1 /* 2 * ARM kernel loader. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "config.h" 11 #include "hw/hw.h" 12 #include "hw/arm/arm.h" 13 #include "sysemu/sysemu.h" 14 #include "hw/boards.h" 15 #include "hw/loader.h" 16 #include "elf.h" 17 #include "sysemu/device_tree.h" 18 #include "qemu/config-file.h" 19 20 #define KERNEL_ARGS_ADDR 0x100 21 #define KERNEL_LOAD_ADDR 0x00010000 22 23 /* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */ 24 static uint32_t bootloader[] = { 25 0xe3a00000, /* mov r0, #0 */ 26 0xe59f1004, /* ldr r1, [pc, #4] */ 27 0xe59f2004, /* ldr r2, [pc, #4] */ 28 0xe59ff004, /* ldr pc, [pc, #4] */ 29 0, /* Board ID */ 30 0, /* Address of kernel args. Set by integratorcp_init. */ 31 0 /* Kernel entry point. Set by integratorcp_init. */ 32 }; 33 34 /* Handling for secondary CPU boot in a multicore system. 35 * Unlike the uniprocessor/primary CPU boot, this is platform 36 * dependent. The default code here is based on the secondary 37 * CPU boot protocol used on realview/vexpress boards, with 38 * some parameterisation to increase its flexibility. 39 * QEMU platform models for which this code is not appropriate 40 * should override write_secondary_boot and secondary_cpu_reset_hook 41 * instead. 42 * 43 * This code enables the interrupt controllers for the secondary 44 * CPUs and then puts all the secondary CPUs into a loop waiting 45 * for an interprocessor interrupt and polling a configurable 46 * location for the kernel secondary CPU entry point. 47 */ 48 #define DSB_INSN 0xf57ff04f 49 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ 50 51 static uint32_t smpboot[] = { 52 0xe59f2028, /* ldr r2, gic_cpu_if */ 53 0xe59f0028, /* ldr r0, startaddr */ 54 0xe3a01001, /* mov r1, #1 */ 55 0xe5821000, /* str r1, [r2] - set GICC_CTLR.Enable */ 56 0xe3a010ff, /* mov r1, #0xff */ 57 0xe5821004, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ 58 DSB_INSN, /* dsb */ 59 0xe320f003, /* wfi */ 60 0xe5901000, /* ldr r1, [r0] */ 61 0xe1110001, /* tst r1, r1 */ 62 0x0afffffb, /* beq <wfi> */ 63 0xe12fff11, /* bx r1 */ 64 0, /* gic_cpu_if: base address of GIC CPU interface */ 65 0 /* bootreg: Boot register address is held here */ 66 }; 67 68 static void default_write_secondary(ARMCPU *cpu, 69 const struct arm_boot_info *info) 70 { 71 int n; 72 smpboot[ARRAY_SIZE(smpboot) - 1] = info->smp_bootreg_addr; 73 smpboot[ARRAY_SIZE(smpboot) - 2] = info->gic_cpu_if_addr; 74 for (n = 0; n < ARRAY_SIZE(smpboot); n++) { 75 /* Replace DSB with the pre-v7 DSB if necessary. */ 76 if (!arm_feature(&cpu->env, ARM_FEATURE_V7) && 77 smpboot[n] == DSB_INSN) { 78 smpboot[n] = CP15_DSB_INSN; 79 } 80 smpboot[n] = tswap32(smpboot[n]); 81 } 82 rom_add_blob_fixed("smpboot", smpboot, sizeof(smpboot), 83 info->smp_loader_start); 84 } 85 86 static void default_reset_secondary(ARMCPU *cpu, 87 const struct arm_boot_info *info) 88 { 89 CPUARMState *env = &cpu->env; 90 91 stl_phys_notdirty(info->smp_bootreg_addr, 0); 92 env->regs[15] = info->smp_loader_start; 93 } 94 95 #define WRITE_WORD(p, value) do { \ 96 stl_phys_notdirty(p, value); \ 97 p += 4; \ 98 } while (0) 99 100 static void set_kernel_args(const struct arm_boot_info *info) 101 { 102 int initrd_size = info->initrd_size; 103 hwaddr base = info->loader_start; 104 hwaddr p; 105 106 p = base + KERNEL_ARGS_ADDR; 107 /* ATAG_CORE */ 108 WRITE_WORD(p, 5); 109 WRITE_WORD(p, 0x54410001); 110 WRITE_WORD(p, 1); 111 WRITE_WORD(p, 0x1000); 112 WRITE_WORD(p, 0); 113 /* ATAG_MEM */ 114 /* TODO: handle multiple chips on one ATAG list */ 115 WRITE_WORD(p, 4); 116 WRITE_WORD(p, 0x54410002); 117 WRITE_WORD(p, info->ram_size); 118 WRITE_WORD(p, info->loader_start); 119 if (initrd_size) { 120 /* ATAG_INITRD2 */ 121 WRITE_WORD(p, 4); 122 WRITE_WORD(p, 0x54420005); 123 WRITE_WORD(p, info->initrd_start); 124 WRITE_WORD(p, initrd_size); 125 } 126 if (info->kernel_cmdline && *info->kernel_cmdline) { 127 /* ATAG_CMDLINE */ 128 int cmdline_size; 129 130 cmdline_size = strlen(info->kernel_cmdline); 131 cpu_physical_memory_write(p + 8, info->kernel_cmdline, 132 cmdline_size + 1); 133 cmdline_size = (cmdline_size >> 2) + 1; 134 WRITE_WORD(p, cmdline_size + 2); 135 WRITE_WORD(p, 0x54410009); 136 p += cmdline_size * 4; 137 } 138 if (info->atag_board) { 139 /* ATAG_BOARD */ 140 int atag_board_len; 141 uint8_t atag_board_buf[0x1000]; 142 143 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; 144 WRITE_WORD(p, (atag_board_len + 8) >> 2); 145 WRITE_WORD(p, 0x414f4d50); 146 cpu_physical_memory_write(p, atag_board_buf, atag_board_len); 147 p += atag_board_len; 148 } 149 /* ATAG_END */ 150 WRITE_WORD(p, 0); 151 WRITE_WORD(p, 0); 152 } 153 154 static void set_kernel_args_old(const struct arm_boot_info *info) 155 { 156 hwaddr p; 157 const char *s; 158 int initrd_size = info->initrd_size; 159 hwaddr base = info->loader_start; 160 161 /* see linux/include/asm-arm/setup.h */ 162 p = base + KERNEL_ARGS_ADDR; 163 /* page_size */ 164 WRITE_WORD(p, 4096); 165 /* nr_pages */ 166 WRITE_WORD(p, info->ram_size / 4096); 167 /* ramdisk_size */ 168 WRITE_WORD(p, 0); 169 #define FLAG_READONLY 1 170 #define FLAG_RDLOAD 4 171 #define FLAG_RDPROMPT 8 172 /* flags */ 173 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); 174 /* rootdev */ 175 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ 176 /* video_num_cols */ 177 WRITE_WORD(p, 0); 178 /* video_num_rows */ 179 WRITE_WORD(p, 0); 180 /* video_x */ 181 WRITE_WORD(p, 0); 182 /* video_y */ 183 WRITE_WORD(p, 0); 184 /* memc_control_reg */ 185 WRITE_WORD(p, 0); 186 /* unsigned char sounddefault */ 187 /* unsigned char adfsdrives */ 188 /* unsigned char bytes_per_char_h */ 189 /* unsigned char bytes_per_char_v */ 190 WRITE_WORD(p, 0); 191 /* pages_in_bank[4] */ 192 WRITE_WORD(p, 0); 193 WRITE_WORD(p, 0); 194 WRITE_WORD(p, 0); 195 WRITE_WORD(p, 0); 196 /* pages_in_vram */ 197 WRITE_WORD(p, 0); 198 /* initrd_start */ 199 if (initrd_size) { 200 WRITE_WORD(p, info->initrd_start); 201 } else { 202 WRITE_WORD(p, 0); 203 } 204 /* initrd_size */ 205 WRITE_WORD(p, initrd_size); 206 /* rd_start */ 207 WRITE_WORD(p, 0); 208 /* system_rev */ 209 WRITE_WORD(p, 0); 210 /* system_serial_low */ 211 WRITE_WORD(p, 0); 212 /* system_serial_high */ 213 WRITE_WORD(p, 0); 214 /* mem_fclk_21285 */ 215 WRITE_WORD(p, 0); 216 /* zero unused fields */ 217 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { 218 WRITE_WORD(p, 0); 219 } 220 s = info->kernel_cmdline; 221 if (s) { 222 cpu_physical_memory_write(p, s, strlen(s) + 1); 223 } else { 224 WRITE_WORD(p, 0); 225 } 226 } 227 228 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo) 229 { 230 uint32_t *mem_reg_property; 231 uint32_t mem_reg_propsize; 232 void *fdt = NULL; 233 char *filename; 234 int size, rc; 235 uint32_t acells, scells, hival; 236 237 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); 238 if (!filename) { 239 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); 240 goto fail; 241 } 242 243 fdt = load_device_tree(filename, &size); 244 if (!fdt) { 245 fprintf(stderr, "Couldn't open dtb file %s\n", filename); 246 g_free(filename); 247 goto fail; 248 } 249 g_free(filename); 250 251 acells = qemu_devtree_getprop_cell(fdt, "/", "#address-cells"); 252 scells = qemu_devtree_getprop_cell(fdt, "/", "#size-cells"); 253 if (acells == 0 || scells == 0) { 254 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); 255 goto fail; 256 } 257 258 mem_reg_propsize = acells + scells; 259 mem_reg_property = g_new0(uint32_t, mem_reg_propsize); 260 mem_reg_property[acells - 1] = cpu_to_be32(binfo->loader_start); 261 hival = cpu_to_be32(binfo->loader_start >> 32); 262 if (acells > 1) { 263 mem_reg_property[acells - 2] = hival; 264 } else if (hival != 0) { 265 fprintf(stderr, "qemu: dtb file not compatible with " 266 "RAM start address > 4GB\n"); 267 goto fail; 268 } 269 mem_reg_property[acells + scells - 1] = cpu_to_be32(binfo->ram_size); 270 hival = cpu_to_be32(binfo->ram_size >> 32); 271 if (scells > 1) { 272 mem_reg_property[acells + scells - 2] = hival; 273 } else if (hival != 0) { 274 fprintf(stderr, "qemu: dtb file not compatible with " 275 "RAM size > 4GB\n"); 276 goto fail; 277 } 278 279 rc = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property, 280 mem_reg_propsize * sizeof(uint32_t)); 281 if (rc < 0) { 282 fprintf(stderr, "couldn't set /memory/reg\n"); 283 goto fail; 284 } 285 286 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { 287 rc = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs", 288 binfo->kernel_cmdline); 289 if (rc < 0) { 290 fprintf(stderr, "couldn't set /chosen/bootargs\n"); 291 goto fail; 292 } 293 } 294 295 if (binfo->initrd_size) { 296 rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start", 297 binfo->initrd_start); 298 if (rc < 0) { 299 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); 300 goto fail; 301 } 302 303 rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end", 304 binfo->initrd_start + binfo->initrd_size); 305 if (rc < 0) { 306 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); 307 goto fail; 308 } 309 } 310 qemu_devtree_dumpdtb(fdt, size); 311 312 cpu_physical_memory_write(addr, fdt, size); 313 314 g_free(fdt); 315 316 return 0; 317 318 fail: 319 g_free(fdt); 320 return -1; 321 } 322 323 static void do_cpu_reset(void *opaque) 324 { 325 ARMCPU *cpu = opaque; 326 CPUARMState *env = &cpu->env; 327 const struct arm_boot_info *info = env->boot_info; 328 329 cpu_reset(CPU(cpu)); 330 if (info) { 331 if (!info->is_linux) { 332 /* Jump to the entry point. */ 333 env->regs[15] = info->entry & 0xfffffffe; 334 env->thumb = info->entry & 1; 335 } else { 336 if (CPU(cpu) == first_cpu) { 337 env->regs[15] = info->loader_start; 338 if (!info->dtb_filename) { 339 if (old_param) { 340 set_kernel_args_old(info); 341 } else { 342 set_kernel_args(info); 343 } 344 } 345 } else { 346 info->secondary_cpu_reset_hook(cpu, info); 347 } 348 } 349 } 350 } 351 352 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) 353 { 354 CPUState *cs = CPU(cpu); 355 int kernel_size; 356 int initrd_size; 357 int n; 358 int is_linux = 0; 359 uint64_t elf_entry; 360 hwaddr entry; 361 int big_endian; 362 363 /* Load the kernel. */ 364 if (!info->kernel_filename) { 365 fprintf(stderr, "Kernel image must be specified\n"); 366 exit(1); 367 } 368 369 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb"); 370 371 if (!info->secondary_cpu_reset_hook) { 372 info->secondary_cpu_reset_hook = default_reset_secondary; 373 } 374 if (!info->write_secondary_boot) { 375 info->write_secondary_boot = default_write_secondary; 376 } 377 378 if (info->nb_cpus == 0) 379 info->nb_cpus = 1; 380 381 #ifdef TARGET_WORDS_BIGENDIAN 382 big_endian = 1; 383 #else 384 big_endian = 0; 385 #endif 386 387 /* We want to put the initrd far enough into RAM that when the 388 * kernel is uncompressed it will not clobber the initrd. However 389 * on boards without much RAM we must ensure that we still leave 390 * enough room for a decent sized initrd, and on boards with large 391 * amounts of RAM we must avoid the initrd being so far up in RAM 392 * that it is outside lowmem and inaccessible to the kernel. 393 * So for boards with less than 256MB of RAM we put the initrd 394 * halfway into RAM, and for boards with 256MB of RAM or more we put 395 * the initrd at 128MB. 396 */ 397 info->initrd_start = info->loader_start + 398 MIN(info->ram_size / 2, 128 * 1024 * 1024); 399 400 /* Assume that raw images are linux kernels, and ELF images are not. */ 401 kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry, 402 NULL, NULL, big_endian, ELF_MACHINE, 1); 403 entry = elf_entry; 404 if (kernel_size < 0) { 405 kernel_size = load_uimage(info->kernel_filename, &entry, NULL, 406 &is_linux); 407 } 408 if (kernel_size < 0) { 409 entry = info->loader_start + KERNEL_LOAD_ADDR; 410 kernel_size = load_image_targphys(info->kernel_filename, entry, 411 info->ram_size - KERNEL_LOAD_ADDR); 412 is_linux = 1; 413 } 414 if (kernel_size < 0) { 415 fprintf(stderr, "qemu: could not load kernel '%s'\n", 416 info->kernel_filename); 417 exit(1); 418 } 419 info->entry = entry; 420 if (is_linux) { 421 if (info->initrd_filename) { 422 initrd_size = load_image_targphys(info->initrd_filename, 423 info->initrd_start, 424 info->ram_size - 425 info->initrd_start); 426 if (initrd_size < 0) { 427 fprintf(stderr, "qemu: could not load initrd '%s'\n", 428 info->initrd_filename); 429 exit(1); 430 } 431 } else { 432 initrd_size = 0; 433 } 434 info->initrd_size = initrd_size; 435 436 bootloader[4] = info->board_id; 437 438 /* for device tree boot, we pass the DTB directly in r2. Otherwise 439 * we point to the kernel args. 440 */ 441 if (info->dtb_filename) { 442 /* Place the DTB after the initrd in memory. Note that some 443 * kernels will trash anything in the 4K page the initrd 444 * ends in, so make sure the DTB isn't caught up in that. 445 */ 446 hwaddr dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, 447 4096); 448 if (load_dtb(dtb_start, info)) { 449 exit(1); 450 } 451 bootloader[5] = dtb_start; 452 } else { 453 bootloader[5] = info->loader_start + KERNEL_ARGS_ADDR; 454 if (info->ram_size >= (1ULL << 32)) { 455 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot" 456 " Linux kernel using ATAGS (try passing a device tree" 457 " using -dtb)\n"); 458 exit(1); 459 } 460 } 461 bootloader[6] = entry; 462 for (n = 0; n < sizeof(bootloader) / 4; n++) { 463 bootloader[n] = tswap32(bootloader[n]); 464 } 465 rom_add_blob_fixed("bootloader", bootloader, sizeof(bootloader), 466 info->loader_start); 467 if (info->nb_cpus > 1) { 468 info->write_secondary_boot(cpu, info); 469 } 470 } 471 info->is_linux = is_linux; 472 473 for (; cs; cs = cs->next_cpu) { 474 cpu = ARM_CPU(cs); 475 cpu->env.boot_info = info; 476 qemu_register_reset(do_cpu_reset, cpu); 477 } 478 } 479