1 /* 2 * ARM kernel loader. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu-common.h" 12 #include "qemu/error-report.h" 13 #include "qapi/error.h" 14 #include <libfdt.h> 15 #include "hw/hw.h" 16 #include "hw/arm/boot.h" 17 #include "hw/arm/linux-boot-if.h" 18 #include "sysemu/kvm.h" 19 #include "sysemu/sysemu.h" 20 #include "sysemu/numa.h" 21 #include "hw/boards.h" 22 #include "hw/loader.h" 23 #include "elf.h" 24 #include "sysemu/device_tree.h" 25 #include "qemu/config-file.h" 26 #include "qemu/option.h" 27 #include "exec/address-spaces.h" 28 #include "qemu/units.h" 29 30 /* Kernel boot protocol is specified in the kernel docs 31 * Documentation/arm/Booting and Documentation/arm64/booting.txt 32 * They have different preferred image load offsets from system RAM base. 33 */ 34 #define KERNEL_ARGS_ADDR 0x100 35 #define KERNEL_NOLOAD_ADDR 0x02000000 36 #define KERNEL_LOAD_ADDR 0x00010000 37 #define KERNEL64_LOAD_ADDR 0x00080000 38 39 #define ARM64_TEXT_OFFSET_OFFSET 8 40 #define ARM64_MAGIC_OFFSET 56 41 42 #define BOOTLOADER_MAX_SIZE (4 * KiB) 43 44 AddressSpace *arm_boot_address_space(ARMCPU *cpu, 45 const struct arm_boot_info *info) 46 { 47 /* Return the address space to use for bootloader reads and writes. 48 * We prefer the secure address space if the CPU has it and we're 49 * going to boot the guest into it. 50 */ 51 int asidx; 52 CPUState *cs = CPU(cpu); 53 54 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) { 55 asidx = ARMASIdx_S; 56 } else { 57 asidx = ARMASIdx_NS; 58 } 59 60 return cpu_get_address_space(cs, asidx); 61 } 62 63 typedef enum { 64 FIXUP_NONE = 0, /* do nothing */ 65 FIXUP_TERMINATOR, /* end of insns */ 66 FIXUP_BOARDID, /* overwrite with board ID number */ 67 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */ 68 FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */ 69 FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */ 70 FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */ 71 FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */ 72 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ 73 FIXUP_BOOTREG, /* overwrite with boot register address */ 74 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ 75 FIXUP_MAX, 76 } FixupType; 77 78 typedef struct ARMInsnFixup { 79 uint32_t insn; 80 FixupType fixup; 81 } ARMInsnFixup; 82 83 static const ARMInsnFixup bootloader_aarch64[] = { 84 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ 85 { 0xaa1f03e1 }, /* mov x1, xzr */ 86 { 0xaa1f03e2 }, /* mov x2, xzr */ 87 { 0xaa1f03e3 }, /* mov x3, xzr */ 88 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ 89 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ 90 { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */ 91 { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */ 92 { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */ 93 { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */ 94 { 0, FIXUP_TERMINATOR } 95 }; 96 97 /* A very small bootloader: call the board-setup code (if needed), 98 * set r0-r2, then jump to the kernel. 99 * If we're not calling boot setup code then we don't copy across 100 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array. 101 */ 102 103 static const ARMInsnFixup bootloader[] = { 104 { 0xe28fe004 }, /* add lr, pc, #4 */ 105 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */ 106 { 0, FIXUP_BOARD_SETUP }, 107 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3 108 { 0xe3a00000 }, /* mov r0, #0 */ 109 { 0xe59f1004 }, /* ldr r1, [pc, #4] */ 110 { 0xe59f2004 }, /* ldr r2, [pc, #4] */ 111 { 0xe59ff004 }, /* ldr pc, [pc, #4] */ 112 { 0, FIXUP_BOARDID }, 113 { 0, FIXUP_ARGPTR_LO }, 114 { 0, FIXUP_ENTRYPOINT_LO }, 115 { 0, FIXUP_TERMINATOR } 116 }; 117 118 /* Handling for secondary CPU boot in a multicore system. 119 * Unlike the uniprocessor/primary CPU boot, this is platform 120 * dependent. The default code here is based on the secondary 121 * CPU boot protocol used on realview/vexpress boards, with 122 * some parameterisation to increase its flexibility. 123 * QEMU platform models for which this code is not appropriate 124 * should override write_secondary_boot and secondary_cpu_reset_hook 125 * instead. 126 * 127 * This code enables the interrupt controllers for the secondary 128 * CPUs and then puts all the secondary CPUs into a loop waiting 129 * for an interprocessor interrupt and polling a configurable 130 * location for the kernel secondary CPU entry point. 131 */ 132 #define DSB_INSN 0xf57ff04f 133 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ 134 135 static const ARMInsnFixup smpboot[] = { 136 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ 137 { 0xe59f0028 }, /* ldr r0, bootreg_addr */ 138 { 0xe3a01001 }, /* mov r1, #1 */ 139 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ 140 { 0xe3a010ff }, /* mov r1, #0xff */ 141 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ 142 { 0, FIXUP_DSB }, /* dsb */ 143 { 0xe320f003 }, /* wfi */ 144 { 0xe5901000 }, /* ldr r1, [r0] */ 145 { 0xe1110001 }, /* tst r1, r1 */ 146 { 0x0afffffb }, /* beq <wfi> */ 147 { 0xe12fff11 }, /* bx r1 */ 148 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ 149 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ 150 { 0, FIXUP_TERMINATOR } 151 }; 152 153 static void write_bootloader(const char *name, hwaddr addr, 154 const ARMInsnFixup *insns, uint32_t *fixupcontext, 155 AddressSpace *as) 156 { 157 /* Fix up the specified bootloader fragment and write it into 158 * guest memory using rom_add_blob_fixed(). fixupcontext is 159 * an array giving the values to write in for the fixup types 160 * which write a value into the code array. 161 */ 162 int i, len; 163 uint32_t *code; 164 165 len = 0; 166 while (insns[len].fixup != FIXUP_TERMINATOR) { 167 len++; 168 } 169 170 code = g_new0(uint32_t, len); 171 172 for (i = 0; i < len; i++) { 173 uint32_t insn = insns[i].insn; 174 FixupType fixup = insns[i].fixup; 175 176 switch (fixup) { 177 case FIXUP_NONE: 178 break; 179 case FIXUP_BOARDID: 180 case FIXUP_BOARD_SETUP: 181 case FIXUP_ARGPTR_LO: 182 case FIXUP_ARGPTR_HI: 183 case FIXUP_ENTRYPOINT_LO: 184 case FIXUP_ENTRYPOINT_HI: 185 case FIXUP_GIC_CPU_IF: 186 case FIXUP_BOOTREG: 187 case FIXUP_DSB: 188 insn = fixupcontext[fixup]; 189 break; 190 default: 191 abort(); 192 } 193 code[i] = tswap32(insn); 194 } 195 196 assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE); 197 198 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as); 199 200 g_free(code); 201 } 202 203 static void default_write_secondary(ARMCPU *cpu, 204 const struct arm_boot_info *info) 205 { 206 uint32_t fixupcontext[FIXUP_MAX]; 207 AddressSpace *as = arm_boot_address_space(cpu, info); 208 209 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; 210 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; 211 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 212 fixupcontext[FIXUP_DSB] = DSB_INSN; 213 } else { 214 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; 215 } 216 217 write_bootloader("smpboot", info->smp_loader_start, 218 smpboot, fixupcontext, as); 219 } 220 221 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu, 222 const struct arm_boot_info *info, 223 hwaddr mvbar_addr) 224 { 225 AddressSpace *as = arm_boot_address_space(cpu, info); 226 int n; 227 uint32_t mvbar_blob[] = { 228 /* mvbar_addr: secure monitor vectors 229 * Default unimplemented and unused vectors to spin. Makes it 230 * easier to debug (as opposed to the CPU running away). 231 */ 232 0xeafffffe, /* (spin) */ 233 0xeafffffe, /* (spin) */ 234 0xe1b0f00e, /* movs pc, lr ;SMC exception return */ 235 0xeafffffe, /* (spin) */ 236 0xeafffffe, /* (spin) */ 237 0xeafffffe, /* (spin) */ 238 0xeafffffe, /* (spin) */ 239 0xeafffffe, /* (spin) */ 240 }; 241 uint32_t board_setup_blob[] = { 242 /* board setup addr */ 243 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */ 244 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */ 245 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */ 246 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */ 247 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */ 248 0xe1a0100e, /* mov r1, lr ;save LR across SMC */ 249 0xe1600070, /* smc #0 ;call monitor to flush SCR */ 250 0xe1a0f001, /* mov pc, r1 ;return */ 251 }; 252 253 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */ 254 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100); 255 256 /* check that these blobs don't overlap */ 257 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr) 258 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr)); 259 260 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) { 261 mvbar_blob[n] = tswap32(mvbar_blob[n]); 262 } 263 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob), 264 mvbar_addr, as); 265 266 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) { 267 board_setup_blob[n] = tswap32(board_setup_blob[n]); 268 } 269 rom_add_blob_fixed_as("board-setup", board_setup_blob, 270 sizeof(board_setup_blob), info->board_setup_addr, as); 271 } 272 273 static void default_reset_secondary(ARMCPU *cpu, 274 const struct arm_boot_info *info) 275 { 276 AddressSpace *as = arm_boot_address_space(cpu, info); 277 CPUState *cs = CPU(cpu); 278 279 address_space_stl_notdirty(as, info->smp_bootreg_addr, 280 0, MEMTXATTRS_UNSPECIFIED, NULL); 281 cpu_set_pc(cs, info->smp_loader_start); 282 } 283 284 static inline bool have_dtb(const struct arm_boot_info *info) 285 { 286 return info->dtb_filename || info->get_dtb; 287 } 288 289 #define WRITE_WORD(p, value) do { \ 290 address_space_stl_notdirty(as, p, value, \ 291 MEMTXATTRS_UNSPECIFIED, NULL); \ 292 p += 4; \ 293 } while (0) 294 295 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as) 296 { 297 int initrd_size = info->initrd_size; 298 hwaddr base = info->loader_start; 299 hwaddr p; 300 301 p = base + KERNEL_ARGS_ADDR; 302 /* ATAG_CORE */ 303 WRITE_WORD(p, 5); 304 WRITE_WORD(p, 0x54410001); 305 WRITE_WORD(p, 1); 306 WRITE_WORD(p, 0x1000); 307 WRITE_WORD(p, 0); 308 /* ATAG_MEM */ 309 /* TODO: handle multiple chips on one ATAG list */ 310 WRITE_WORD(p, 4); 311 WRITE_WORD(p, 0x54410002); 312 WRITE_WORD(p, info->ram_size); 313 WRITE_WORD(p, info->loader_start); 314 if (initrd_size) { 315 /* ATAG_INITRD2 */ 316 WRITE_WORD(p, 4); 317 WRITE_WORD(p, 0x54420005); 318 WRITE_WORD(p, info->initrd_start); 319 WRITE_WORD(p, initrd_size); 320 } 321 if (info->kernel_cmdline && *info->kernel_cmdline) { 322 /* ATAG_CMDLINE */ 323 int cmdline_size; 324 325 cmdline_size = strlen(info->kernel_cmdline); 326 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED, 327 (const uint8_t *)info->kernel_cmdline, 328 cmdline_size + 1); 329 cmdline_size = (cmdline_size >> 2) + 1; 330 WRITE_WORD(p, cmdline_size + 2); 331 WRITE_WORD(p, 0x54410009); 332 p += cmdline_size * 4; 333 } 334 if (info->atag_board) { 335 /* ATAG_BOARD */ 336 int atag_board_len; 337 uint8_t atag_board_buf[0x1000]; 338 339 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; 340 WRITE_WORD(p, (atag_board_len + 8) >> 2); 341 WRITE_WORD(p, 0x414f4d50); 342 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, 343 atag_board_buf, atag_board_len); 344 p += atag_board_len; 345 } 346 /* ATAG_END */ 347 WRITE_WORD(p, 0); 348 WRITE_WORD(p, 0); 349 } 350 351 static void set_kernel_args_old(const struct arm_boot_info *info, 352 AddressSpace *as) 353 { 354 hwaddr p; 355 const char *s; 356 int initrd_size = info->initrd_size; 357 hwaddr base = info->loader_start; 358 359 /* see linux/include/asm-arm/setup.h */ 360 p = base + KERNEL_ARGS_ADDR; 361 /* page_size */ 362 WRITE_WORD(p, 4096); 363 /* nr_pages */ 364 WRITE_WORD(p, info->ram_size / 4096); 365 /* ramdisk_size */ 366 WRITE_WORD(p, 0); 367 #define FLAG_READONLY 1 368 #define FLAG_RDLOAD 4 369 #define FLAG_RDPROMPT 8 370 /* flags */ 371 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); 372 /* rootdev */ 373 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ 374 /* video_num_cols */ 375 WRITE_WORD(p, 0); 376 /* video_num_rows */ 377 WRITE_WORD(p, 0); 378 /* video_x */ 379 WRITE_WORD(p, 0); 380 /* video_y */ 381 WRITE_WORD(p, 0); 382 /* memc_control_reg */ 383 WRITE_WORD(p, 0); 384 /* unsigned char sounddefault */ 385 /* unsigned char adfsdrives */ 386 /* unsigned char bytes_per_char_h */ 387 /* unsigned char bytes_per_char_v */ 388 WRITE_WORD(p, 0); 389 /* pages_in_bank[4] */ 390 WRITE_WORD(p, 0); 391 WRITE_WORD(p, 0); 392 WRITE_WORD(p, 0); 393 WRITE_WORD(p, 0); 394 /* pages_in_vram */ 395 WRITE_WORD(p, 0); 396 /* initrd_start */ 397 if (initrd_size) { 398 WRITE_WORD(p, info->initrd_start); 399 } else { 400 WRITE_WORD(p, 0); 401 } 402 /* initrd_size */ 403 WRITE_WORD(p, initrd_size); 404 /* rd_start */ 405 WRITE_WORD(p, 0); 406 /* system_rev */ 407 WRITE_WORD(p, 0); 408 /* system_serial_low */ 409 WRITE_WORD(p, 0); 410 /* system_serial_high */ 411 WRITE_WORD(p, 0); 412 /* mem_fclk_21285 */ 413 WRITE_WORD(p, 0); 414 /* zero unused fields */ 415 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { 416 WRITE_WORD(p, 0); 417 } 418 s = info->kernel_cmdline; 419 if (s) { 420 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, 421 (const uint8_t *)s, strlen(s) + 1); 422 } else { 423 WRITE_WORD(p, 0); 424 } 425 } 426 427 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base, 428 uint32_t scells, hwaddr mem_len, 429 int numa_node_id) 430 { 431 char *nodename; 432 int ret; 433 434 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base); 435 qemu_fdt_add_subnode(fdt, nodename); 436 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); 437 ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base, 438 scells, mem_len); 439 if (ret < 0) { 440 goto out; 441 } 442 443 /* only set the NUMA ID if it is specified */ 444 if (numa_node_id >= 0) { 445 ret = qemu_fdt_setprop_cell(fdt, nodename, 446 "numa-node-id", numa_node_id); 447 } 448 out: 449 g_free(nodename); 450 return ret; 451 } 452 453 static void fdt_add_psci_node(void *fdt) 454 { 455 uint32_t cpu_suspend_fn; 456 uint32_t cpu_off_fn; 457 uint32_t cpu_on_fn; 458 uint32_t migrate_fn; 459 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 460 const char *psci_method; 461 int64_t psci_conduit; 462 int rc; 463 464 psci_conduit = object_property_get_int(OBJECT(armcpu), 465 "psci-conduit", 466 &error_abort); 467 switch (psci_conduit) { 468 case QEMU_PSCI_CONDUIT_DISABLED: 469 return; 470 case QEMU_PSCI_CONDUIT_HVC: 471 psci_method = "hvc"; 472 break; 473 case QEMU_PSCI_CONDUIT_SMC: 474 psci_method = "smc"; 475 break; 476 default: 477 g_assert_not_reached(); 478 } 479 480 /* 481 * If /psci node is present in provided DTB, assume that no fixup 482 * is necessary and all PSCI configuration should be taken as-is 483 */ 484 rc = fdt_path_offset(fdt, "/psci"); 485 if (rc >= 0) { 486 return; 487 } 488 489 qemu_fdt_add_subnode(fdt, "/psci"); 490 if (armcpu->psci_version == 2) { 491 const char comp[] = "arm,psci-0.2\0arm,psci"; 492 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 493 494 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 495 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 496 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 497 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 498 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 499 } else { 500 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 501 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 502 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 503 } 504 } else { 505 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 506 507 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 508 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 509 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 510 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 511 } 512 513 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 514 * to the instruction that should be used to invoke PSCI functions. 515 * However, the device tree binding uses 'method' instead, so that is 516 * what we should use here. 517 */ 518 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method); 519 520 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 521 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 522 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 523 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 524 } 525 526 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo, 527 hwaddr addr_limit, AddressSpace *as) 528 { 529 void *fdt = NULL; 530 int size, rc, n = 0; 531 uint32_t acells, scells; 532 unsigned int i; 533 hwaddr mem_base, mem_len; 534 char **node_path; 535 Error *err = NULL; 536 537 if (binfo->dtb_filename) { 538 char *filename; 539 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); 540 if (!filename) { 541 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); 542 goto fail; 543 } 544 545 fdt = load_device_tree(filename, &size); 546 if (!fdt) { 547 fprintf(stderr, "Couldn't open dtb file %s\n", filename); 548 g_free(filename); 549 goto fail; 550 } 551 g_free(filename); 552 } else { 553 fdt = binfo->get_dtb(binfo, &size); 554 if (!fdt) { 555 fprintf(stderr, "Board was unable to create a dtb blob\n"); 556 goto fail; 557 } 558 } 559 560 if (addr_limit > addr && size > (addr_limit - addr)) { 561 /* Installing the device tree blob at addr would exceed addr_limit. 562 * Whether this constitutes failure is up to the caller to decide, 563 * so just return 0 as size, i.e., no error. 564 */ 565 g_free(fdt); 566 return 0; 567 } 568 569 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells", 570 NULL, &error_fatal); 571 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells", 572 NULL, &error_fatal); 573 if (acells == 0 || scells == 0) { 574 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); 575 goto fail; 576 } 577 578 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) { 579 /* This is user error so deserves a friendlier error message 580 * than the failure of setprop_sized_cells would provide 581 */ 582 fprintf(stderr, "qemu: dtb file not compatible with " 583 "RAM size > 4GB\n"); 584 goto fail; 585 } 586 587 /* nop all root nodes matching /memory or /memory@unit-address */ 588 node_path = qemu_fdt_node_unit_path(fdt, "memory", &err); 589 if (err) { 590 error_report_err(err); 591 goto fail; 592 } 593 while (node_path[n]) { 594 if (g_str_has_prefix(node_path[n], "/memory")) { 595 qemu_fdt_nop_node(fdt, node_path[n]); 596 } 597 n++; 598 } 599 g_strfreev(node_path); 600 601 if (nb_numa_nodes > 0) { 602 mem_base = binfo->loader_start; 603 for (i = 0; i < nb_numa_nodes; i++) { 604 mem_len = numa_info[i].node_mem; 605 rc = fdt_add_memory_node(fdt, acells, mem_base, 606 scells, mem_len, i); 607 if (rc < 0) { 608 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n", 609 mem_base); 610 goto fail; 611 } 612 613 mem_base += mem_len; 614 } 615 } else { 616 rc = fdt_add_memory_node(fdt, acells, binfo->loader_start, 617 scells, binfo->ram_size, -1); 618 if (rc < 0) { 619 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n", 620 binfo->loader_start); 621 goto fail; 622 } 623 } 624 625 rc = fdt_path_offset(fdt, "/chosen"); 626 if (rc < 0) { 627 qemu_fdt_add_subnode(fdt, "/chosen"); 628 } 629 630 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { 631 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", 632 binfo->kernel_cmdline); 633 if (rc < 0) { 634 fprintf(stderr, "couldn't set /chosen/bootargs\n"); 635 goto fail; 636 } 637 } 638 639 if (binfo->initrd_size) { 640 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", 641 binfo->initrd_start); 642 if (rc < 0) { 643 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); 644 goto fail; 645 } 646 647 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", 648 binfo->initrd_start + binfo->initrd_size); 649 if (rc < 0) { 650 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); 651 goto fail; 652 } 653 } 654 655 fdt_add_psci_node(fdt); 656 657 if (binfo->modify_dtb) { 658 binfo->modify_dtb(binfo, fdt); 659 } 660 661 qemu_fdt_dumpdtb(fdt, size); 662 663 /* Put the DTB into the memory map as a ROM image: this will ensure 664 * the DTB is copied again upon reset, even if addr points into RAM. 665 */ 666 rom_add_blob_fixed_as("dtb", fdt, size, addr, as); 667 668 g_free(fdt); 669 670 return size; 671 672 fail: 673 g_free(fdt); 674 return -1; 675 } 676 677 static void do_cpu_reset(void *opaque) 678 { 679 ARMCPU *cpu = opaque; 680 CPUState *cs = CPU(cpu); 681 CPUARMState *env = &cpu->env; 682 const struct arm_boot_info *info = env->boot_info; 683 684 cpu_reset(cs); 685 if (info) { 686 if (!info->is_linux) { 687 int i; 688 /* Jump to the entry point. */ 689 uint64_t entry = info->entry; 690 691 switch (info->endianness) { 692 case ARM_ENDIANNESS_LE: 693 env->cp15.sctlr_el[1] &= ~SCTLR_E0E; 694 for (i = 1; i < 4; ++i) { 695 env->cp15.sctlr_el[i] &= ~SCTLR_EE; 696 } 697 env->uncached_cpsr &= ~CPSR_E; 698 break; 699 case ARM_ENDIANNESS_BE8: 700 env->cp15.sctlr_el[1] |= SCTLR_E0E; 701 for (i = 1; i < 4; ++i) { 702 env->cp15.sctlr_el[i] |= SCTLR_EE; 703 } 704 env->uncached_cpsr |= CPSR_E; 705 break; 706 case ARM_ENDIANNESS_BE32: 707 env->cp15.sctlr_el[1] |= SCTLR_B; 708 break; 709 case ARM_ENDIANNESS_UNKNOWN: 710 break; /* Board's decision */ 711 default: 712 g_assert_not_reached(); 713 } 714 715 cpu_set_pc(cs, entry); 716 } else { 717 /* If we are booting Linux then we need to check whether we are 718 * booting into secure or non-secure state and adjust the state 719 * accordingly. Out of reset, ARM is defined to be in secure state 720 * (SCR.NS = 0), we change that here if non-secure boot has been 721 * requested. 722 */ 723 if (arm_feature(env, ARM_FEATURE_EL3)) { 724 /* AArch64 is defined to come out of reset into EL3 if enabled. 725 * If we are booting Linux then we need to adjust our EL as 726 * Linux expects us to be in EL2 or EL1. AArch32 resets into 727 * SVC, which Linux expects, so no privilege/exception level to 728 * adjust. 729 */ 730 if (env->aarch64) { 731 env->cp15.scr_el3 |= SCR_RW; 732 if (arm_feature(env, ARM_FEATURE_EL2)) { 733 env->cp15.hcr_el2 |= HCR_RW; 734 env->pstate = PSTATE_MODE_EL2h; 735 } else { 736 env->pstate = PSTATE_MODE_EL1h; 737 } 738 /* AArch64 kernels never boot in secure mode */ 739 assert(!info->secure_boot); 740 /* This hook is only supported for AArch32 currently: 741 * bootloader_aarch64[] will not call the hook, and 742 * the code above has already dropped us into EL2 or EL1. 743 */ 744 assert(!info->secure_board_setup); 745 } 746 747 if (arm_feature(env, ARM_FEATURE_EL2)) { 748 /* If we have EL2 then Linux expects the HVC insn to work */ 749 env->cp15.scr_el3 |= SCR_HCE; 750 } 751 752 /* Set to non-secure if not a secure boot */ 753 if (!info->secure_boot && 754 (cs != first_cpu || !info->secure_board_setup)) { 755 /* Linux expects non-secure state */ 756 env->cp15.scr_el3 |= SCR_NS; 757 } 758 } 759 760 if (!env->aarch64 && !info->secure_boot && 761 arm_feature(env, ARM_FEATURE_EL2)) { 762 /* 763 * This is an AArch32 boot not to Secure state, and 764 * we have Hyp mode available, so boot the kernel into 765 * Hyp mode. This is not how the CPU comes out of reset, 766 * so we need to manually put it there. 767 */ 768 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw); 769 } 770 771 if (cs == first_cpu) { 772 AddressSpace *as = arm_boot_address_space(cpu, info); 773 774 cpu_set_pc(cs, info->loader_start); 775 776 if (!have_dtb(info)) { 777 if (old_param) { 778 set_kernel_args_old(info, as); 779 } else { 780 set_kernel_args(info, as); 781 } 782 } 783 } else { 784 info->secondary_cpu_reset_hook(cpu, info); 785 } 786 } 787 } 788 } 789 790 /** 791 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified 792 * by key. 793 * @fw_cfg: The firmware config instance to store the data in. 794 * @size_key: The firmware config key to store the size of the loaded 795 * data under, with fw_cfg_add_i32(). 796 * @data_key: The firmware config key to store the loaded data under, 797 * with fw_cfg_add_bytes(). 798 * @image_name: The name of the image file to load. If it is NULL, the 799 * function returns without doing anything. 800 * @try_decompress: Whether the image should be decompressed (gunzipped) before 801 * adding it to fw_cfg. If decompression fails, the image is 802 * loaded as-is. 803 * 804 * In case of failure, the function prints an error message to stderr and the 805 * process exits with status 1. 806 */ 807 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, 808 uint16_t data_key, const char *image_name, 809 bool try_decompress) 810 { 811 size_t size = -1; 812 uint8_t *data; 813 814 if (image_name == NULL) { 815 return; 816 } 817 818 if (try_decompress) { 819 size = load_image_gzipped_buffer(image_name, 820 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); 821 } 822 823 if (size == (size_t)-1) { 824 gchar *contents; 825 gsize length; 826 827 if (!g_file_get_contents(image_name, &contents, &length, NULL)) { 828 error_report("failed to load \"%s\"", image_name); 829 exit(1); 830 } 831 size = length; 832 data = (uint8_t *)contents; 833 } 834 835 fw_cfg_add_i32(fw_cfg, size_key, size); 836 fw_cfg_add_bytes(fw_cfg, data_key, data, size); 837 } 838 839 static int do_arm_linux_init(Object *obj, void *opaque) 840 { 841 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) { 842 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj); 843 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj); 844 struct arm_boot_info *info = opaque; 845 846 if (albifc->arm_linux_init) { 847 albifc->arm_linux_init(albif, info->secure_boot); 848 } 849 } 850 return 0; 851 } 852 853 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry, 854 uint64_t *lowaddr, uint64_t *highaddr, 855 int elf_machine, AddressSpace *as) 856 { 857 bool elf_is64; 858 union { 859 Elf32_Ehdr h32; 860 Elf64_Ehdr h64; 861 } elf_header; 862 int data_swab = 0; 863 bool big_endian; 864 int64_t ret = -1; 865 Error *err = NULL; 866 867 868 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err); 869 if (err) { 870 error_free(err); 871 return ret; 872 } 873 874 if (elf_is64) { 875 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB; 876 info->endianness = big_endian ? ARM_ENDIANNESS_BE8 877 : ARM_ENDIANNESS_LE; 878 } else { 879 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB; 880 if (big_endian) { 881 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) { 882 info->endianness = ARM_ENDIANNESS_BE8; 883 } else { 884 info->endianness = ARM_ENDIANNESS_BE32; 885 /* In BE32, the CPU has a different view of the per-byte 886 * address map than the rest of the system. BE32 ELF files 887 * are organised such that they can be programmed through 888 * the CPU's per-word byte-reversed view of the world. QEMU 889 * however loads ELF files independently of the CPU. So 890 * tell the ELF loader to byte reverse the data for us. 891 */ 892 data_swab = 2; 893 } 894 } else { 895 info->endianness = ARM_ENDIANNESS_LE; 896 } 897 } 898 899 ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL, 900 pentry, lowaddr, highaddr, big_endian, elf_machine, 901 1, data_swab, as); 902 if (ret <= 0) { 903 /* The header loaded but the image didn't */ 904 exit(1); 905 } 906 907 return ret; 908 } 909 910 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base, 911 hwaddr *entry, AddressSpace *as) 912 { 913 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR; 914 uint64_t kernel_size = 0; 915 uint8_t *buffer; 916 int size; 917 918 /* On aarch64, it's the bootloader's job to uncompress the kernel. */ 919 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES, 920 &buffer); 921 922 if (size < 0) { 923 gsize len; 924 925 /* Load as raw file otherwise */ 926 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) { 927 return -1; 928 } 929 size = len; 930 } 931 932 /* check the arm64 magic header value -- very old kernels may not have it */ 933 if (size > ARM64_MAGIC_OFFSET + 4 && 934 memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) { 935 uint64_t hdrvals[2]; 936 937 /* The arm64 Image header has text_offset and image_size fields at 8 and 938 * 16 bytes into the Image header, respectively. The text_offset field 939 * is only valid if the image_size is non-zero. 940 */ 941 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals)); 942 943 kernel_size = le64_to_cpu(hdrvals[1]); 944 945 if (kernel_size != 0) { 946 kernel_load_offset = le64_to_cpu(hdrvals[0]); 947 948 /* 949 * We write our startup "bootloader" at the very bottom of RAM, 950 * so that bit can't be used for the image. Luckily the Image 951 * format specification is that the image requests only an offset 952 * from a 2MB boundary, not an absolute load address. So if the 953 * image requests an offset that might mean it overlaps with the 954 * bootloader, we can just load it starting at 2MB+offset rather 955 * than 0MB + offset. 956 */ 957 if (kernel_load_offset < BOOTLOADER_MAX_SIZE) { 958 kernel_load_offset += 2 * MiB; 959 } 960 } 961 } 962 963 /* 964 * Kernels before v3.17 don't populate the image_size field, and 965 * raw images have no header. For those our best guess at the size 966 * is the size of the Image file itself. 967 */ 968 if (kernel_size == 0) { 969 kernel_size = size; 970 } 971 972 *entry = mem_base + kernel_load_offset; 973 rom_add_blob_fixed_as(filename, buffer, size, *entry, as); 974 975 g_free(buffer); 976 977 return kernel_size; 978 } 979 980 static void arm_setup_direct_kernel_boot(ARMCPU *cpu, 981 struct arm_boot_info *info) 982 { 983 /* Set up for a direct boot of a kernel image file. */ 984 CPUState *cs; 985 AddressSpace *as = arm_boot_address_space(cpu, info); 986 int kernel_size; 987 int initrd_size; 988 int is_linux = 0; 989 uint64_t elf_entry; 990 /* Addresses of first byte used and first byte not used by the image */ 991 uint64_t image_low_addr = 0, image_high_addr = 0; 992 int elf_machine; 993 hwaddr entry; 994 static const ARMInsnFixup *primary_loader; 995 uint64_t ram_end = info->loader_start + info->ram_size; 996 997 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 998 primary_loader = bootloader_aarch64; 999 elf_machine = EM_AARCH64; 1000 } else { 1001 primary_loader = bootloader; 1002 if (!info->write_board_setup) { 1003 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET; 1004 } 1005 elf_machine = EM_ARM; 1006 } 1007 1008 if (!info->secondary_cpu_reset_hook) { 1009 info->secondary_cpu_reset_hook = default_reset_secondary; 1010 } 1011 if (!info->write_secondary_boot) { 1012 info->write_secondary_boot = default_write_secondary; 1013 } 1014 1015 if (info->nb_cpus == 0) 1016 info->nb_cpus = 1; 1017 1018 /* Assume that raw images are linux kernels, and ELF images are not. */ 1019 kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr, 1020 &image_high_addr, elf_machine, as); 1021 if (kernel_size > 0 && have_dtb(info)) { 1022 /* 1023 * If there is still some room left at the base of RAM, try and put 1024 * the DTB there like we do for images loaded with -bios or -pflash. 1025 */ 1026 if (image_low_addr > info->loader_start 1027 || image_high_addr < info->loader_start) { 1028 /* 1029 * Set image_low_addr as address limit for arm_load_dtb if it may be 1030 * pointing into RAM, otherwise pass '0' (no limit) 1031 */ 1032 if (image_low_addr < info->loader_start) { 1033 image_low_addr = 0; 1034 } 1035 info->dtb_start = info->loader_start; 1036 info->dtb_limit = image_low_addr; 1037 } 1038 } 1039 entry = elf_entry; 1040 if (kernel_size < 0) { 1041 uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR; 1042 kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr, 1043 &is_linux, NULL, NULL, as); 1044 if (kernel_size >= 0) { 1045 image_low_addr = loadaddr; 1046 image_high_addr = image_low_addr + kernel_size; 1047 } 1048 } 1049 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { 1050 kernel_size = load_aarch64_image(info->kernel_filename, 1051 info->loader_start, &entry, as); 1052 is_linux = 1; 1053 if (kernel_size >= 0) { 1054 image_low_addr = entry; 1055 image_high_addr = image_low_addr + kernel_size; 1056 } 1057 } else if (kernel_size < 0) { 1058 /* 32-bit ARM */ 1059 entry = info->loader_start + KERNEL_LOAD_ADDR; 1060 kernel_size = load_image_targphys_as(info->kernel_filename, entry, 1061 ram_end - KERNEL_LOAD_ADDR, as); 1062 is_linux = 1; 1063 if (kernel_size >= 0) { 1064 image_low_addr = entry; 1065 image_high_addr = image_low_addr + kernel_size; 1066 } 1067 } 1068 if (kernel_size < 0) { 1069 error_report("could not load kernel '%s'", info->kernel_filename); 1070 exit(1); 1071 } 1072 1073 if (kernel_size > info->ram_size) { 1074 error_report("kernel '%s' is too large to fit in RAM " 1075 "(kernel size %d, RAM size %" PRId64 ")", 1076 info->kernel_filename, kernel_size, info->ram_size); 1077 exit(1); 1078 } 1079 1080 info->entry = entry; 1081 1082 /* 1083 * We want to put the initrd far enough into RAM that when the 1084 * kernel is uncompressed it will not clobber the initrd. However 1085 * on boards without much RAM we must ensure that we still leave 1086 * enough room for a decent sized initrd, and on boards with large 1087 * amounts of RAM we must avoid the initrd being so far up in RAM 1088 * that it is outside lowmem and inaccessible to the kernel. 1089 * So for boards with less than 256MB of RAM we put the initrd 1090 * halfway into RAM, and for boards with 256MB of RAM or more we put 1091 * the initrd at 128MB. 1092 * We also refuse to put the initrd somewhere that will definitely 1093 * overlay the kernel we just loaded, though for kernel formats which 1094 * don't tell us their exact size (eg self-decompressing 32-bit kernels) 1095 * we might still make a bad choice here. 1096 */ 1097 info->initrd_start = info->loader_start + 1098 MIN(info->ram_size / 2, 128 * 1024 * 1024); 1099 if (image_high_addr) { 1100 info->initrd_start = MAX(info->initrd_start, image_high_addr); 1101 } 1102 info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start); 1103 1104 if (is_linux) { 1105 uint32_t fixupcontext[FIXUP_MAX]; 1106 1107 if (info->initrd_filename) { 1108 1109 if (info->initrd_start >= ram_end) { 1110 error_report("not enough space after kernel to load initrd"); 1111 exit(1); 1112 } 1113 1114 initrd_size = load_ramdisk_as(info->initrd_filename, 1115 info->initrd_start, 1116 ram_end - info->initrd_start, as); 1117 if (initrd_size < 0) { 1118 initrd_size = load_image_targphys_as(info->initrd_filename, 1119 info->initrd_start, 1120 ram_end - 1121 info->initrd_start, 1122 as); 1123 } 1124 if (initrd_size < 0) { 1125 error_report("could not load initrd '%s'", 1126 info->initrd_filename); 1127 exit(1); 1128 } 1129 if (info->initrd_start + initrd_size > ram_end) { 1130 error_report("could not load initrd '%s': " 1131 "too big to fit into RAM after the kernel", 1132 info->initrd_filename); 1133 exit(1); 1134 } 1135 } else { 1136 initrd_size = 0; 1137 } 1138 info->initrd_size = initrd_size; 1139 1140 fixupcontext[FIXUP_BOARDID] = info->board_id; 1141 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr; 1142 1143 /* 1144 * for device tree boot, we pass the DTB directly in r2. Otherwise 1145 * we point to the kernel args. 1146 */ 1147 if (have_dtb(info)) { 1148 hwaddr align; 1149 1150 if (elf_machine == EM_AARCH64) { 1151 /* 1152 * Some AArch64 kernels on early bootup map the fdt region as 1153 * 1154 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] 1155 * 1156 * Let's play safe and prealign it to 2MB to give us some space. 1157 */ 1158 align = 2 * 1024 * 1024; 1159 } else { 1160 /* 1161 * Some 32bit kernels will trash anything in the 4K page the 1162 * initrd ends in, so make sure the DTB isn't caught up in that. 1163 */ 1164 align = 4096; 1165 } 1166 1167 /* Place the DTB after the initrd in memory with alignment. */ 1168 info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, 1169 align); 1170 if (info->dtb_start >= ram_end) { 1171 error_report("Not enough space for DTB after kernel/initrd"); 1172 exit(1); 1173 } 1174 fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start; 1175 fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32; 1176 } else { 1177 fixupcontext[FIXUP_ARGPTR_LO] = 1178 info->loader_start + KERNEL_ARGS_ADDR; 1179 fixupcontext[FIXUP_ARGPTR_HI] = 1180 (info->loader_start + KERNEL_ARGS_ADDR) >> 32; 1181 if (info->ram_size >= (1ULL << 32)) { 1182 error_report("RAM size must be less than 4GB to boot" 1183 " Linux kernel using ATAGS (try passing a device tree" 1184 " using -dtb)"); 1185 exit(1); 1186 } 1187 } 1188 fixupcontext[FIXUP_ENTRYPOINT_LO] = entry; 1189 fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32; 1190 1191 write_bootloader("bootloader", info->loader_start, 1192 primary_loader, fixupcontext, as); 1193 1194 if (info->nb_cpus > 1) { 1195 info->write_secondary_boot(cpu, info); 1196 } 1197 if (info->write_board_setup) { 1198 info->write_board_setup(cpu, info); 1199 } 1200 1201 /* 1202 * Notify devices which need to fake up firmware initialization 1203 * that we're doing a direct kernel boot. 1204 */ 1205 object_child_foreach_recursive(object_get_root(), 1206 do_arm_linux_init, info); 1207 } 1208 info->is_linux = is_linux; 1209 1210 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { 1211 ARM_CPU(cs)->env.boot_info = info; 1212 } 1213 } 1214 1215 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info) 1216 { 1217 /* Set up for booting firmware (which might load a kernel via fw_cfg) */ 1218 1219 if (have_dtb(info)) { 1220 /* 1221 * If we have a device tree blob, but no kernel to supply it to (or 1222 * the kernel is supposed to be loaded by the bootloader), copy the 1223 * DTB to the base of RAM for the bootloader to pick up. 1224 */ 1225 info->dtb_start = info->loader_start; 1226 } 1227 1228 if (info->kernel_filename) { 1229 FWCfgState *fw_cfg; 1230 bool try_decompressing_kernel; 1231 1232 fw_cfg = fw_cfg_find(); 1233 try_decompressing_kernel = arm_feature(&cpu->env, 1234 ARM_FEATURE_AARCH64); 1235 1236 /* 1237 * Expose the kernel, the command line, and the initrd in fw_cfg. 1238 * We don't process them here at all, it's all left to the 1239 * firmware. 1240 */ 1241 load_image_to_fw_cfg(fw_cfg, 1242 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, 1243 info->kernel_filename, 1244 try_decompressing_kernel); 1245 load_image_to_fw_cfg(fw_cfg, 1246 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, 1247 info->initrd_filename, false); 1248 1249 if (info->kernel_cmdline) { 1250 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 1251 strlen(info->kernel_cmdline) + 1); 1252 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, 1253 info->kernel_cmdline); 1254 } 1255 } 1256 1257 /* 1258 * We will start from address 0 (typically a boot ROM image) in the 1259 * same way as hardware. Leave env->boot_info NULL, so that 1260 * do_cpu_reset() knows it does not need to alter the PC on reset. 1261 */ 1262 } 1263 1264 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) 1265 { 1266 CPUState *cs; 1267 AddressSpace *as = arm_boot_address_space(cpu, info); 1268 1269 /* 1270 * CPU objects (unlike devices) are not automatically reset on system 1271 * reset, so we must always register a handler to do so. If we're 1272 * actually loading a kernel, the handler is also responsible for 1273 * arranging that we start it correctly. 1274 */ 1275 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { 1276 qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); 1277 } 1278 1279 /* 1280 * The board code is not supposed to set secure_board_setup unless 1281 * running its code in secure mode is actually possible, and KVM 1282 * doesn't support secure. 1283 */ 1284 assert(!(info->secure_board_setup && kvm_enabled())); 1285 1286 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb"); 1287 info->dtb_limit = 0; 1288 1289 /* Load the kernel. */ 1290 if (!info->kernel_filename || info->firmware_loaded) { 1291 arm_setup_firmware_boot(cpu, info); 1292 } else { 1293 arm_setup_direct_kernel_boot(cpu, info); 1294 } 1295 1296 if (!info->skip_dtb_autoload && have_dtb(info)) { 1297 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) { 1298 exit(1); 1299 } 1300 } 1301 } 1302 1303 static const TypeInfo arm_linux_boot_if_info = { 1304 .name = TYPE_ARM_LINUX_BOOT_IF, 1305 .parent = TYPE_INTERFACE, 1306 .class_size = sizeof(ARMLinuxBootIfClass), 1307 }; 1308 1309 static void arm_linux_boot_register_types(void) 1310 { 1311 type_register_static(&arm_linux_boot_if_info); 1312 } 1313 1314 type_init(arm_linux_boot_register_types) 1315