_size = strlen(info->kernel_cmdline); 218 cpu_physical_memory_write(p + 8, info->kernel_cmdline, 219 cmdline_size + 1); 220 cmdline_size = (cmdline_size >> 2) + 1; 221 WRITE_WORD(p, cmdline_size + 2); 222 WRITE_WORD(p, 0x54410009); 223 p += cmdline_size * 4; 224 } 225 if (info->atag_board) { 226 /* ATAG_BOARD */ 227 int atag_board_len; 228 uint8_t atag_board_buf[0x1000]; 229 230 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; 231 WRITE_WORD(p, (atag_board_len + 8) >> 2); 232 WRITE_WORD(p, 0x414f4d50); 233 cpu_physical_memory_write(p, atag_board_buf, atag_board_len); 234 p += atag_board_len; 235 } 236 /* ATAG_END */ 237 WRITE_WORD(p, 0); 238 WRITE_WORD(p, 0); 239 } 240 241 static void set_kernel_args_old(const struct arm_boot_info *info) 242 { 243 hwaddr p; 244 const char *s; 245 int initrd_size = info->initrd_size; 246 hwaddr base = info->loader_start; 247 248 /* see linux/include/asm-arm/setup.h */ 249 p = base + KERNEL_ARGS_ADDR; 250 /* page_size */ 251 WRITE_WORD(p, 4096); 252 /* nr_pages */ 253 WRITE_WORD(p, info->ram_size / 4096); 254 /* ramdisk_size */ 255 WRITE_WORD(p, 0); 256 #define FLAG_READONLY 1 257 #define FLAG_RDLOAD 4 258 #define FLAG_RDPROMPT 8 259 /* flags */ 260 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); 261 /* rootdev */ 262 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ 263 /* video_num_cols */ 264 WRITE_WORD(p, 0); 265 /* video_num_rows */ 266 WRITE_WORD(p, 0); 267 /* video_x */ 268 WRITE_WORD(p, 0); 269 /* video_y */ 270 WRITE_WORD(p, 0); 271 /* memc_control_reg */ 272 WRITE_WORD(p, 0); 273 /* unsigned char sounddefault */ 274 /* unsigned char adfsdrives */ 275 /* unsigned char bytes_per_char_h */ 276 /* unsigned char bytes_per_char_v */ 277 WRITE_WORD(p, 0); 278 /* pages_in_bank[4] */ 279 WRITE_WORD(p, 0); 280 WRITE_WORD(p, 0); 281 WRITE_WORD(p, 0); 282 WRITE_WORD(p, 0); 283 /* pages_in_vram */ 284 WRITE_WORD(p, 0); 285 /* initrd_start */ 286 if (initrd_size) { 287 WRITE_WORD(p, info->initrd_start); 288 } else { 289 WRITE_WORD(p, 0); 290 } 291 /* initrd_size */ 292 WRITE_WORD(p, initrd_size); 293 /* rd_start */ 294 WRITE_WORD(p, 0); 295 /* system_rev */ 296 WRITE_WORD(p, 0); 297 /* system_serial_low */ 298 WRITE_WORD(p, 0); 299 /* system_serial_high */ 300 WRITE_WORD(p, 0); 301 /* mem_fclk_21285 */ 302 WRITE_WORD(p, 0); 303 /* zero unused fields */ 304 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { 305 WRITE_WORD(p, 0); 306 } 307 s = info->kernel_cmdline; 308 if (s) { 309 cpu_physical_memory_write(p, s, strlen(s) + 1); 310 } else { 311 WRITE_WORD(p, 0); 312 } 313 } 314 315 /** 316 * load_dtb() - load a device tree binary image into memory 317 * @addr: the address to load the image at 318 * @binfo: struct describing the boot environment 319 * @addr_limit: upper limit of the available memory area at @addr 320 * 321 * Load a device tree supplied by the machine or by the user with the 322 * '-dtb' command line option, and put it at offset @addr in target 323 * memory. 324 * 325 * If @addr_limit contains a meaningful value (i.e., it is strictly greater 326 * than @addr), the device tree is only loaded if its size does not exceed 327 * the limit. 328 * 329 * Returns: the size of the device tree image on success, 330 * 0 if the image size exceeds the limit, 331 * -1 on errors. 332 */ 333 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo, 334 hwaddr addr_limit) 335 { 336 void *fdt = NULL; 337 int size, rc; 338 uint32_t acells, scells; 339 340 if (binfo->dtb_filename) { 341 char *filename; 342 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); 343 if (!filename) { 344 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); 345 goto fail; 346 } 347 348 fdt = load_device_tree(filename, &size); 349 if (!fdt) { 350 fprintf(stderr, "Couldn't open dtb file %s\n", filename); 351 g_free(filename); 352 goto fail; 353 } 354 g_free(filename); 355 } else if (binfo->get_dtb) { 356 fdt = binfo->get_dtb(binfo, &size); 357 if (!fdt) { 358 fprintf(stderr, "Board was unable to create a dtb blob\n"); 359 goto fail; 360 } 361 } 362 363 if (addr_limit > addr && size > (addr_limit - addr)) { 364 /* Installing the device tree blob at addr would exceed addr_limit. 365 * Whether this constitutes failure is up to the caller to decide, 366 * so just return 0 as size, i.e., no error. 367 */ 368 g_free(fdt); 369 return 0; 370 } 371 372 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells"); 373 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells"); 374 if (acells == 0 || scells == 0) { 375 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); 376 goto fail; 377 } 378 379 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) { 380 /* This is user error so deserves a friendlier error message 381 * than the failure of setprop_sized_cells would provide 382 */ 383 fprintf(stderr, "qemu: dtb file not compatible with " 384 "RAM size > 4GB\n"); 385 goto fail; 386 } 387 388 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg", 389 acells, binfo->loader_start, 390 scells, binfo->ram_size); 391 if (rc < 0) { 392 fprintf(stderr, "couldn't set /memory/reg\n"); 393 goto fail; 394 } 395 396 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { 397 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", 398 binfo->kernel_cmdline); 399 if (rc < 0) { 400 fprintf(stderr, "couldn't set /chosen/bootargs\n"); 401 goto fail; 402 } 403 } 404 405 if (binfo->initrd_size) { 406 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", 407 binfo->initrd_start); 408 if (rc < 0) { 409 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); 410 goto fail; 411 } 412 413 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", 414 binfo->initrd_start + binfo->initrd_size); 415 if (rc < 0) { 416 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); 417 goto fail; 418 } 419 } 420 421 if (binfo->modify_dtb) { 422 binfo->modify_dtb(binfo, fdt); 423 } 424 425 qemu_fdt_dumpdtb(fdt, size); 426 427 /* Put the DTB into the memory map as a ROM image: this will ensure 428 * the DTB is copied again upon reset, even if addr points into RAM. 429 */ 430 rom_add_blob_fixed("dtb", fdt, size, addr); 431 432 g_free(fdt); 433 434 return size; 435 436 fail: 437 g_free(fdt); 438 return -1; 439 } 440 441 static void do_cpu_reset(void *opaque) 442 { 443 ARMCPU *cpu = opaque; 444 CPUARMState *env = &cpu->env; 445 const struct arm_boot_info *info = env->boot_info; 446 447 cpu_reset(CPU(cpu)); 448 if (info) { 449 if (!info->is_linux) { 450 /* Jump to the entry point. */ 451 if (env->aarch64) { 452 env->pc = info->entry; 453 } else { 454 env->regs[15] = info->entry & 0xfffffffe; 455 env->thumb = info->entry & 1; 456 } 457 } else { 458 if (CPU(cpu) == first_cpu) { 459 if (env->aarch64) { 460 env->pc = info->loader_start; 461 } else { 462 env->regs[15] = info->loader_start; 463 } 464 465 if (!have_dtb(info)) { 466 if (old_param) { 467 set_kernel_args_old(info); 468 } else { 469 set_kernel_args(info); 470 } 471 } 472 } else { 473 info->secondary_cpu_reset_hook(cpu, info); 474 } 475 } 476 } 477 } 478 479 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) 480 { 481 CPUState *cs; 482 int kernel_size; 483 int initrd_size; 484 int is_linux = 0; 485 uint64_t elf_entry, elf_low_addr, elf_high_addr; 486 int elf_machine; 487 hwaddr entry, kernel_load_offset; 488 int big_endian; 489 static const ARMInsnFixup *primary_loader; 490 491 /* CPU objects (unlike devices) are not automatically reset on system 492 * reset, so we must always register a handler to do so. If we're 493 * actually loading a kernel, the handler is also responsible for 494 * arranging that we start it correctly. 495 */ 496 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { 497 qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); 498 } 499 500 /* Load the kernel. */ 501 if (!info->kernel_filename) { 502 503 if (have_dtb(info)) { 504 /* If we have a device tree blob, but no kernel to supply it to, 505 * copy it to the base of RAM for a bootloader to pick up. 506 */ 507 if (load_dtb(info->loader_start, info, 0) < 0) { 508 exit(1); 509 } 510 } 511 512 /* If no kernel specified, do nothing; we will start from address 0 513 * (typically a boot ROM image) in the same way as hardware. 514 */ 515 return; 516 } 517 518 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 519 primary_loader = bootloader_aarch64; 520 kernel_load_offset = KERNEL64_LOAD_ADDR; 521 elf_machine = EM_AARCH64; 522 } else { 523 primary_loader = bootloader; 524 kernel_load_offset = KERNEL_LOAD_ADDR; 525 elf_machine = EM_ARM; 526 } 527 528 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb"); 529 530 if (!info->secondary_cpu_reset_hook) { 531 info->secondary_cpu_reset_hook = default_reset_secondary; 532 } 533 if (!info->write_secondary_boot) { 534 info->write_secondary_boot = default_write_secondary; 535 } 536 537 if (info->nb_cpus == 0) 538 info->nb_cpus = 1; 539 540 #ifdef TARGET_WORDS_BIGENDIAN 541 big_endian = 1; 542 #else 543 big_endian = 0; 544 #endif 545 546 /* We want to put the initrd far enough into RAM that when the 547 * kernel is uncompressed it will not clobber the initrd. However 548 * on boards without much RAM we must ensure that we still leave 549 * enough room for a decent sized initrd, and on boards with large 550 * amounts of RAM we must avoid the initrd being so far up in RAM 551 * that it is outside lowmem and inaccessible to the kernel. 552 * So for boards with less than 256MB of RAM we put the initrd 553 * halfway into RAM, and for boards with 256MB of RAM or more we put 554 * the initrd at 128MB. 555 */ 556 info->initrd_start = info->loader_start + 557 MIN(info->ram_size / 2, 128 * 1024 * 1024); 558 559 /* Assume that raw images are linux kernels, and ELF images are not. */ 560 kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry, 561 &elf_low_addr, &elf_high_addr, big_endian, 562 elf_machine, 1); 563 if (kernel_size > 0 && have_dtb(info)) { 564 /* If there is still some room left at the base of RAM, try and put 565 * the DTB there like we do for images loaded with -bios or -pflash. 566 */ 567 if (elf_low_addr > info->loader_start 568 || elf_high_addr < info->loader_start) { 569 /* Pass elf_low_addr as address limit to load_dtb if it may be 570 * pointing into RAM, otherwise pass '0' (no limit) 571 */ 572 if (elf_low_addr < info->loader_start) { 573 elf_low_addr = 0; 574 } 575 if (load_dtb(info->loader_start, info, elf_low_addr) < 0) { 576 exit(1); 577 } 578 } 579 } 580 entry = elf_entry; 581 if (kernel_size < 0) { 582 kernel_size = load_uimage(info->kernel_filename, &entry, NULL, 583 &is_linux); 584 } 585 /* On aarch64, it's the bootloader's job to uncompress the kernel. */ 586 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { 587 entry = info->loader_start + kernel_load_offset; 588 kernel_size = load_image_gzipped(info->kernel_filename, entry, 589 info->ram_size - kernel_load_offset); 590 is_linux = 1; 591 } 592 if (kernel_size < 0) { 593 entry = info->loader_start + kernel_load_offset; 594 kernel_size = load_image_targphys(info->kernel_filename, entry, 595 info->ram_size - kernel_load_offset); 596 is_linux = 1; 597 } 598 if (kernel_size < 0) { 599 fprintf(stderr, "qemu: could not load kernel '%s'\n", 600 info->kernel_filename); 601 exit(1); 602 } 603 info->entry = entry; 604 if (is_linux) { 605 uint32_t fixupcontext[FIXUP_MAX]; 606 607 if (info->initrd_filename) { 608 initrd_size = load_ramdisk(info->initrd_filename, 609 info->initrd_start, 610 info->ram_size - 611 info->initrd_start); 612 if (initrd_size < 0) { 613 initrd_size = load_image_targphys(info->initrd_filename, 614 info->initrd_start, 615 info->ram_size - 616 info->initrd_start); 617 } 618 if (initrd_size < 0) { 619 fprintf(stderr, "qemu: could not load initrd '%s'\n", 620 info->initrd_filename); 621 exit(1); 622 } 623 } else { 624 initrd_size = 0; 625 } 626 info->initrd_size = initrd_size; 627 628 fixupcontext[FIXUP_BOARDID] = info->board_id; 629 630 /* for device tree boot, we pass the DTB directly in r2. Otherwise 631 * we point to the kernel args. 632 */ 633 if (have_dtb(info)) { 634 /* Place the DTB after the initrd in memory. Note that some 635 * kernels will trash anything in the 4K page the initrd 636 * ends in, so make sure the DTB isn't caught up in that. 637 */ 638 hwaddr dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, 639 4096); 640 if (load_dtb(dtb_start, info, 0) < 0) { 641 exit(1); 642 } 643 fixupcontext[FIXUP_ARGPTR] = dtb_start; 644 } else { 645 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR; 646 if (info->ram_size >= (1ULL << 32)) { 647 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot" 648 " Linux kernel using ATAGS (try passing a device tree" 649 " using -dtb)\n"); 650 exit(1); 651 } 652 } 653 fixupcontext[FIXUP_ENTRYPOINT] = entry; 654 655 write_bootloader("bootloader", info->loader_start, 656 primary_loader, fixupcontext); 657 658 if (info->nb_cpus > 1) { 659 info->write_secondary_boot(cpu, info); 660 } 661 } 662 info->is_linux = is_linux; 663 664 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { 665 ARM_CPU(cs)->env.boot_info = info; 666 } 667 } 668