1 /* 2 * ARM kernel loader. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "config.h" 11 #include "hw/hw.h" 12 #include "hw/arm/arm.h" 13 #include "hw/arm/linux-boot-if.h" 14 #include "sysemu/sysemu.h" 15 #include "hw/boards.h" 16 #include "hw/loader.h" 17 #include "elf.h" 18 #include "sysemu/device_tree.h" 19 #include "qemu/config-file.h" 20 #include "exec/address-spaces.h" 21 22 /* Kernel boot protocol is specified in the kernel docs 23 * Documentation/arm/Booting and Documentation/arm64/booting.txt 24 * They have different preferred image load offsets from system RAM base. 25 */ 26 #define KERNEL_ARGS_ADDR 0x100 27 #define KERNEL_LOAD_ADDR 0x00010000 28 #define KERNEL64_LOAD_ADDR 0x00080000 29 30 typedef enum { 31 FIXUP_NONE = 0, /* do nothing */ 32 FIXUP_TERMINATOR, /* end of insns */ 33 FIXUP_BOARDID, /* overwrite with board ID number */ 34 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */ 35 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */ 36 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ 37 FIXUP_BOOTREG, /* overwrite with boot register address */ 38 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ 39 FIXUP_MAX, 40 } FixupType; 41 42 typedef struct ARMInsnFixup { 43 uint32_t insn; 44 FixupType fixup; 45 } ARMInsnFixup; 46 47 static const ARMInsnFixup bootloader_aarch64[] = { 48 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ 49 { 0xaa1f03e1 }, /* mov x1, xzr */ 50 { 0xaa1f03e2 }, /* mov x2, xzr */ 51 { 0xaa1f03e3 }, /* mov x3, xzr */ 52 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ 53 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ 54 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */ 55 { 0 }, /* .word @DTB Higher 32-bits */ 56 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */ 57 { 0 }, /* .word @Kernel Entry Higher 32-bits */ 58 { 0, FIXUP_TERMINATOR } 59 }; 60 61 /* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */ 62 static const ARMInsnFixup bootloader[] = { 63 { 0xe3a00000 }, /* mov r0, #0 */ 64 { 0xe59f1004 }, /* ldr r1, [pc, #4] */ 65 { 0xe59f2004 }, /* ldr r2, [pc, #4] */ 66 { 0xe59ff004 }, /* ldr pc, [pc, #4] */ 67 { 0, FIXUP_BOARDID }, 68 { 0, FIXUP_ARGPTR }, 69 { 0, FIXUP_ENTRYPOINT }, 70 { 0, FIXUP_TERMINATOR } 71 }; 72 73 /* Handling for secondary CPU boot in a multicore system. 74 * Unlike the uniprocessor/primary CPU boot, this is platform 75 * dependent. The default code here is based on the secondary 76 * CPU boot protocol used on realview/vexpress boards, with 77 * some parameterisation to increase its flexibility. 78 * QEMU platform models for which this code is not appropriate 79 * should override write_secondary_boot and secondary_cpu_reset_hook 80 * instead. 81 * 82 * This code enables the interrupt controllers for the secondary 83 * CPUs and then puts all the secondary CPUs into a loop waiting 84 * for an interprocessor interrupt and polling a configurable 85 * location for the kernel secondary CPU entry point. 86 */ 87 #define DSB_INSN 0xf57ff04f 88 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ 89 90 static const ARMInsnFixup smpboot[] = { 91 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ 92 { 0xe59f0028 }, /* ldr r0, bootreg_addr */ 93 { 0xe3a01001 }, /* mov r1, #1 */ 94 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ 95 { 0xe3a010ff }, /* mov r1, #0xff */ 96 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ 97 { 0, FIXUP_DSB }, /* dsb */ 98 { 0xe320f003 }, /* wfi */ 99 { 0xe5901000 }, /* ldr r1, [r0] */ 100 { 0xe1110001 }, /* tst r1, r1 */ 101 { 0x0afffffb }, /* beq <wfi> */ 102 { 0xe12fff11 }, /* bx r1 */ 103 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ 104 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ 105 { 0, FIXUP_TERMINATOR } 106 }; 107 108 static void write_bootloader(const char *name, hwaddr addr, 109 const ARMInsnFixup *insns, uint32_t *fixupcontext) 110 { 111 /* Fix up the specified bootloader fragment and write it into 112 * guest memory using rom_add_blob_fixed(). fixupcontext is 113 * an array giving the values to write in for the fixup types 114 * which write a value into the code array. 115 */ 116 int i, len; 117 uint32_t *code; 118 119 len = 0; 120 while (insns[len].fixup != FIXUP_TERMINATOR) { 121 len++; 122 } 123 124 code = g_new0(uint32_t, len); 125 126 for (i = 0; i < len; i++) { 127 uint32_t insn = insns[i].insn; 128 FixupType fixup = insns[i].fixup; 129 130 switch (fixup) { 131 case FIXUP_NONE: 132 break; 133 case FIXUP_BOARDID: 134 case FIXUP_ARGPTR: 135 case FIXUP_ENTRYPOINT: 136 case FIXUP_GIC_CPU_IF: 137 case FIXUP_BOOTREG: 138 case FIXUP_DSB: 139 insn = fixupcontext[fixup]; 140 break; 141 default: 142 abort(); 143 } 144 code[i] = tswap32(insn); 145 } 146 147 rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr); 148 149 g_free(code); 150 } 151 152 static void default_write_secondary(ARMCPU *cpu, 153 const struct arm_boot_info *info) 154 { 155 uint32_t fixupcontext[FIXUP_MAX]; 156 157 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; 158 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; 159 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 160 fixupcontext[FIXUP_DSB] = DSB_INSN; 161 } else { 162 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; 163 } 164 165 write_bootloader("smpboot", info->smp_loader_start, 166 smpboot, fixupcontext); 167 } 168 169 static void default_reset_secondary(ARMCPU *cpu, 170 const struct arm_boot_info *info) 171 { 172 CPUState *cs = CPU(cpu); 173 174 address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr, 175 0, MEMTXATTRS_UNSPECIFIED, NULL); 176 cpu_set_pc(cs, info->smp_loader_start); 177 } 178 179 static inline bool have_dtb(const struct arm_boot_info *info) 180 { 181 return info->dtb_filename || info->get_dtb; 182 } 183 184 #define WRITE_WORD(p, value) do { \ 185 address_space_stl_notdirty(&address_space_memory, p, value, \ 186 MEMTXATTRS_UNSPECIFIED, NULL); \ 187 p += 4; \ 188 } while (0) 189 190 static void set_kernel_args(const struct arm_boot_info *info) 191 { 192 int initrd_size = info->initrd_size; 193 hwaddr base = info->loader_start; 194 hwaddr p; 195 196 p = base + KERNEL_ARGS_ADDR; 197 /* ATAG_CORE */ 198 WRITE_WORD(p, 5); 199 WRITE_WORD(p, 0x54410001); 200 WRITE_WORD(p, 1); 201 WRITE_WORD(p, 0x1000); 202 WRITE_WORD(p, 0); 203 /* ATAG_MEM */ 204 /* TODO: handle multiple chips on one ATAG list */ 205 WRITE_WORD(p, 4); 206 WRITE_WORD(p, 0x54410002); 207 WRITE_WORD(p, info->ram_size); 208 WRITE_WORD(p, info->loader_start); 209 if (initrd_size) { 210 /* ATAG_INITRD2 */ 211 WRITE_WORD(p, 4); 212 WRITE_WORD(p, 0x54420005); 213 WRITE_WORD(p, info->initrd_start); 214 WRITE_WORD(p, initrd_size); 215 } 216 if (info->kernel_cmdline && *info->kernel_cmdline) { 217 /* ATAG_CMDLINE */ 218 int cmdline_size; 219 220 cmdline_size = strlen(info->kernel_cmdline); 221 cpu_physical_memory_write(p + 8, info->kernel_cmdline, 222 cmdline_size + 1); 223 cmdline_size = (cmdline_size >> 2) + 1; 224 WRITE_WORD(p, cmdline_size + 2); 225 WRITE_WORD(p, 0x54410009); 226 p += cmdline_size * 4; 227 } 228 if (info->atag_board) { 229 /* ATAG_BOARD */ 230 int atag_board_len; 231 uint8_t atag_board_buf[0x1000]; 232 233 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; 234 WRITE_WORD(p, (atag_board_len + 8) >> 2); 235 WRITE_WORD(p, 0x414f4d50); 236 cpu_physical_memory_write(p, atag_board_buf, atag_board_len); 237 p += atag_board_len; 238 } 239 /* ATAG_END */ 240 WRITE_WORD(p, 0); 241 WRITE_WORD(p, 0); 242 } 243 244 static void set_kernel_args_old(const struct arm_boot_info *info) 245 { 246 hwaddr p; 247 const char *s; 248 int initrd_size = info->initrd_size; 249 hwaddr base = info->loader_start; 250 251 /* see linux/include/asm-arm/setup.h */ 252 p = base + KERNEL_ARGS_ADDR; 253 /* page_size */ 254 WRITE_WORD(p, 4096); 255 /* nr_pages */ 256 WRITE_WORD(p, info->ram_size / 4096); 257 /* ramdisk_size */ 258 WRITE_WORD(p, 0); 259 #define FLAG_READONLY 1 260 #define FLAG_RDLOAD 4 261 #define FLAG_RDPROMPT 8 262 /* flags */ 263 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); 264 /* rootdev */ 265 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ 266 /* video_num_cols */ 267 WRITE_WORD(p, 0); 268 /* video_num_rows */ 269 WRITE_WORD(p, 0); 270 /* video_x */ 271 WRITE_WORD(p, 0); 272 /* video_y */ 273 WRITE_WORD(p, 0); 274 /* memc_control_reg */ 275 WRITE_WORD(p, 0); 276 /* unsigned char sounddefault */ 277 /* unsigned char adfsdrives */ 278 /* unsigned char bytes_per_char_h */ 279 /* unsigned char bytes_per_char_v */ 280 WRITE_WORD(p, 0); 281 /* pages_in_bank[4] */ 282 WRITE_WORD(p, 0); 283 WRITE_WORD(p, 0); 284 WRITE_WORD(p, 0); 285 WRITE_WORD(p, 0); 286 /* pages_in_vram */ 287 WRITE_WORD(p, 0); 288 /* initrd_start */ 289 if (initrd_size) { 290 WRITE_WORD(p, info->initrd_start); 291 } else { 292 WRITE_WORD(p, 0); 293 } 294 /* initrd_size */ 295 WRITE_WORD(p, initrd_size); 296 /* rd_start */ 297 WRITE_WORD(p, 0); 298 /* system_rev */ 299 WRITE_WORD(p, 0); 300 /* system_serial_low */ 301 WRITE_WORD(p, 0); 302 /* system_serial_high */ 303 WRITE_WORD(p, 0); 304 /* mem_fclk_21285 */ 305 WRITE_WORD(p, 0); 306 /* zero unused fields */ 307 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { 308 WRITE_WORD(p, 0); 309 } 310 s = info->kernel_cmdline; 311 if (s) { 312 cpu_physical_memory_write(p, s, strlen(s) + 1); 313 } else { 314 WRITE_WORD(p, 0); 315 } 316 } 317 318 /** 319 * load_dtb() - load a device tree binary image into memory 320 * @addr: the address to load the image at 321 * @binfo: struct describing the boot environment 322 * @addr_limit: upper limit of the available memory area at @addr 323 * 324 * Load a device tree supplied by the machine or by the user with the 325 * '-dtb' command line option, and put it at offset @addr in target 326 * memory. 327 * 328 * If @addr_limit contains a meaningful value (i.e., it is strictly greater 329 * than @addr), the device tree is only loaded if its size does not exceed 330 * the limit. 331 * 332 * Returns: the size of the device tree image on success, 333 * 0 if the image size exceeds the limit, 334 * -1 on errors. 335 * 336 * Note: Must not be called unless have_dtb(binfo) is true. 337 */ 338 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo, 339 hwaddr addr_limit) 340 { 341 void *fdt = NULL; 342 int size, rc; 343 uint32_t acells, scells; 344 345 if (binfo->dtb_filename) { 346 char *filename; 347 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); 348 if (!filename) { 349 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); 350 goto fail; 351 } 352 353 fdt = load_device_tree(filename, &size); 354 if (!fdt) { 355 fprintf(stderr, "Couldn't open dtb file %s\n", filename); 356 g_free(filename); 357 goto fail; 358 } 359 g_free(filename); 360 } else { 361 fdt = binfo->get_dtb(binfo, &size); 362 if (!fdt) { 363 fprintf(stderr, "Board was unable to create a dtb blob\n"); 364 goto fail; 365 } 366 } 367 368 if (addr_limit > addr && size > (addr_limit - addr)) { 369 /* Installing the device tree blob at addr would exceed addr_limit. 370 * Whether this constitutes failure is up to the caller to decide, 371 * so just return 0 as size, i.e., no error. 372 */ 373 g_free(fdt); 374 return 0; 375 } 376 377 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells"); 378 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells"); 379 if (acells == 0 || scells == 0) { 380 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); 381 goto fail; 382 } 383 384 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) { 385 /* This is user error so deserves a friendlier error message 386 * than the failure of setprop_sized_cells would provide 387 */ 388 fprintf(stderr, "qemu: dtb file not compatible with " 389 "RAM size > 4GB\n"); 390 goto fail; 391 } 392 393 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg", 394 acells, binfo->loader_start, 395 scells, binfo->ram_size); 396 if (rc < 0) { 397 fprintf(stderr, "couldn't set /memory/reg\n"); 398 goto fail; 399 } 400 401 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { 402 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", 403 binfo->kernel_cmdline); 404 if (rc < 0) { 405 fprintf(stderr, "couldn't set /chosen/bootargs\n"); 406 goto fail; 407 } 408 } 409 410 if (binfo->initrd_size) { 411 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", 412 binfo->initrd_start); 413 if (rc < 0) { 414 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); 415 goto fail; 416 } 417 418 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", 419 binfo->initrd_start + binfo->initrd_size); 420 if (rc < 0) { 421 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); 422 goto fail; 423 } 424 } 425 426 if (binfo->modify_dtb) { 427 binfo->modify_dtb(binfo, fdt); 428 } 429 430 qemu_fdt_dumpdtb(fdt, size); 431 432 /* Put the DTB into the memory map as a ROM image: this will ensure 433 * the DTB is copied again upon reset, even if addr points into RAM. 434 */ 435 rom_add_blob_fixed("dtb", fdt, size, addr); 436 437 g_free(fdt); 438 439 return size; 440 441 fail: 442 g_free(fdt); 443 return -1; 444 } 445 446 static void do_cpu_reset(void *opaque) 447 { 448 ARMCPU *cpu = opaque; 449 CPUState *cs = CPU(cpu); 450 CPUARMState *env = &cpu->env; 451 const struct arm_boot_info *info = env->boot_info; 452 453 cpu_reset(cs); 454 if (info) { 455 if (!info->is_linux) { 456 /* Jump to the entry point. */ 457 uint64_t entry = info->entry; 458 459 if (!env->aarch64) { 460 env->thumb = info->entry & 1; 461 entry &= 0xfffffffe; 462 } 463 cpu_set_pc(cs, entry); 464 } else { 465 /* If we are booting Linux then we need to check whether we are 466 * booting into secure or non-secure state and adjust the state 467 * accordingly. Out of reset, ARM is defined to be in secure state 468 * (SCR.NS = 0), we change that here if non-secure boot has been 469 * requested. 470 */ 471 if (arm_feature(env, ARM_FEATURE_EL3)) { 472 /* AArch64 is defined to come out of reset into EL3 if enabled. 473 * If we are booting Linux then we need to adjust our EL as 474 * Linux expects us to be in EL2 or EL1. AArch32 resets into 475 * SVC, which Linux expects, so no privilege/exception level to 476 * adjust. 477 */ 478 if (env->aarch64) { 479 if (arm_feature(env, ARM_FEATURE_EL2)) { 480 env->pstate = PSTATE_MODE_EL2h; 481 } else { 482 env->pstate = PSTATE_MODE_EL1h; 483 } 484 } 485 486 /* Set to non-secure if not a secure boot */ 487 if (!info->secure_boot) { 488 /* Linux expects non-secure state */ 489 env->cp15.scr_el3 |= SCR_NS; 490 } 491 } 492 493 if (cs == first_cpu) { 494 cpu_set_pc(cs, info->loader_start); 495 496 if (!have_dtb(info)) { 497 if (old_param) { 498 set_kernel_args_old(info); 499 } else { 500 set_kernel_args(info); 501 } 502 } 503 } else { 504 info->secondary_cpu_reset_hook(cpu, info); 505 } 506 } 507 } 508 } 509 510 /** 511 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified 512 * by key. 513 * @fw_cfg: The firmware config instance to store the data in. 514 * @size_key: The firmware config key to store the size of the loaded 515 * data under, with fw_cfg_add_i32(). 516 * @data_key: The firmware config key to store the loaded data under, 517 * with fw_cfg_add_bytes(). 518 * @image_name: The name of the image file to load. If it is NULL, the 519 * function returns without doing anything. 520 * @try_decompress: Whether the image should be decompressed (gunzipped) before 521 * adding it to fw_cfg. If decompression fails, the image is 522 * loaded as-is. 523 * 524 * In case of failure, the function prints an error message to stderr and the 525 * process exits with status 1. 526 */ 527 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, 528 uint16_t data_key, const char *image_name, 529 bool try_decompress) 530 { 531 size_t size = -1; 532 uint8_t *data; 533 534 if (image_name == NULL) { 535 return; 536 } 537 538 if (try_decompress) { 539 size = load_image_gzipped_buffer(image_name, 540 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); 541 } 542 543 if (size == (size_t)-1) { 544 gchar *contents; 545 gsize length; 546 547 if (!g_file_get_contents(image_name, &contents, &length, NULL)) { 548 fprintf(stderr, "failed to load \"%s\"\n", image_name); 549 exit(1); 550 } 551 size = length; 552 data = (uint8_t *)contents; 553 } 554 555 fw_cfg_add_i32(fw_cfg, size_key, size); 556 fw_cfg_add_bytes(fw_cfg, data_key, data, size); 557 } 558 559 static int do_arm_linux_init(Object *obj, void *opaque) 560 { 561 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) { 562 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj); 563 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj); 564 struct arm_boot_info *info = opaque; 565 566 if (albifc->arm_linux_init) { 567 albifc->arm_linux_init(albif, info->secure_boot); 568 } 569 } 570 return 0; 571 } 572 573 static void arm_load_kernel_notify(Notifier *notifier, void *data) 574 { 575 CPUState *cs; 576 int kernel_size; 577 int initrd_size; 578 int is_linux = 0; 579 uint64_t elf_entry, elf_low_addr, elf_high_addr; 580 int elf_machine; 581 hwaddr entry, kernel_load_offset; 582 int big_endian; 583 static const ARMInsnFixup *primary_loader; 584 ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier, 585 notifier, notifier); 586 ARMCPU *cpu = n->cpu; 587 struct arm_boot_info *info = 588 container_of(n, struct arm_boot_info, load_kernel_notifier); 589 590 /* Load the kernel. */ 591 if (!info->kernel_filename || info->firmware_loaded) { 592 593 if (have_dtb(info)) { 594 /* If we have a device tree blob, but no kernel to supply it to (or 595 * the kernel is supposed to be loaded by the bootloader), copy the 596 * DTB to the base of RAM for the bootloader to pick up. 597 */ 598 if (load_dtb(info->loader_start, info, 0) < 0) { 599 exit(1); 600 } 601 } 602 603 if (info->kernel_filename) { 604 FWCfgState *fw_cfg; 605 bool try_decompressing_kernel; 606 607 fw_cfg = fw_cfg_find(); 608 try_decompressing_kernel = arm_feature(&cpu->env, 609 ARM_FEATURE_AARCH64); 610 611 /* Expose the kernel, the command line, and the initrd in fw_cfg. 612 * We don't process them here at all, it's all left to the 613 * firmware. 614 */ 615 load_image_to_fw_cfg(fw_cfg, 616 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, 617 info->kernel_filename, 618 try_decompressing_kernel); 619 load_image_to_fw_cfg(fw_cfg, 620 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, 621 info->initrd_filename, false); 622 623 if (info->kernel_cmdline) { 624 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 625 strlen(info->kernel_cmdline) + 1); 626 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, 627 info->kernel_cmdline); 628 } 629 } 630 631 /* We will start from address 0 (typically a boot ROM image) in the 632 * same way as hardware. 633 */ 634 return; 635 } 636 637 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 638 primary_loader = bootloader_aarch64; 639 kernel_load_offset = KERNEL64_LOAD_ADDR; 640 elf_machine = EM_AARCH64; 641 } else { 642 primary_loader = bootloader; 643 kernel_load_offset = KERNEL_LOAD_ADDR; 644 elf_machine = EM_ARM; 645 } 646 647 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb"); 648 649 if (!info->secondary_cpu_reset_hook) { 650 info->secondary_cpu_reset_hook = default_reset_secondary; 651 } 652 if (!info->write_secondary_boot) { 653 info->write_secondary_boot = default_write_secondary; 654 } 655 656 if (info->nb_cpus == 0) 657 info->nb_cpus = 1; 658 659 #ifdef TARGET_WORDS_BIGENDIAN 660 big_endian = 1; 661 #else 662 big_endian = 0; 663 #endif 664 665 /* We want to put the initrd far enough into RAM that when the 666 * kernel is uncompressed it will not clobber the initrd. However 667 * on boards without much RAM we must ensure that we still leave 668 * enough room for a decent sized initrd, and on boards with large 669 * amounts of RAM we must avoid the initrd being so far up in RAM 670 * that it is outside lowmem and inaccessible to the kernel. 671 * So for boards with less than 256MB of RAM we put the initrd 672 * halfway into RAM, and for boards with 256MB of RAM or more we put 673 * the initrd at 128MB. 674 */ 675 info->initrd_start = info->loader_start + 676 MIN(info->ram_size / 2, 128 * 1024 * 1024); 677 678 /* Assume that raw images are linux kernels, and ELF images are not. */ 679 kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry, 680 &elf_low_addr, &elf_high_addr, big_endian, 681 elf_machine, 1); 682 if (kernel_size > 0 && have_dtb(info)) { 683 /* If there is still some room left at the base of RAM, try and put 684 * the DTB there like we do for images loaded with -bios or -pflash. 685 */ 686 if (elf_low_addr > info->loader_start 687 || elf_high_addr < info->loader_start) { 688 /* Pass elf_low_addr as address limit to load_dtb if it may be 689 * pointing into RAM, otherwise pass '0' (no limit) 690 */ 691 if (elf_low_addr < info->loader_start) { 692 elf_low_addr = 0; 693 } 694 if (load_dtb(info->loader_start, info, elf_low_addr) < 0) { 695 exit(1); 696 } 697 } 698 } 699 entry = elf_entry; 700 if (kernel_size < 0) { 701 kernel_size = load_uimage(info->kernel_filename, &entry, NULL, 702 &is_linux, NULL, NULL); 703 } 704 /* On aarch64, it's the bootloader's job to uncompress the kernel. */ 705 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { 706 entry = info->loader_start + kernel_load_offset; 707 kernel_size = load_image_gzipped(info->kernel_filename, entry, 708 info->ram_size - kernel_load_offset); 709 is_linux = 1; 710 } 711 if (kernel_size < 0) { 712 entry = info->loader_start + kernel_load_offset; 713 kernel_size = load_image_targphys(info->kernel_filename, entry, 714 info->ram_size - kernel_load_offset); 715 is_linux = 1; 716 } 717 if (kernel_size < 0) { 718 fprintf(stderr, "qemu: could not load kernel '%s'\n", 719 info->kernel_filename); 720 exit(1); 721 } 722 info->entry = entry; 723 if (is_linux) { 724 uint32_t fixupcontext[FIXUP_MAX]; 725 726 if (info->initrd_filename) { 727 initrd_size = load_ramdisk(info->initrd_filename, 728 info->initrd_start, 729 info->ram_size - 730 info->initrd_start); 731 if (initrd_size < 0) { 732 initrd_size = load_image_targphys(info->initrd_filename, 733 info->initrd_start, 734 info->ram_size - 735 info->initrd_start); 736 } 737 if (initrd_size < 0) { 738 fprintf(stderr, "qemu: could not load initrd '%s'\n", 739 info->initrd_filename); 740 exit(1); 741 } 742 } else { 743 initrd_size = 0; 744 } 745 info->initrd_size = initrd_size; 746 747 fixupcontext[FIXUP_BOARDID] = info->board_id; 748 749 /* for device tree boot, we pass the DTB directly in r2. Otherwise 750 * we point to the kernel args. 751 */ 752 if (have_dtb(info)) { 753 hwaddr align; 754 hwaddr dtb_start; 755 756 if (elf_machine == EM_AARCH64) { 757 /* 758 * Some AArch64 kernels on early bootup map the fdt region as 759 * 760 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] 761 * 762 * Let's play safe and prealign it to 2MB to give us some space. 763 */ 764 align = 2 * 1024 * 1024; 765 } else { 766 /* 767 * Some 32bit kernels will trash anything in the 4K page the 768 * initrd ends in, so make sure the DTB isn't caught up in that. 769 */ 770 align = 4096; 771 } 772 773 /* Place the DTB after the initrd in memory with alignment. */ 774 dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align); 775 if (load_dtb(dtb_start, info, 0) < 0) { 776 exit(1); 777 } 778 fixupcontext[FIXUP_ARGPTR] = dtb_start; 779 } else { 780 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR; 781 if (info->ram_size >= (1ULL << 32)) { 782 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot" 783 " Linux kernel using ATAGS (try passing a device tree" 784 " using -dtb)\n"); 785 exit(1); 786 } 787 } 788 fixupcontext[FIXUP_ENTRYPOINT] = entry; 789 790 write_bootloader("bootloader", info->loader_start, 791 primary_loader, fixupcontext); 792 793 if (info->nb_cpus > 1) { 794 info->write_secondary_boot(cpu, info); 795 } 796 797 /* Notify devices which need to fake up firmware initialization 798 * that we're doing a direct kernel boot. 799 */ 800 object_child_foreach_recursive(object_get_root(), 801 do_arm_linux_init, info); 802 } 803 info->is_linux = is_linux; 804 805 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { 806 ARM_CPU(cs)->env.boot_info = info; 807 } 808 } 809 810 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) 811 { 812 CPUState *cs; 813 814 info->load_kernel_notifier.cpu = cpu; 815 info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify; 816 qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier); 817 818 /* CPU objects (unlike devices) are not automatically reset on system 819 * reset, so we must always register a handler to do so. If we're 820 * actually loading a kernel, the handler is also responsible for 821 * arranging that we start it correctly. 822 */ 823 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { 824 qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); 825 } 826 } 827 828 static const TypeInfo arm_linux_boot_if_info = { 829 .name = TYPE_ARM_LINUX_BOOT_IF, 830 .parent = TYPE_INTERFACE, 831 .class_size = sizeof(ARMLinuxBootIfClass), 832 }; 833 834 static void arm_linux_boot_register_types(void) 835 { 836 type_register_static(&arm_linux_boot_if_info); 837 } 838 839 type_init(arm_linux_boot_register_types) 840