1 /* 2 * ARM kernel loader. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "config.h" 11 #include "hw/hw.h" 12 #include "hw/arm/arm.h" 13 #include "sysemu/sysemu.h" 14 #include "hw/boards.h" 15 #include "hw/loader.h" 16 #include "elf.h" 17 #include "sysemu/device_tree.h" 18 #include "qemu/config-file.h" 19 20 #define KERNEL_ARGS_ADDR 0x100 21 #define KERNEL_LOAD_ADDR 0x00010000 22 23 /* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */ 24 static uint32_t bootloader[] = { 25 0xe3a00000, /* mov r0, #0 */ 26 0xe59f1004, /* ldr r1, [pc, #4] */ 27 0xe59f2004, /* ldr r2, [pc, #4] */ 28 0xe59ff004, /* ldr pc, [pc, #4] */ 29 0, /* Board ID */ 30 0, /* Address of kernel args. Set by integratorcp_init. */ 31 0 /* Kernel entry point. Set by integratorcp_init. */ 32 }; 33 34 /* Handling for secondary CPU boot in a multicore system. 35 * Unlike the uniprocessor/primary CPU boot, this is platform 36 * dependent. The default code here is based on the secondary 37 * CPU boot protocol used on realview/vexpress boards, with 38 * some parameterisation to increase its flexibility. 39 * QEMU platform models for which this code is not appropriate 40 * should override write_secondary_boot and secondary_cpu_reset_hook 41 * instead. 42 * 43 * This code enables the interrupt controllers for the secondary 44 * CPUs and then puts all the secondary CPUs into a loop waiting 45 * for an interprocessor interrupt and polling a configurable 46 * location for the kernel secondary CPU entry point. 47 */ 48 #define DSB_INSN 0xf57ff04f 49 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ 50 51 static uint32_t smpboot[] = { 52 0xe59f2028, /* ldr r2, gic_cpu_if */ 53 0xe59f0028, /* ldr r0, startaddr */ 54 0xe3a01001, /* mov r1, #1 */ 55 0xe5821000, /* str r1, [r2] - set GICC_CTLR.Enable */ 56 0xe3a010ff, /* mov r1, #0xff */ 57 0xe5821004, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ 58 DSB_INSN, /* dsb */ 59 0xe320f003, /* wfi */ 60 0xe5901000, /* ldr r1, [r0] */ 61 0xe1110001, /* tst r1, r1 */ 62 0x0afffffb, /* beq <wfi> */ 63 0xe12fff11, /* bx r1 */ 64 0, /* gic_cpu_if: base address of GIC CPU interface */ 65 0 /* bootreg: Boot register address is held here */ 66 }; 67 68 static void default_write_secondary(ARMCPU *cpu, 69 const struct arm_boot_info *info) 70 { 71 int n; 72 smpboot[ARRAY_SIZE(smpboot) - 1] = info->smp_bootreg_addr; 73 smpboot[ARRAY_SIZE(smpboot) - 2] = info->gic_cpu_if_addr; 74 for (n = 0; n < ARRAY_SIZE(smpboot); n++) { 75 /* Replace DSB with the pre-v7 DSB if necessary. */ 76 if (!arm_feature(&cpu->env, ARM_FEATURE_V7) && 77 smpboot[n] == DSB_INSN) { 78 smpboot[n] = CP15_DSB_INSN; 79 } 80 smpboot[n] = tswap32(smpboot[n]); 81 } 82 rom_add_blob_fixed("smpboot", smpboot, sizeof(smpboot), 83 info->smp_loader_start); 84 } 85 86 static void default_reset_secondary(ARMCPU *cpu, 87 const struct arm_boot_info *info) 88 { 89 CPUARMState *env = &cpu->env; 90 91 stl_phys_notdirty(info->smp_bootreg_addr, 0); 92 env->regs[15] = info->smp_loader_start; 93 } 94 95 #define WRITE_WORD(p, value) do { \ 96 stl_phys_notdirty(p, value); \ 97 p += 4; \ 98 } while (0) 99 100 static void set_kernel_args(const struct arm_boot_info *info) 101 { 102 int initrd_size = info->initrd_size; 103 hwaddr base = info->loader_start; 104 hwaddr p; 105 106 p = base + KERNEL_ARGS_ADDR; 107 /* ATAG_CORE */ 108 WRITE_WORD(p, 5); 109 WRITE_WORD(p, 0x54410001); 110 WRITE_WORD(p, 1); 111 WRITE_WORD(p, 0x1000); 112 WRITE_WORD(p, 0); 113 /* ATAG_MEM */ 114 /* TODO: handle multiple chips on one ATAG list */ 115 WRITE_WORD(p, 4); 116 WRITE_WORD(p, 0x54410002); 117 WRITE_WORD(p, info->ram_size); 118 WRITE_WORD(p, info->loader_start); 119 if (initrd_size) { 120 /* ATAG_INITRD2 */ 121 WRITE_WORD(p, 4); 122 WRITE_WORD(p, 0x54420005); 123 WRITE_WORD(p, info->initrd_start); 124 WRITE_WORD(p, initrd_size); 125 } 126 if (info->kernel_cmdline && *info->kernel_cmdline) { 127 /* ATAG_CMDLINE */ 128 int cmdline_size; 129 130 cmdline_size = strlen(info->kernel_cmdline); 131 cpu_physical_memory_write(p + 8, info->kernel_cmdline, 132 cmdline_size + 1); 133 cmdline_size = (cmdline_size >> 2) + 1; 134 WRITE_WORD(p, cmdline_size + 2); 135 WRITE_WORD(p, 0x54410009); 136 p += cmdline_size * 4; 137 } 138 if (info->atag_board) { 139 /* ATAG_BOARD */ 140 int atag_board_len; 141 uint8_t atag_board_buf[0x1000]; 142 143 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; 144 WRITE_WORD(p, (atag_board_len + 8) >> 2); 145 WRITE_WORD(p, 0x414f4d50); 146 cpu_physical_memory_write(p, atag_board_buf, atag_board_len); 147 p += atag_board_len; 148 } 149 /* ATAG_END */ 150 WRITE_WORD(p, 0); 151 WRITE_WORD(p, 0); 152 } 153 154 static void set_kernel_args_old(const struct arm_boot_info *info) 155 { 156 hwaddr p; 157 const char *s; 158 int initrd_size = info->initrd_size; 159 hwaddr base = info->loader_start; 160 161 /* see linux/include/asm-arm/setup.h */ 162 p = base + KERNEL_ARGS_ADDR; 163 /* page_size */ 164 WRITE_WORD(p, 4096); 165 /* nr_pages */ 166 WRITE_WORD(p, info->ram_size / 4096); 167 /* ramdisk_size */ 168 WRITE_WORD(p, 0); 169 #define FLAG_READONLY 1 170 #define FLAG_RDLOAD 4 171 #define FLAG_RDPROMPT 8 172 /* flags */ 173 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); 174 /* rootdev */ 175 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ 176 /* video_num_cols */ 177 WRITE_WORD(p, 0); 178 /* video_num_rows */ 179 WRITE_WORD(p, 0); 180 /* video_x */ 181 WRITE_WORD(p, 0); 182 /* video_y */ 183 WRITE_WORD(p, 0); 184 /* memc_control_reg */ 185 WRITE_WORD(p, 0); 186 /* unsigned char sounddefault */ 187 /* unsigned char adfsdrives */ 188 /* unsigned char bytes_per_char_h */ 189 /* unsigned char bytes_per_char_v */ 190 WRITE_WORD(p, 0); 191 /* pages_in_bank[4] */ 192 WRITE_WORD(p, 0); 193 WRITE_WORD(p, 0); 194 WRITE_WORD(p, 0); 195 WRITE_WORD(p, 0); 196 /* pages_in_vram */ 197 WRITE_WORD(p, 0); 198 /* initrd_start */ 199 if (initrd_size) { 200 WRITE_WORD(p, info->initrd_start); 201 } else { 202 WRITE_WORD(p, 0); 203 } 204 /* initrd_size */ 205 WRITE_WORD(p, initrd_size); 206 /* rd_start */ 207 WRITE_WORD(p, 0); 208 /* system_rev */ 209 WRITE_WORD(p, 0); 210 /* system_serial_low */ 211 WRITE_WORD(p, 0); 212 /* system_serial_high */ 213 WRITE_WORD(p, 0); 214 /* mem_fclk_21285 */ 215 WRITE_WORD(p, 0); 216 /* zero unused fields */ 217 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { 218 WRITE_WORD(p, 0); 219 } 220 s = info->kernel_cmdline; 221 if (s) { 222 cpu_physical_memory_write(p, s, strlen(s) + 1); 223 } else { 224 WRITE_WORD(p, 0); 225 } 226 } 227 228 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo) 229 { 230 #ifdef CONFIG_FDT 231 uint32_t *mem_reg_property; 232 uint32_t mem_reg_propsize; 233 void *fdt = NULL; 234 char *filename; 235 int size, rc; 236 uint32_t acells, scells, hival; 237 238 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); 239 if (!filename) { 240 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); 241 return -1; 242 } 243 244 fdt = load_device_tree(filename, &size); 245 if (!fdt) { 246 fprintf(stderr, "Couldn't open dtb file %s\n", filename); 247 g_free(filename); 248 return -1; 249 } 250 g_free(filename); 251 252 acells = qemu_devtree_getprop_cell(fdt, "/", "#address-cells"); 253 scells = qemu_devtree_getprop_cell(fdt, "/", "#size-cells"); 254 if (acells == 0 || scells == 0) { 255 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); 256 return -1; 257 } 258 259 mem_reg_propsize = acells + scells; 260 mem_reg_property = g_new0(uint32_t, mem_reg_propsize); 261 mem_reg_property[acells - 1] = cpu_to_be32(binfo->loader_start); 262 hival = cpu_to_be32(binfo->loader_start >> 32); 263 if (acells > 1) { 264 mem_reg_property[acells - 2] = hival; 265 } else if (hival != 0) { 266 fprintf(stderr, "qemu: dtb file not compatible with " 267 "RAM start address > 4GB\n"); 268 exit(1); 269 } 270 mem_reg_property[acells + scells - 1] = cpu_to_be32(binfo->ram_size); 271 hival = cpu_to_be32(binfo->ram_size >> 32); 272 if (scells > 1) { 273 mem_reg_property[acells + scells - 2] = hival; 274 } else if (hival != 0) { 275 fprintf(stderr, "qemu: dtb file not compatible with " 276 "RAM size > 4GB\n"); 277 exit(1); 278 } 279 280 rc = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property, 281 mem_reg_propsize * sizeof(uint32_t)); 282 if (rc < 0) { 283 fprintf(stderr, "couldn't set /memory/reg\n"); 284 } 285 286 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { 287 rc = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs", 288 binfo->kernel_cmdline); 289 if (rc < 0) { 290 fprintf(stderr, "couldn't set /chosen/bootargs\n"); 291 } 292 } 293 294 if (binfo->initrd_size) { 295 rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start", 296 binfo->initrd_start); 297 if (rc < 0) { 298 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); 299 } 300 301 rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end", 302 binfo->initrd_start + binfo->initrd_size); 303 if (rc < 0) { 304 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); 305 } 306 } 307 308 cpu_physical_memory_write(addr, fdt, size); 309 310 return 0; 311 312 #else 313 fprintf(stderr, "Device tree requested, " 314 "but qemu was compiled without fdt support\n"); 315 return -1; 316 #endif 317 } 318 319 static void do_cpu_reset(void *opaque) 320 { 321 ARMCPU *cpu = opaque; 322 CPUARMState *env = &cpu->env; 323 const struct arm_boot_info *info = env->boot_info; 324 325 cpu_reset(CPU(cpu)); 326 if (info) { 327 if (!info->is_linux) { 328 /* Jump to the entry point. */ 329 env->regs[15] = info->entry & 0xfffffffe; 330 env->thumb = info->entry & 1; 331 } else { 332 if (env == first_cpu) { 333 env->regs[15] = info->loader_start; 334 if (!info->dtb_filename) { 335 if (old_param) { 336 set_kernel_args_old(info); 337 } else { 338 set_kernel_args(info); 339 } 340 } 341 } else { 342 info->secondary_cpu_reset_hook(cpu, info); 343 } 344 } 345 } 346 } 347 348 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) 349 { 350 CPUARMState *env = &cpu->env; 351 int kernel_size; 352 int initrd_size; 353 int n; 354 int is_linux = 0; 355 uint64_t elf_entry; 356 hwaddr entry; 357 int big_endian; 358 QemuOpts *machine_opts; 359 360 /* Load the kernel. */ 361 if (!info->kernel_filename) { 362 fprintf(stderr, "Kernel image must be specified\n"); 363 exit(1); 364 } 365 366 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0); 367 if (machine_opts) { 368 info->dtb_filename = qemu_opt_get(machine_opts, "dtb"); 369 } else { 370 info->dtb_filename = NULL; 371 } 372 373 if (!info->secondary_cpu_reset_hook) { 374 info->secondary_cpu_reset_hook = default_reset_secondary; 375 } 376 if (!info->write_secondary_boot) { 377 info->write_secondary_boot = default_write_secondary; 378 } 379 380 if (info->nb_cpus == 0) 381 info->nb_cpus = 1; 382 383 #ifdef TARGET_WORDS_BIGENDIAN 384 big_endian = 1; 385 #else 386 big_endian = 0; 387 #endif 388 389 /* We want to put the initrd far enough into RAM that when the 390 * kernel is uncompressed it will not clobber the initrd. However 391 * on boards without much RAM we must ensure that we still leave 392 * enough room for a decent sized initrd, and on boards with large 393 * amounts of RAM we must avoid the initrd being so far up in RAM 394 * that it is outside lowmem and inaccessible to the kernel. 395 * So for boards with less than 256MB of RAM we put the initrd 396 * halfway into RAM, and for boards with 256MB of RAM or more we put 397 * the initrd at 128MB. 398 */ 399 info->initrd_start = info->loader_start + 400 MIN(info->ram_size / 2, 128 * 1024 * 1024); 401 402 /* Assume that raw images are linux kernels, and ELF images are not. */ 403 kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry, 404 NULL, NULL, big_endian, ELF_MACHINE, 1); 405 entry = elf_entry; 406 if (kernel_size < 0) { 407 kernel_size = load_uimage(info->kernel_filename, &entry, NULL, 408 &is_linux); 409 } 410 if (kernel_size < 0) { 411 entry = info->loader_start + KERNEL_LOAD_ADDR; 412 kernel_size = load_image_targphys(info->kernel_filename, entry, 413 info->ram_size - KERNEL_LOAD_ADDR); 414 is_linux = 1; 415 } 416 if (kernel_size < 0) { 417 fprintf(stderr, "qemu: could not load kernel '%s'\n", 418 info->kernel_filename); 419 exit(1); 420 } 421 info->entry = entry; 422 if (is_linux) { 423 if (info->initrd_filename) { 424 initrd_size = load_image_targphys(info->initrd_filename, 425 info->initrd_start, 426 info->ram_size - 427 info->initrd_start); 428 if (initrd_size < 0) { 429 fprintf(stderr, "qemu: could not load initrd '%s'\n", 430 info->initrd_filename); 431 exit(1); 432 } 433 } else { 434 initrd_size = 0; 435 } 436 info->initrd_size = initrd_size; 437 438 bootloader[4] = info->board_id; 439 440 /* for device tree boot, we pass the DTB directly in r2. Otherwise 441 * we point to the kernel args. 442 */ 443 if (info->dtb_filename) { 444 /* Place the DTB after the initrd in memory. Note that some 445 * kernels will trash anything in the 4K page the initrd 446 * ends in, so make sure the DTB isn't caught up in that. 447 */ 448 hwaddr dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, 449 4096); 450 if (load_dtb(dtb_start, info)) { 451 exit(1); 452 } 453 bootloader[5] = dtb_start; 454 } else { 455 bootloader[5] = info->loader_start + KERNEL_ARGS_ADDR; 456 if (info->ram_size >= (1ULL << 32)) { 457 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot" 458 " Linux kernel using ATAGS (try passing a device tree" 459 " using -dtb)\n"); 460 exit(1); 461 } 462 } 463 bootloader[6] = entry; 464 for (n = 0; n < sizeof(bootloader) / 4; n++) { 465 bootloader[n] = tswap32(bootloader[n]); 466 } 467 rom_add_blob_fixed("bootloader", bootloader, sizeof(bootloader), 468 info->loader_start); 469 if (info->nb_cpus > 1) { 470 info->write_secondary_boot(cpu, info); 471 } 472 } 473 info->is_linux = is_linux; 474 475 for (; env; env = env->next_cpu) { 476 cpu = arm_env_get_cpu(env); 477 env->boot_info = info; 478 qemu_register_reset(do_cpu_reset, cpu); 479 } 480 } 481