xref: /openbmc/qemu/hw/arm/boot.c (revision 6a0acfff)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu-common.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/hw.h"
16 #include "hw/arm/boot.h"
17 #include "hw/arm/linux-boot-if.h"
18 #include "sysemu/kvm.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/numa.h"
21 #include "sysemu/reset.h"
22 #include "hw/boards.h"
23 #include "hw/loader.h"
24 #include "elf.h"
25 #include "sysemu/device_tree.h"
26 #include "qemu/config-file.h"
27 #include "qemu/option.h"
28 #include "exec/address-spaces.h"
29 #include "qemu/units.h"
30 
31 /* Kernel boot protocol is specified in the kernel docs
32  * Documentation/arm/Booting and Documentation/arm64/booting.txt
33  * They have different preferred image load offsets from system RAM base.
34  */
35 #define KERNEL_ARGS_ADDR   0x100
36 #define KERNEL_NOLOAD_ADDR 0x02000000
37 #define KERNEL_LOAD_ADDR   0x00010000
38 #define KERNEL64_LOAD_ADDR 0x00080000
39 
40 #define ARM64_TEXT_OFFSET_OFFSET    8
41 #define ARM64_MAGIC_OFFSET          56
42 
43 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
44 
45 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
46                                      const struct arm_boot_info *info)
47 {
48     /* Return the address space to use for bootloader reads and writes.
49      * We prefer the secure address space if the CPU has it and we're
50      * going to boot the guest into it.
51      */
52     int asidx;
53     CPUState *cs = CPU(cpu);
54 
55     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
56         asidx = ARMASIdx_S;
57     } else {
58         asidx = ARMASIdx_NS;
59     }
60 
61     return cpu_get_address_space(cs, asidx);
62 }
63 
64 typedef enum {
65     FIXUP_NONE = 0,     /* do nothing */
66     FIXUP_TERMINATOR,   /* end of insns */
67     FIXUP_BOARDID,      /* overwrite with board ID number */
68     FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
69     FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
70     FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
71     FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
72     FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
73     FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
74     FIXUP_BOOTREG,      /* overwrite with boot register address */
75     FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
76     FIXUP_MAX,
77 } FixupType;
78 
79 typedef struct ARMInsnFixup {
80     uint32_t insn;
81     FixupType fixup;
82 } ARMInsnFixup;
83 
84 static const ARMInsnFixup bootloader_aarch64[] = {
85     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
86     { 0xaa1f03e1 }, /* mov x1, xzr */
87     { 0xaa1f03e2 }, /* mov x2, xzr */
88     { 0xaa1f03e3 }, /* mov x3, xzr */
89     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
90     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
91     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
92     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
93     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
94     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
95     { 0, FIXUP_TERMINATOR }
96 };
97 
98 /* A very small bootloader: call the board-setup code (if needed),
99  * set r0-r2, then jump to the kernel.
100  * If we're not calling boot setup code then we don't copy across
101  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
102  */
103 
104 static const ARMInsnFixup bootloader[] = {
105     { 0xe28fe004 }, /* add     lr, pc, #4 */
106     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
107     { 0, FIXUP_BOARD_SETUP },
108 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
109     { 0xe3a00000 }, /* mov     r0, #0 */
110     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
111     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
112     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
113     { 0, FIXUP_BOARDID },
114     { 0, FIXUP_ARGPTR_LO },
115     { 0, FIXUP_ENTRYPOINT_LO },
116     { 0, FIXUP_TERMINATOR }
117 };
118 
119 /* Handling for secondary CPU boot in a multicore system.
120  * Unlike the uniprocessor/primary CPU boot, this is platform
121  * dependent. The default code here is based on the secondary
122  * CPU boot protocol used on realview/vexpress boards, with
123  * some parameterisation to increase its flexibility.
124  * QEMU platform models for which this code is not appropriate
125  * should override write_secondary_boot and secondary_cpu_reset_hook
126  * instead.
127  *
128  * This code enables the interrupt controllers for the secondary
129  * CPUs and then puts all the secondary CPUs into a loop waiting
130  * for an interprocessor interrupt and polling a configurable
131  * location for the kernel secondary CPU entry point.
132  */
133 #define DSB_INSN 0xf57ff04f
134 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
135 
136 static const ARMInsnFixup smpboot[] = {
137     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
138     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
139     { 0xe3a01001 }, /* mov r1, #1 */
140     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
141     { 0xe3a010ff }, /* mov r1, #0xff */
142     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
143     { 0, FIXUP_DSB },   /* dsb */
144     { 0xe320f003 }, /* wfi */
145     { 0xe5901000 }, /* ldr     r1, [r0] */
146     { 0xe1110001 }, /* tst     r1, r1 */
147     { 0x0afffffb }, /* beq     <wfi> */
148     { 0xe12fff11 }, /* bx      r1 */
149     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
150     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
151     { 0, FIXUP_TERMINATOR }
152 };
153 
154 static void write_bootloader(const char *name, hwaddr addr,
155                              const ARMInsnFixup *insns, uint32_t *fixupcontext,
156                              AddressSpace *as)
157 {
158     /* Fix up the specified bootloader fragment and write it into
159      * guest memory using rom_add_blob_fixed(). fixupcontext is
160      * an array giving the values to write in for the fixup types
161      * which write a value into the code array.
162      */
163     int i, len;
164     uint32_t *code;
165 
166     len = 0;
167     while (insns[len].fixup != FIXUP_TERMINATOR) {
168         len++;
169     }
170 
171     code = g_new0(uint32_t, len);
172 
173     for (i = 0; i < len; i++) {
174         uint32_t insn = insns[i].insn;
175         FixupType fixup = insns[i].fixup;
176 
177         switch (fixup) {
178         case FIXUP_NONE:
179             break;
180         case FIXUP_BOARDID:
181         case FIXUP_BOARD_SETUP:
182         case FIXUP_ARGPTR_LO:
183         case FIXUP_ARGPTR_HI:
184         case FIXUP_ENTRYPOINT_LO:
185         case FIXUP_ENTRYPOINT_HI:
186         case FIXUP_GIC_CPU_IF:
187         case FIXUP_BOOTREG:
188         case FIXUP_DSB:
189             insn = fixupcontext[fixup];
190             break;
191         default:
192             abort();
193         }
194         code[i] = tswap32(insn);
195     }
196 
197     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
198 
199     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
200 
201     g_free(code);
202 }
203 
204 static void default_write_secondary(ARMCPU *cpu,
205                                     const struct arm_boot_info *info)
206 {
207     uint32_t fixupcontext[FIXUP_MAX];
208     AddressSpace *as = arm_boot_address_space(cpu, info);
209 
210     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
211     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
212     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
213         fixupcontext[FIXUP_DSB] = DSB_INSN;
214     } else {
215         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
216     }
217 
218     write_bootloader("smpboot", info->smp_loader_start,
219                      smpboot, fixupcontext, as);
220 }
221 
222 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
223                                             const struct arm_boot_info *info,
224                                             hwaddr mvbar_addr)
225 {
226     AddressSpace *as = arm_boot_address_space(cpu, info);
227     int n;
228     uint32_t mvbar_blob[] = {
229         /* mvbar_addr: secure monitor vectors
230          * Default unimplemented and unused vectors to spin. Makes it
231          * easier to debug (as opposed to the CPU running away).
232          */
233         0xeafffffe, /* (spin) */
234         0xeafffffe, /* (spin) */
235         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
236         0xeafffffe, /* (spin) */
237         0xeafffffe, /* (spin) */
238         0xeafffffe, /* (spin) */
239         0xeafffffe, /* (spin) */
240         0xeafffffe, /* (spin) */
241     };
242     uint32_t board_setup_blob[] = {
243         /* board setup addr */
244         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
245         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
246         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
247         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
248         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
249         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
250         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
251         0xe1a0f001, /* mov     pc, r1                 ;return */
252     };
253 
254     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
255     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
256 
257     /* check that these blobs don't overlap */
258     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
259           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
260 
261     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
262         mvbar_blob[n] = tswap32(mvbar_blob[n]);
263     }
264     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
265                           mvbar_addr, as);
266 
267     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
268         board_setup_blob[n] = tswap32(board_setup_blob[n]);
269     }
270     rom_add_blob_fixed_as("board-setup", board_setup_blob,
271                           sizeof(board_setup_blob), info->board_setup_addr, as);
272 }
273 
274 static void default_reset_secondary(ARMCPU *cpu,
275                                     const struct arm_boot_info *info)
276 {
277     AddressSpace *as = arm_boot_address_space(cpu, info);
278     CPUState *cs = CPU(cpu);
279 
280     address_space_stl_notdirty(as, info->smp_bootreg_addr,
281                                0, MEMTXATTRS_UNSPECIFIED, NULL);
282     cpu_set_pc(cs, info->smp_loader_start);
283 }
284 
285 static inline bool have_dtb(const struct arm_boot_info *info)
286 {
287     return info->dtb_filename || info->get_dtb;
288 }
289 
290 #define WRITE_WORD(p, value) do { \
291     address_space_stl_notdirty(as, p, value, \
292                                MEMTXATTRS_UNSPECIFIED, NULL);  \
293     p += 4;                       \
294 } while (0)
295 
296 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
297 {
298     int initrd_size = info->initrd_size;
299     hwaddr base = info->loader_start;
300     hwaddr p;
301 
302     p = base + KERNEL_ARGS_ADDR;
303     /* ATAG_CORE */
304     WRITE_WORD(p, 5);
305     WRITE_WORD(p, 0x54410001);
306     WRITE_WORD(p, 1);
307     WRITE_WORD(p, 0x1000);
308     WRITE_WORD(p, 0);
309     /* ATAG_MEM */
310     /* TODO: handle multiple chips on one ATAG list */
311     WRITE_WORD(p, 4);
312     WRITE_WORD(p, 0x54410002);
313     WRITE_WORD(p, info->ram_size);
314     WRITE_WORD(p, info->loader_start);
315     if (initrd_size) {
316         /* ATAG_INITRD2 */
317         WRITE_WORD(p, 4);
318         WRITE_WORD(p, 0x54420005);
319         WRITE_WORD(p, info->initrd_start);
320         WRITE_WORD(p, initrd_size);
321     }
322     if (info->kernel_cmdline && *info->kernel_cmdline) {
323         /* ATAG_CMDLINE */
324         int cmdline_size;
325 
326         cmdline_size = strlen(info->kernel_cmdline);
327         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
328                             (const uint8_t *)info->kernel_cmdline,
329                             cmdline_size + 1);
330         cmdline_size = (cmdline_size >> 2) + 1;
331         WRITE_WORD(p, cmdline_size + 2);
332         WRITE_WORD(p, 0x54410009);
333         p += cmdline_size * 4;
334     }
335     if (info->atag_board) {
336         /* ATAG_BOARD */
337         int atag_board_len;
338         uint8_t atag_board_buf[0x1000];
339 
340         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
341         WRITE_WORD(p, (atag_board_len + 8) >> 2);
342         WRITE_WORD(p, 0x414f4d50);
343         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
344                             atag_board_buf, atag_board_len);
345         p += atag_board_len;
346     }
347     /* ATAG_END */
348     WRITE_WORD(p, 0);
349     WRITE_WORD(p, 0);
350 }
351 
352 static void set_kernel_args_old(const struct arm_boot_info *info,
353                                 AddressSpace *as)
354 {
355     hwaddr p;
356     const char *s;
357     int initrd_size = info->initrd_size;
358     hwaddr base = info->loader_start;
359 
360     /* see linux/include/asm-arm/setup.h */
361     p = base + KERNEL_ARGS_ADDR;
362     /* page_size */
363     WRITE_WORD(p, 4096);
364     /* nr_pages */
365     WRITE_WORD(p, info->ram_size / 4096);
366     /* ramdisk_size */
367     WRITE_WORD(p, 0);
368 #define FLAG_READONLY	1
369 #define FLAG_RDLOAD	4
370 #define FLAG_RDPROMPT	8
371     /* flags */
372     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
373     /* rootdev */
374     WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
375     /* video_num_cols */
376     WRITE_WORD(p, 0);
377     /* video_num_rows */
378     WRITE_WORD(p, 0);
379     /* video_x */
380     WRITE_WORD(p, 0);
381     /* video_y */
382     WRITE_WORD(p, 0);
383     /* memc_control_reg */
384     WRITE_WORD(p, 0);
385     /* unsigned char sounddefault */
386     /* unsigned char adfsdrives */
387     /* unsigned char bytes_per_char_h */
388     /* unsigned char bytes_per_char_v */
389     WRITE_WORD(p, 0);
390     /* pages_in_bank[4] */
391     WRITE_WORD(p, 0);
392     WRITE_WORD(p, 0);
393     WRITE_WORD(p, 0);
394     WRITE_WORD(p, 0);
395     /* pages_in_vram */
396     WRITE_WORD(p, 0);
397     /* initrd_start */
398     if (initrd_size) {
399         WRITE_WORD(p, info->initrd_start);
400     } else {
401         WRITE_WORD(p, 0);
402     }
403     /* initrd_size */
404     WRITE_WORD(p, initrd_size);
405     /* rd_start */
406     WRITE_WORD(p, 0);
407     /* system_rev */
408     WRITE_WORD(p, 0);
409     /* system_serial_low */
410     WRITE_WORD(p, 0);
411     /* system_serial_high */
412     WRITE_WORD(p, 0);
413     /* mem_fclk_21285 */
414     WRITE_WORD(p, 0);
415     /* zero unused fields */
416     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
417         WRITE_WORD(p, 0);
418     }
419     s = info->kernel_cmdline;
420     if (s) {
421         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
422                             (const uint8_t *)s, strlen(s) + 1);
423     } else {
424         WRITE_WORD(p, 0);
425     }
426 }
427 
428 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
429                                uint32_t scells, hwaddr mem_len,
430                                int numa_node_id)
431 {
432     char *nodename;
433     int ret;
434 
435     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
436     qemu_fdt_add_subnode(fdt, nodename);
437     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
438     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
439                                        scells, mem_len);
440     if (ret < 0) {
441         goto out;
442     }
443 
444     /* only set the NUMA ID if it is specified */
445     if (numa_node_id >= 0) {
446         ret = qemu_fdt_setprop_cell(fdt, nodename,
447                                     "numa-node-id", numa_node_id);
448     }
449 out:
450     g_free(nodename);
451     return ret;
452 }
453 
454 static void fdt_add_psci_node(void *fdt)
455 {
456     uint32_t cpu_suspend_fn;
457     uint32_t cpu_off_fn;
458     uint32_t cpu_on_fn;
459     uint32_t migrate_fn;
460     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
461     const char *psci_method;
462     int64_t psci_conduit;
463     int rc;
464 
465     psci_conduit = object_property_get_int(OBJECT(armcpu),
466                                            "psci-conduit",
467                                            &error_abort);
468     switch (psci_conduit) {
469     case QEMU_PSCI_CONDUIT_DISABLED:
470         return;
471     case QEMU_PSCI_CONDUIT_HVC:
472         psci_method = "hvc";
473         break;
474     case QEMU_PSCI_CONDUIT_SMC:
475         psci_method = "smc";
476         break;
477     default:
478         g_assert_not_reached();
479     }
480 
481     /*
482      * If /psci node is present in provided DTB, assume that no fixup
483      * is necessary and all PSCI configuration should be taken as-is
484      */
485     rc = fdt_path_offset(fdt, "/psci");
486     if (rc >= 0) {
487         return;
488     }
489 
490     qemu_fdt_add_subnode(fdt, "/psci");
491     if (armcpu->psci_version == 2) {
492         const char comp[] = "arm,psci-0.2\0arm,psci";
493         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
494 
495         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
496         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
497             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
498             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
499             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
500         } else {
501             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
502             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
503             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
504         }
505     } else {
506         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
507 
508         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
509         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
510         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
511         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
512     }
513 
514     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
515      * to the instruction that should be used to invoke PSCI functions.
516      * However, the device tree binding uses 'method' instead, so that is
517      * what we should use here.
518      */
519     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
520 
521     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
522     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
523     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
524     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
525 }
526 
527 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
528                  hwaddr addr_limit, AddressSpace *as)
529 {
530     void *fdt = NULL;
531     int size, rc, n = 0;
532     uint32_t acells, scells;
533     unsigned int i;
534     hwaddr mem_base, mem_len;
535     char **node_path;
536     Error *err = NULL;
537 
538     if (binfo->dtb_filename) {
539         char *filename;
540         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
541         if (!filename) {
542             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
543             goto fail;
544         }
545 
546         fdt = load_device_tree(filename, &size);
547         if (!fdt) {
548             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
549             g_free(filename);
550             goto fail;
551         }
552         g_free(filename);
553     } else {
554         fdt = binfo->get_dtb(binfo, &size);
555         if (!fdt) {
556             fprintf(stderr, "Board was unable to create a dtb blob\n");
557             goto fail;
558         }
559     }
560 
561     if (addr_limit > addr && size > (addr_limit - addr)) {
562         /* Installing the device tree blob at addr would exceed addr_limit.
563          * Whether this constitutes failure is up to the caller to decide,
564          * so just return 0 as size, i.e., no error.
565          */
566         g_free(fdt);
567         return 0;
568     }
569 
570     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
571                                    NULL, &error_fatal);
572     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
573                                    NULL, &error_fatal);
574     if (acells == 0 || scells == 0) {
575         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
576         goto fail;
577     }
578 
579     if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
580         /* This is user error so deserves a friendlier error message
581          * than the failure of setprop_sized_cells would provide
582          */
583         fprintf(stderr, "qemu: dtb file not compatible with "
584                 "RAM size > 4GB\n");
585         goto fail;
586     }
587 
588     /* nop all root nodes matching /memory or /memory@unit-address */
589     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
590     if (err) {
591         error_report_err(err);
592         goto fail;
593     }
594     while (node_path[n]) {
595         if (g_str_has_prefix(node_path[n], "/memory")) {
596             qemu_fdt_nop_node(fdt, node_path[n]);
597         }
598         n++;
599     }
600     g_strfreev(node_path);
601 
602     if (nb_numa_nodes > 0) {
603         mem_base = binfo->loader_start;
604         for (i = 0; i < nb_numa_nodes; i++) {
605             mem_len = numa_info[i].node_mem;
606             rc = fdt_add_memory_node(fdt, acells, mem_base,
607                                      scells, mem_len, i);
608             if (rc < 0) {
609                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
610                         mem_base);
611                 goto fail;
612             }
613 
614             mem_base += mem_len;
615         }
616     } else {
617         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
618                                  scells, binfo->ram_size, -1);
619         if (rc < 0) {
620             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
621                     binfo->loader_start);
622             goto fail;
623         }
624     }
625 
626     rc = fdt_path_offset(fdt, "/chosen");
627     if (rc < 0) {
628         qemu_fdt_add_subnode(fdt, "/chosen");
629     }
630 
631     if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
632         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
633                                      binfo->kernel_cmdline);
634         if (rc < 0) {
635             fprintf(stderr, "couldn't set /chosen/bootargs\n");
636             goto fail;
637         }
638     }
639 
640     if (binfo->initrd_size) {
641         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
642                                    binfo->initrd_start);
643         if (rc < 0) {
644             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
645             goto fail;
646         }
647 
648         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
649                                    binfo->initrd_start + binfo->initrd_size);
650         if (rc < 0) {
651             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
652             goto fail;
653         }
654     }
655 
656     fdt_add_psci_node(fdt);
657 
658     if (binfo->modify_dtb) {
659         binfo->modify_dtb(binfo, fdt);
660     }
661 
662     qemu_fdt_dumpdtb(fdt, size);
663 
664     /* Put the DTB into the memory map as a ROM image: this will ensure
665      * the DTB is copied again upon reset, even if addr points into RAM.
666      */
667     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
668 
669     g_free(fdt);
670 
671     return size;
672 
673 fail:
674     g_free(fdt);
675     return -1;
676 }
677 
678 static void do_cpu_reset(void *opaque)
679 {
680     ARMCPU *cpu = opaque;
681     CPUState *cs = CPU(cpu);
682     CPUARMState *env = &cpu->env;
683     const struct arm_boot_info *info = env->boot_info;
684 
685     cpu_reset(cs);
686     if (info) {
687         if (!info->is_linux) {
688             int i;
689             /* Jump to the entry point.  */
690             uint64_t entry = info->entry;
691 
692             switch (info->endianness) {
693             case ARM_ENDIANNESS_LE:
694                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
695                 for (i = 1; i < 4; ++i) {
696                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
697                 }
698                 env->uncached_cpsr &= ~CPSR_E;
699                 break;
700             case ARM_ENDIANNESS_BE8:
701                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
702                 for (i = 1; i < 4; ++i) {
703                     env->cp15.sctlr_el[i] |= SCTLR_EE;
704                 }
705                 env->uncached_cpsr |= CPSR_E;
706                 break;
707             case ARM_ENDIANNESS_BE32:
708                 env->cp15.sctlr_el[1] |= SCTLR_B;
709                 break;
710             case ARM_ENDIANNESS_UNKNOWN:
711                 break; /* Board's decision */
712             default:
713                 g_assert_not_reached();
714             }
715 
716             cpu_set_pc(cs, entry);
717         } else {
718             /* If we are booting Linux then we need to check whether we are
719              * booting into secure or non-secure state and adjust the state
720              * accordingly.  Out of reset, ARM is defined to be in secure state
721              * (SCR.NS = 0), we change that here if non-secure boot has been
722              * requested.
723              */
724             if (arm_feature(env, ARM_FEATURE_EL3)) {
725                 /* AArch64 is defined to come out of reset into EL3 if enabled.
726                  * If we are booting Linux then we need to adjust our EL as
727                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
728                  * SVC, which Linux expects, so no privilege/exception level to
729                  * adjust.
730                  */
731                 if (env->aarch64) {
732                     env->cp15.scr_el3 |= SCR_RW;
733                     if (arm_feature(env, ARM_FEATURE_EL2)) {
734                         env->cp15.hcr_el2 |= HCR_RW;
735                         env->pstate = PSTATE_MODE_EL2h;
736                     } else {
737                         env->pstate = PSTATE_MODE_EL1h;
738                     }
739                     /* AArch64 kernels never boot in secure mode */
740                     assert(!info->secure_boot);
741                     /* This hook is only supported for AArch32 currently:
742                      * bootloader_aarch64[] will not call the hook, and
743                      * the code above has already dropped us into EL2 or EL1.
744                      */
745                     assert(!info->secure_board_setup);
746                 }
747 
748                 if (arm_feature(env, ARM_FEATURE_EL2)) {
749                     /* If we have EL2 then Linux expects the HVC insn to work */
750                     env->cp15.scr_el3 |= SCR_HCE;
751                 }
752 
753                 /* Set to non-secure if not a secure boot */
754                 if (!info->secure_boot &&
755                     (cs != first_cpu || !info->secure_board_setup)) {
756                     /* Linux expects non-secure state */
757                     env->cp15.scr_el3 |= SCR_NS;
758                 }
759             }
760 
761             if (!env->aarch64 && !info->secure_boot &&
762                 arm_feature(env, ARM_FEATURE_EL2)) {
763                 /*
764                  * This is an AArch32 boot not to Secure state, and
765                  * we have Hyp mode available, so boot the kernel into
766                  * Hyp mode. This is not how the CPU comes out of reset,
767                  * so we need to manually put it there.
768                  */
769                 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
770             }
771 
772             if (cs == first_cpu) {
773                 AddressSpace *as = arm_boot_address_space(cpu, info);
774 
775                 cpu_set_pc(cs, info->loader_start);
776 
777                 if (!have_dtb(info)) {
778                     if (old_param) {
779                         set_kernel_args_old(info, as);
780                     } else {
781                         set_kernel_args(info, as);
782                     }
783                 }
784             } else {
785                 info->secondary_cpu_reset_hook(cpu, info);
786             }
787         }
788     }
789 }
790 
791 /**
792  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
793  *                          by key.
794  * @fw_cfg:         The firmware config instance to store the data in.
795  * @size_key:       The firmware config key to store the size of the loaded
796  *                  data under, with fw_cfg_add_i32().
797  * @data_key:       The firmware config key to store the loaded data under,
798  *                  with fw_cfg_add_bytes().
799  * @image_name:     The name of the image file to load. If it is NULL, the
800  *                  function returns without doing anything.
801  * @try_decompress: Whether the image should be decompressed (gunzipped) before
802  *                  adding it to fw_cfg. If decompression fails, the image is
803  *                  loaded as-is.
804  *
805  * In case of failure, the function prints an error message to stderr and the
806  * process exits with status 1.
807  */
808 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
809                                  uint16_t data_key, const char *image_name,
810                                  bool try_decompress)
811 {
812     size_t size = -1;
813     uint8_t *data;
814 
815     if (image_name == NULL) {
816         return;
817     }
818 
819     if (try_decompress) {
820         size = load_image_gzipped_buffer(image_name,
821                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
822     }
823 
824     if (size == (size_t)-1) {
825         gchar *contents;
826         gsize length;
827 
828         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
829             error_report("failed to load \"%s\"", image_name);
830             exit(1);
831         }
832         size = length;
833         data = (uint8_t *)contents;
834     }
835 
836     fw_cfg_add_i32(fw_cfg, size_key, size);
837     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
838 }
839 
840 static int do_arm_linux_init(Object *obj, void *opaque)
841 {
842     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
843         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
844         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
845         struct arm_boot_info *info = opaque;
846 
847         if (albifc->arm_linux_init) {
848             albifc->arm_linux_init(albif, info->secure_boot);
849         }
850     }
851     return 0;
852 }
853 
854 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
855                             uint64_t *lowaddr, uint64_t *highaddr,
856                             int elf_machine, AddressSpace *as)
857 {
858     bool elf_is64;
859     union {
860         Elf32_Ehdr h32;
861         Elf64_Ehdr h64;
862     } elf_header;
863     int data_swab = 0;
864     bool big_endian;
865     int64_t ret = -1;
866     Error *err = NULL;
867 
868 
869     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
870     if (err) {
871         error_free(err);
872         return ret;
873     }
874 
875     if (elf_is64) {
876         big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
877         info->endianness = big_endian ? ARM_ENDIANNESS_BE8
878                                       : ARM_ENDIANNESS_LE;
879     } else {
880         big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
881         if (big_endian) {
882             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
883                 info->endianness = ARM_ENDIANNESS_BE8;
884             } else {
885                 info->endianness = ARM_ENDIANNESS_BE32;
886                 /* In BE32, the CPU has a different view of the per-byte
887                  * address map than the rest of the system. BE32 ELF files
888                  * are organised such that they can be programmed through
889                  * the CPU's per-word byte-reversed view of the world. QEMU
890                  * however loads ELF files independently of the CPU. So
891                  * tell the ELF loader to byte reverse the data for us.
892                  */
893                 data_swab = 2;
894             }
895         } else {
896             info->endianness = ARM_ENDIANNESS_LE;
897         }
898     }
899 
900     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
901                       pentry, lowaddr, highaddr, big_endian, elf_machine,
902                       1, data_swab, as);
903     if (ret <= 0) {
904         /* The header loaded but the image didn't */
905         exit(1);
906     }
907 
908     return ret;
909 }
910 
911 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
912                                    hwaddr *entry, AddressSpace *as)
913 {
914     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
915     uint64_t kernel_size = 0;
916     uint8_t *buffer;
917     int size;
918 
919     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
920     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
921                                      &buffer);
922 
923     if (size < 0) {
924         gsize len;
925 
926         /* Load as raw file otherwise */
927         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
928             return -1;
929         }
930         size = len;
931     }
932 
933     /* check the arm64 magic header value -- very old kernels may not have it */
934     if (size > ARM64_MAGIC_OFFSET + 4 &&
935         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
936         uint64_t hdrvals[2];
937 
938         /* The arm64 Image header has text_offset and image_size fields at 8 and
939          * 16 bytes into the Image header, respectively. The text_offset field
940          * is only valid if the image_size is non-zero.
941          */
942         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
943 
944         kernel_size = le64_to_cpu(hdrvals[1]);
945 
946         if (kernel_size != 0) {
947             kernel_load_offset = le64_to_cpu(hdrvals[0]);
948 
949             /*
950              * We write our startup "bootloader" at the very bottom of RAM,
951              * so that bit can't be used for the image. Luckily the Image
952              * format specification is that the image requests only an offset
953              * from a 2MB boundary, not an absolute load address. So if the
954              * image requests an offset that might mean it overlaps with the
955              * bootloader, we can just load it starting at 2MB+offset rather
956              * than 0MB + offset.
957              */
958             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
959                 kernel_load_offset += 2 * MiB;
960             }
961         }
962     }
963 
964     /*
965      * Kernels before v3.17 don't populate the image_size field, and
966      * raw images have no header. For those our best guess at the size
967      * is the size of the Image file itself.
968      */
969     if (kernel_size == 0) {
970         kernel_size = size;
971     }
972 
973     *entry = mem_base + kernel_load_offset;
974     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
975 
976     g_free(buffer);
977 
978     return kernel_size;
979 }
980 
981 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
982                                          struct arm_boot_info *info)
983 {
984     /* Set up for a direct boot of a kernel image file. */
985     CPUState *cs;
986     AddressSpace *as = arm_boot_address_space(cpu, info);
987     int kernel_size;
988     int initrd_size;
989     int is_linux = 0;
990     uint64_t elf_entry;
991     /* Addresses of first byte used and first byte not used by the image */
992     uint64_t image_low_addr = 0, image_high_addr = 0;
993     int elf_machine;
994     hwaddr entry;
995     static const ARMInsnFixup *primary_loader;
996     uint64_t ram_end = info->loader_start + info->ram_size;
997 
998     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
999         primary_loader = bootloader_aarch64;
1000         elf_machine = EM_AARCH64;
1001     } else {
1002         primary_loader = bootloader;
1003         if (!info->write_board_setup) {
1004             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1005         }
1006         elf_machine = EM_ARM;
1007     }
1008 
1009     if (!info->secondary_cpu_reset_hook) {
1010         info->secondary_cpu_reset_hook = default_reset_secondary;
1011     }
1012     if (!info->write_secondary_boot) {
1013         info->write_secondary_boot = default_write_secondary;
1014     }
1015 
1016     if (info->nb_cpus == 0)
1017         info->nb_cpus = 1;
1018 
1019     /* Assume that raw images are linux kernels, and ELF images are not.  */
1020     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1021                                &image_high_addr, elf_machine, as);
1022     if (kernel_size > 0 && have_dtb(info)) {
1023         /*
1024          * If there is still some room left at the base of RAM, try and put
1025          * the DTB there like we do for images loaded with -bios or -pflash.
1026          */
1027         if (image_low_addr > info->loader_start
1028             || image_high_addr < info->loader_start) {
1029             /*
1030              * Set image_low_addr as address limit for arm_load_dtb if it may be
1031              * pointing into RAM, otherwise pass '0' (no limit)
1032              */
1033             if (image_low_addr < info->loader_start) {
1034                 image_low_addr = 0;
1035             }
1036             info->dtb_start = info->loader_start;
1037             info->dtb_limit = image_low_addr;
1038         }
1039     }
1040     entry = elf_entry;
1041     if (kernel_size < 0) {
1042         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1043         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1044                                      &is_linux, NULL, NULL, as);
1045         if (kernel_size >= 0) {
1046             image_low_addr = loadaddr;
1047             image_high_addr = image_low_addr + kernel_size;
1048         }
1049     }
1050     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1051         kernel_size = load_aarch64_image(info->kernel_filename,
1052                                          info->loader_start, &entry, as);
1053         is_linux = 1;
1054         if (kernel_size >= 0) {
1055             image_low_addr = entry;
1056             image_high_addr = image_low_addr + kernel_size;
1057         }
1058     } else if (kernel_size < 0) {
1059         /* 32-bit ARM */
1060         entry = info->loader_start + KERNEL_LOAD_ADDR;
1061         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1062                                              ram_end - KERNEL_LOAD_ADDR, as);
1063         is_linux = 1;
1064         if (kernel_size >= 0) {
1065             image_low_addr = entry;
1066             image_high_addr = image_low_addr + kernel_size;
1067         }
1068     }
1069     if (kernel_size < 0) {
1070         error_report("could not load kernel '%s'", info->kernel_filename);
1071         exit(1);
1072     }
1073 
1074     if (kernel_size > info->ram_size) {
1075         error_report("kernel '%s' is too large to fit in RAM "
1076                      "(kernel size %d, RAM size %" PRId64 ")",
1077                      info->kernel_filename, kernel_size, info->ram_size);
1078         exit(1);
1079     }
1080 
1081     info->entry = entry;
1082 
1083     /*
1084      * We want to put the initrd far enough into RAM that when the
1085      * kernel is uncompressed it will not clobber the initrd. However
1086      * on boards without much RAM we must ensure that we still leave
1087      * enough room for a decent sized initrd, and on boards with large
1088      * amounts of RAM we must avoid the initrd being so far up in RAM
1089      * that it is outside lowmem and inaccessible to the kernel.
1090      * So for boards with less  than 256MB of RAM we put the initrd
1091      * halfway into RAM, and for boards with 256MB of RAM or more we put
1092      * the initrd at 128MB.
1093      * We also refuse to put the initrd somewhere that will definitely
1094      * overlay the kernel we just loaded, though for kernel formats which
1095      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1096      * we might still make a bad choice here.
1097      */
1098     info->initrd_start = info->loader_start +
1099         MIN(info->ram_size / 2, 128 * 1024 * 1024);
1100     if (image_high_addr) {
1101         info->initrd_start = MAX(info->initrd_start, image_high_addr);
1102     }
1103     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1104 
1105     if (is_linux) {
1106         uint32_t fixupcontext[FIXUP_MAX];
1107 
1108         if (info->initrd_filename) {
1109 
1110             if (info->initrd_start >= ram_end) {
1111                 error_report("not enough space after kernel to load initrd");
1112                 exit(1);
1113             }
1114 
1115             initrd_size = load_ramdisk_as(info->initrd_filename,
1116                                           info->initrd_start,
1117                                           ram_end - info->initrd_start, as);
1118             if (initrd_size < 0) {
1119                 initrd_size = load_image_targphys_as(info->initrd_filename,
1120                                                      info->initrd_start,
1121                                                      ram_end -
1122                                                      info->initrd_start,
1123                                                      as);
1124             }
1125             if (initrd_size < 0) {
1126                 error_report("could not load initrd '%s'",
1127                              info->initrd_filename);
1128                 exit(1);
1129             }
1130             if (info->initrd_start + initrd_size > ram_end) {
1131                 error_report("could not load initrd '%s': "
1132                              "too big to fit into RAM after the kernel",
1133                              info->initrd_filename);
1134                 exit(1);
1135             }
1136         } else {
1137             initrd_size = 0;
1138         }
1139         info->initrd_size = initrd_size;
1140 
1141         fixupcontext[FIXUP_BOARDID] = info->board_id;
1142         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1143 
1144         /*
1145          * for device tree boot, we pass the DTB directly in r2. Otherwise
1146          * we point to the kernel args.
1147          */
1148         if (have_dtb(info)) {
1149             hwaddr align;
1150 
1151             if (elf_machine == EM_AARCH64) {
1152                 /*
1153                  * Some AArch64 kernels on early bootup map the fdt region as
1154                  *
1155                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1156                  *
1157                  * Let's play safe and prealign it to 2MB to give us some space.
1158                  */
1159                 align = 2 * 1024 * 1024;
1160             } else {
1161                 /*
1162                  * Some 32bit kernels will trash anything in the 4K page the
1163                  * initrd ends in, so make sure the DTB isn't caught up in that.
1164                  */
1165                 align = 4096;
1166             }
1167 
1168             /* Place the DTB after the initrd in memory with alignment. */
1169             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1170                                            align);
1171             if (info->dtb_start >= ram_end) {
1172                 error_report("Not enough space for DTB after kernel/initrd");
1173                 exit(1);
1174             }
1175             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1176             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1177         } else {
1178             fixupcontext[FIXUP_ARGPTR_LO] =
1179                 info->loader_start + KERNEL_ARGS_ADDR;
1180             fixupcontext[FIXUP_ARGPTR_HI] =
1181                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1182             if (info->ram_size >= (1ULL << 32)) {
1183                 error_report("RAM size must be less than 4GB to boot"
1184                              " Linux kernel using ATAGS (try passing a device tree"
1185                              " using -dtb)");
1186                 exit(1);
1187             }
1188         }
1189         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1190         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1191 
1192         write_bootloader("bootloader", info->loader_start,
1193                          primary_loader, fixupcontext, as);
1194 
1195         if (info->nb_cpus > 1) {
1196             info->write_secondary_boot(cpu, info);
1197         }
1198         if (info->write_board_setup) {
1199             info->write_board_setup(cpu, info);
1200         }
1201 
1202         /*
1203          * Notify devices which need to fake up firmware initialization
1204          * that we're doing a direct kernel boot.
1205          */
1206         object_child_foreach_recursive(object_get_root(),
1207                                        do_arm_linux_init, info);
1208     }
1209     info->is_linux = is_linux;
1210 
1211     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1212         ARM_CPU(cs)->env.boot_info = info;
1213     }
1214 }
1215 
1216 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1217 {
1218     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1219 
1220     if (have_dtb(info)) {
1221         /*
1222          * If we have a device tree blob, but no kernel to supply it to (or
1223          * the kernel is supposed to be loaded by the bootloader), copy the
1224          * DTB to the base of RAM for the bootloader to pick up.
1225          */
1226         info->dtb_start = info->loader_start;
1227     }
1228 
1229     if (info->kernel_filename) {
1230         FWCfgState *fw_cfg;
1231         bool try_decompressing_kernel;
1232 
1233         fw_cfg = fw_cfg_find();
1234         try_decompressing_kernel = arm_feature(&cpu->env,
1235                                                ARM_FEATURE_AARCH64);
1236 
1237         /*
1238          * Expose the kernel, the command line, and the initrd in fw_cfg.
1239          * We don't process them here at all, it's all left to the
1240          * firmware.
1241          */
1242         load_image_to_fw_cfg(fw_cfg,
1243                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1244                              info->kernel_filename,
1245                              try_decompressing_kernel);
1246         load_image_to_fw_cfg(fw_cfg,
1247                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1248                              info->initrd_filename, false);
1249 
1250         if (info->kernel_cmdline) {
1251             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1252                            strlen(info->kernel_cmdline) + 1);
1253             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1254                               info->kernel_cmdline);
1255         }
1256     }
1257 
1258     /*
1259      * We will start from address 0 (typically a boot ROM image) in the
1260      * same way as hardware. Leave env->boot_info NULL, so that
1261      * do_cpu_reset() knows it does not need to alter the PC on reset.
1262      */
1263 }
1264 
1265 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1266 {
1267     CPUState *cs;
1268     AddressSpace *as = arm_boot_address_space(cpu, info);
1269 
1270     /*
1271      * CPU objects (unlike devices) are not automatically reset on system
1272      * reset, so we must always register a handler to do so. If we're
1273      * actually loading a kernel, the handler is also responsible for
1274      * arranging that we start it correctly.
1275      */
1276     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1277         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1278     }
1279 
1280     /*
1281      * The board code is not supposed to set secure_board_setup unless
1282      * running its code in secure mode is actually possible, and KVM
1283      * doesn't support secure.
1284      */
1285     assert(!(info->secure_board_setup && kvm_enabled()));
1286 
1287     info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
1288     info->dtb_limit = 0;
1289 
1290     /* Load the kernel.  */
1291     if (!info->kernel_filename || info->firmware_loaded) {
1292         arm_setup_firmware_boot(cpu, info);
1293     } else {
1294         arm_setup_direct_kernel_boot(cpu, info);
1295     }
1296 
1297     if (!info->skip_dtb_autoload && have_dtb(info)) {
1298         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1299             exit(1);
1300         }
1301     }
1302 }
1303 
1304 static const TypeInfo arm_linux_boot_if_info = {
1305     .name = TYPE_ARM_LINUX_BOOT_IF,
1306     .parent = TYPE_INTERFACE,
1307     .class_size = sizeof(ARMLinuxBootIfClass),
1308 };
1309 
1310 static void arm_linux_boot_register_types(void)
1311 {
1312     type_register_static(&arm_linux_boot_if_info);
1313 }
1314 
1315 type_init(arm_linux_boot_register_types)
1316