xref: /openbmc/qemu/hw/arm/boot.c (revision 0af312b6edd231e1c8d0dec12494a80bc39ac761)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/datadir.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "sysemu/reset.h"
22 #include "hw/loader.h"
23 #include "elf.h"
24 #include "sysemu/device_tree.h"
25 #include "qemu/config-file.h"
26 #include "qemu/option.h"
27 #include "qemu/units.h"
28 
29 /* Kernel boot protocol is specified in the kernel docs
30  * Documentation/arm/Booting and Documentation/arm64/booting.txt
31  * They have different preferred image load offsets from system RAM base.
32  */
33 #define KERNEL_ARGS_ADDR   0x100
34 #define KERNEL_NOLOAD_ADDR 0x02000000
35 #define KERNEL_LOAD_ADDR   0x00010000
36 #define KERNEL64_LOAD_ADDR 0x00080000
37 
38 #define ARM64_TEXT_OFFSET_OFFSET    8
39 #define ARM64_MAGIC_OFFSET          56
40 
41 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
42 
43 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
44                                      const struct arm_boot_info *info)
45 {
46     /* Return the address space to use for bootloader reads and writes.
47      * We prefer the secure address space if the CPU has it and we're
48      * going to boot the guest into it.
49      */
50     int asidx;
51     CPUState *cs = CPU(cpu);
52 
53     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
54         asidx = ARMASIdx_S;
55     } else {
56         asidx = ARMASIdx_NS;
57     }
58 
59     return cpu_get_address_space(cs, asidx);
60 }
61 
62 typedef enum {
63     FIXUP_NONE = 0,     /* do nothing */
64     FIXUP_TERMINATOR,   /* end of insns */
65     FIXUP_BOARDID,      /* overwrite with board ID number */
66     FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
67     FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
68     FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
69     FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
70     FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
71     FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
72     FIXUP_BOOTREG,      /* overwrite with boot register address */
73     FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
74     FIXUP_MAX,
75 } FixupType;
76 
77 typedef struct ARMInsnFixup {
78     uint32_t insn;
79     FixupType fixup;
80 } ARMInsnFixup;
81 
82 static const ARMInsnFixup bootloader_aarch64[] = {
83     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
84     { 0xaa1f03e1 }, /* mov x1, xzr */
85     { 0xaa1f03e2 }, /* mov x2, xzr */
86     { 0xaa1f03e3 }, /* mov x3, xzr */
87     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
88     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
89     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
90     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
91     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
92     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
93     { 0, FIXUP_TERMINATOR }
94 };
95 
96 /* A very small bootloader: call the board-setup code (if needed),
97  * set r0-r2, then jump to the kernel.
98  * If we're not calling boot setup code then we don't copy across
99  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
100  */
101 
102 static const ARMInsnFixup bootloader[] = {
103     { 0xe28fe004 }, /* add     lr, pc, #4 */
104     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
105     { 0, FIXUP_BOARD_SETUP },
106 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
107     { 0xe3a00000 }, /* mov     r0, #0 */
108     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
109     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
110     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
111     { 0, FIXUP_BOARDID },
112     { 0, FIXUP_ARGPTR_LO },
113     { 0, FIXUP_ENTRYPOINT_LO },
114     { 0, FIXUP_TERMINATOR }
115 };
116 
117 /* Handling for secondary CPU boot in a multicore system.
118  * Unlike the uniprocessor/primary CPU boot, this is platform
119  * dependent. The default code here is based on the secondary
120  * CPU boot protocol used on realview/vexpress boards, with
121  * some parameterisation to increase its flexibility.
122  * QEMU platform models for which this code is not appropriate
123  * should override write_secondary_boot and secondary_cpu_reset_hook
124  * instead.
125  *
126  * This code enables the interrupt controllers for the secondary
127  * CPUs and then puts all the secondary CPUs into a loop waiting
128  * for an interprocessor interrupt and polling a configurable
129  * location for the kernel secondary CPU entry point.
130  */
131 #define DSB_INSN 0xf57ff04f
132 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
133 
134 static const ARMInsnFixup smpboot[] = {
135     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
136     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
137     { 0xe3a01001 }, /* mov r1, #1 */
138     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
139     { 0xe3a010ff }, /* mov r1, #0xff */
140     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
141     { 0, FIXUP_DSB },   /* dsb */
142     { 0xe320f003 }, /* wfi */
143     { 0xe5901000 }, /* ldr     r1, [r0] */
144     { 0xe1110001 }, /* tst     r1, r1 */
145     { 0x0afffffb }, /* beq     <wfi> */
146     { 0xe12fff11 }, /* bx      r1 */
147     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
148     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
149     { 0, FIXUP_TERMINATOR }
150 };
151 
152 static void write_bootloader(const char *name, hwaddr addr,
153                              const ARMInsnFixup *insns, uint32_t *fixupcontext,
154                              AddressSpace *as)
155 {
156     /* Fix up the specified bootloader fragment and write it into
157      * guest memory using rom_add_blob_fixed(). fixupcontext is
158      * an array giving the values to write in for the fixup types
159      * which write a value into the code array.
160      */
161     int i, len;
162     uint32_t *code;
163 
164     len = 0;
165     while (insns[len].fixup != FIXUP_TERMINATOR) {
166         len++;
167     }
168 
169     code = g_new0(uint32_t, len);
170 
171     for (i = 0; i < len; i++) {
172         uint32_t insn = insns[i].insn;
173         FixupType fixup = insns[i].fixup;
174 
175         switch (fixup) {
176         case FIXUP_NONE:
177             break;
178         case FIXUP_BOARDID:
179         case FIXUP_BOARD_SETUP:
180         case FIXUP_ARGPTR_LO:
181         case FIXUP_ARGPTR_HI:
182         case FIXUP_ENTRYPOINT_LO:
183         case FIXUP_ENTRYPOINT_HI:
184         case FIXUP_GIC_CPU_IF:
185         case FIXUP_BOOTREG:
186         case FIXUP_DSB:
187             insn = fixupcontext[fixup];
188             break;
189         default:
190             abort();
191         }
192         code[i] = tswap32(insn);
193     }
194 
195     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
196 
197     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
198 
199     g_free(code);
200 }
201 
202 static void default_write_secondary(ARMCPU *cpu,
203                                     const struct arm_boot_info *info)
204 {
205     uint32_t fixupcontext[FIXUP_MAX];
206     AddressSpace *as = arm_boot_address_space(cpu, info);
207 
208     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
209     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
210     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
211         fixupcontext[FIXUP_DSB] = DSB_INSN;
212     } else {
213         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
214     }
215 
216     write_bootloader("smpboot", info->smp_loader_start,
217                      smpboot, fixupcontext, as);
218 }
219 
220 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
221                                             const struct arm_boot_info *info,
222                                             hwaddr mvbar_addr)
223 {
224     AddressSpace *as = arm_boot_address_space(cpu, info);
225     int n;
226     uint32_t mvbar_blob[] = {
227         /* mvbar_addr: secure monitor vectors
228          * Default unimplemented and unused vectors to spin. Makes it
229          * easier to debug (as opposed to the CPU running away).
230          */
231         0xeafffffe, /* (spin) */
232         0xeafffffe, /* (spin) */
233         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
234         0xeafffffe, /* (spin) */
235         0xeafffffe, /* (spin) */
236         0xeafffffe, /* (spin) */
237         0xeafffffe, /* (spin) */
238         0xeafffffe, /* (spin) */
239     };
240     uint32_t board_setup_blob[] = {
241         /* board setup addr */
242         0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
243         0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
244         0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
245         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
246         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
247         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
248         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
249         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
250         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
251         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
252         0xe1a0f001, /* mov     pc, r1                 ;return */
253     };
254 
255     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
256     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
257 
258     /* check that these blobs don't overlap */
259     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
260           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
261 
262     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
263         mvbar_blob[n] = tswap32(mvbar_blob[n]);
264     }
265     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
266                           mvbar_addr, as);
267 
268     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
269         board_setup_blob[n] = tswap32(board_setup_blob[n]);
270     }
271     rom_add_blob_fixed_as("board-setup", board_setup_blob,
272                           sizeof(board_setup_blob), info->board_setup_addr, as);
273 }
274 
275 static void default_reset_secondary(ARMCPU *cpu,
276                                     const struct arm_boot_info *info)
277 {
278     AddressSpace *as = arm_boot_address_space(cpu, info);
279     CPUState *cs = CPU(cpu);
280 
281     address_space_stl_notdirty(as, info->smp_bootreg_addr,
282                                0, MEMTXATTRS_UNSPECIFIED, NULL);
283     cpu_set_pc(cs, info->smp_loader_start);
284 }
285 
286 static inline bool have_dtb(const struct arm_boot_info *info)
287 {
288     return info->dtb_filename || info->get_dtb;
289 }
290 
291 #define WRITE_WORD(p, value) do { \
292     address_space_stl_notdirty(as, p, value, \
293                                MEMTXATTRS_UNSPECIFIED, NULL);  \
294     p += 4;                       \
295 } while (0)
296 
297 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
298 {
299     int initrd_size = info->initrd_size;
300     hwaddr base = info->loader_start;
301     hwaddr p;
302 
303     p = base + KERNEL_ARGS_ADDR;
304     /* ATAG_CORE */
305     WRITE_WORD(p, 5);
306     WRITE_WORD(p, 0x54410001);
307     WRITE_WORD(p, 1);
308     WRITE_WORD(p, 0x1000);
309     WRITE_WORD(p, 0);
310     /* ATAG_MEM */
311     /* TODO: handle multiple chips on one ATAG list */
312     WRITE_WORD(p, 4);
313     WRITE_WORD(p, 0x54410002);
314     WRITE_WORD(p, info->ram_size);
315     WRITE_WORD(p, info->loader_start);
316     if (initrd_size) {
317         /* ATAG_INITRD2 */
318         WRITE_WORD(p, 4);
319         WRITE_WORD(p, 0x54420005);
320         WRITE_WORD(p, info->initrd_start);
321         WRITE_WORD(p, initrd_size);
322     }
323     if (info->kernel_cmdline && *info->kernel_cmdline) {
324         /* ATAG_CMDLINE */
325         int cmdline_size;
326 
327         cmdline_size = strlen(info->kernel_cmdline);
328         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
329                             info->kernel_cmdline, cmdline_size + 1);
330         cmdline_size = (cmdline_size >> 2) + 1;
331         WRITE_WORD(p, cmdline_size + 2);
332         WRITE_WORD(p, 0x54410009);
333         p += cmdline_size * 4;
334     }
335     if (info->atag_board) {
336         /* ATAG_BOARD */
337         int atag_board_len;
338         uint8_t atag_board_buf[0x1000];
339 
340         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
341         WRITE_WORD(p, (atag_board_len + 8) >> 2);
342         WRITE_WORD(p, 0x414f4d50);
343         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
344                             atag_board_buf, atag_board_len);
345         p += atag_board_len;
346     }
347     /* ATAG_END */
348     WRITE_WORD(p, 0);
349     WRITE_WORD(p, 0);
350 }
351 
352 static void set_kernel_args_old(const struct arm_boot_info *info,
353                                 AddressSpace *as)
354 {
355     hwaddr p;
356     const char *s;
357     int initrd_size = info->initrd_size;
358     hwaddr base = info->loader_start;
359 
360     /* see linux/include/asm-arm/setup.h */
361     p = base + KERNEL_ARGS_ADDR;
362     /* page_size */
363     WRITE_WORD(p, 4096);
364     /* nr_pages */
365     WRITE_WORD(p, info->ram_size / 4096);
366     /* ramdisk_size */
367     WRITE_WORD(p, 0);
368 #define FLAG_READONLY	1
369 #define FLAG_RDLOAD	4
370 #define FLAG_RDPROMPT	8
371     /* flags */
372     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
373     /* rootdev */
374     WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
375     /* video_num_cols */
376     WRITE_WORD(p, 0);
377     /* video_num_rows */
378     WRITE_WORD(p, 0);
379     /* video_x */
380     WRITE_WORD(p, 0);
381     /* video_y */
382     WRITE_WORD(p, 0);
383     /* memc_control_reg */
384     WRITE_WORD(p, 0);
385     /* unsigned char sounddefault */
386     /* unsigned char adfsdrives */
387     /* unsigned char bytes_per_char_h */
388     /* unsigned char bytes_per_char_v */
389     WRITE_WORD(p, 0);
390     /* pages_in_bank[4] */
391     WRITE_WORD(p, 0);
392     WRITE_WORD(p, 0);
393     WRITE_WORD(p, 0);
394     WRITE_WORD(p, 0);
395     /* pages_in_vram */
396     WRITE_WORD(p, 0);
397     /* initrd_start */
398     if (initrd_size) {
399         WRITE_WORD(p, info->initrd_start);
400     } else {
401         WRITE_WORD(p, 0);
402     }
403     /* initrd_size */
404     WRITE_WORD(p, initrd_size);
405     /* rd_start */
406     WRITE_WORD(p, 0);
407     /* system_rev */
408     WRITE_WORD(p, 0);
409     /* system_serial_low */
410     WRITE_WORD(p, 0);
411     /* system_serial_high */
412     WRITE_WORD(p, 0);
413     /* mem_fclk_21285 */
414     WRITE_WORD(p, 0);
415     /* zero unused fields */
416     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
417         WRITE_WORD(p, 0);
418     }
419     s = info->kernel_cmdline;
420     if (s) {
421         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
422     } else {
423         WRITE_WORD(p, 0);
424     }
425 }
426 
427 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
428                                uint32_t scells, hwaddr mem_len,
429                                int numa_node_id)
430 {
431     char *nodename;
432     int ret;
433 
434     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
435     qemu_fdt_add_subnode(fdt, nodename);
436     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
437     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
438                                        scells, mem_len);
439     if (ret < 0) {
440         goto out;
441     }
442 
443     /* only set the NUMA ID if it is specified */
444     if (numa_node_id >= 0) {
445         ret = qemu_fdt_setprop_cell(fdt, nodename,
446                                     "numa-node-id", numa_node_id);
447     }
448 out:
449     g_free(nodename);
450     return ret;
451 }
452 
453 static void fdt_add_psci_node(void *fdt)
454 {
455     uint32_t cpu_suspend_fn;
456     uint32_t cpu_off_fn;
457     uint32_t cpu_on_fn;
458     uint32_t migrate_fn;
459     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
460     const char *psci_method;
461     int64_t psci_conduit;
462     int rc;
463 
464     psci_conduit = object_property_get_int(OBJECT(armcpu),
465                                            "psci-conduit",
466                                            &error_abort);
467     switch (psci_conduit) {
468     case QEMU_PSCI_CONDUIT_DISABLED:
469         return;
470     case QEMU_PSCI_CONDUIT_HVC:
471         psci_method = "hvc";
472         break;
473     case QEMU_PSCI_CONDUIT_SMC:
474         psci_method = "smc";
475         break;
476     default:
477         g_assert_not_reached();
478     }
479 
480     /*
481      * A pre-existing /psci node might specify function ID values
482      * that don't match QEMU's PSCI implementation. Delete the whole
483      * node and put our own in instead.
484      */
485     rc = fdt_path_offset(fdt, "/psci");
486     if (rc >= 0) {
487         qemu_fdt_nop_node(fdt, "/psci");
488     }
489 
490     qemu_fdt_add_subnode(fdt, "/psci");
491     if (armcpu->psci_version == QEMU_PSCI_VERSION_0_2 ||
492         armcpu->psci_version == QEMU_PSCI_VERSION_1_1) {
493         if (armcpu->psci_version == QEMU_PSCI_VERSION_0_2) {
494             const char comp[] = "arm,psci-0.2\0arm,psci";
495             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
496         } else {
497             const char comp[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci";
498             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
499         }
500 
501         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
502         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
503             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
504             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
505             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
506         } else {
507             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
508             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
509             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
510         }
511     } else {
512         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
513 
514         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
515         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
516         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
517         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
518     }
519 
520     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
521      * to the instruction that should be used to invoke PSCI functions.
522      * However, the device tree binding uses 'method' instead, so that is
523      * what we should use here.
524      */
525     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
526 
527     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
528     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
529     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
530     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
531 }
532 
533 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
534                  hwaddr addr_limit, AddressSpace *as, MachineState *ms)
535 {
536     void *fdt = NULL;
537     int size, rc, n = 0;
538     uint32_t acells, scells;
539     unsigned int i;
540     hwaddr mem_base, mem_len;
541     char **node_path;
542     Error *err = NULL;
543 
544     if (binfo->dtb_filename) {
545         char *filename;
546         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
547         if (!filename) {
548             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
549             goto fail;
550         }
551 
552         fdt = load_device_tree(filename, &size);
553         if (!fdt) {
554             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
555             g_free(filename);
556             goto fail;
557         }
558         g_free(filename);
559     } else {
560         fdt = binfo->get_dtb(binfo, &size);
561         if (!fdt) {
562             fprintf(stderr, "Board was unable to create a dtb blob\n");
563             goto fail;
564         }
565     }
566 
567     if (addr_limit > addr && size > (addr_limit - addr)) {
568         /* Installing the device tree blob at addr would exceed addr_limit.
569          * Whether this constitutes failure is up to the caller to decide,
570          * so just return 0 as size, i.e., no error.
571          */
572         g_free(fdt);
573         return 0;
574     }
575 
576     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
577                                    NULL, &error_fatal);
578     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
579                                    NULL, &error_fatal);
580     if (acells == 0 || scells == 0) {
581         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
582         goto fail;
583     }
584 
585     if (scells < 2 && binfo->ram_size >= 4 * GiB) {
586         /* This is user error so deserves a friendlier error message
587          * than the failure of setprop_sized_cells would provide
588          */
589         fprintf(stderr, "qemu: dtb file not compatible with "
590                 "RAM size > 4GB\n");
591         goto fail;
592     }
593 
594     /* nop all root nodes matching /memory or /memory@unit-address */
595     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
596     if (err) {
597         error_report_err(err);
598         goto fail;
599     }
600     while (node_path[n]) {
601         if (g_str_has_prefix(node_path[n], "/memory")) {
602             qemu_fdt_nop_node(fdt, node_path[n]);
603         }
604         n++;
605     }
606     g_strfreev(node_path);
607 
608     /*
609      * We drop all the memory nodes which correspond to empty NUMA nodes
610      * from the device tree, because the Linux NUMA binding document
611      * states they should not be generated. Linux will get the NUMA node
612      * IDs of the empty NUMA nodes from the distance map if they are needed.
613      * This means QEMU users may be obliged to provide command lines which
614      * configure distance maps when the empty NUMA node IDs are needed and
615      * Linux's default distance map isn't sufficient.
616      */
617     if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
618         mem_base = binfo->loader_start;
619         for (i = 0; i < ms->numa_state->num_nodes; i++) {
620             mem_len = ms->numa_state->nodes[i].node_mem;
621             if (!mem_len) {
622                 continue;
623             }
624 
625             rc = fdt_add_memory_node(fdt, acells, mem_base,
626                                      scells, mem_len, i);
627             if (rc < 0) {
628                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
629                         mem_base);
630                 goto fail;
631             }
632 
633             mem_base += mem_len;
634         }
635     } else {
636         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
637                                  scells, binfo->ram_size, -1);
638         if (rc < 0) {
639             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
640                     binfo->loader_start);
641             goto fail;
642         }
643     }
644 
645     rc = fdt_path_offset(fdt, "/chosen");
646     if (rc < 0) {
647         qemu_fdt_add_subnode(fdt, "/chosen");
648     }
649 
650     if (ms->kernel_cmdline && *ms->kernel_cmdline) {
651         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
652                                      ms->kernel_cmdline);
653         if (rc < 0) {
654             fprintf(stderr, "couldn't set /chosen/bootargs\n");
655             goto fail;
656         }
657     }
658 
659     if (binfo->initrd_size) {
660         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
661                                    binfo->initrd_start);
662         if (rc < 0) {
663             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
664             goto fail;
665         }
666 
667         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
668                                    binfo->initrd_start + binfo->initrd_size);
669         if (rc < 0) {
670             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
671             goto fail;
672         }
673     }
674 
675     fdt_add_psci_node(fdt);
676 
677     if (binfo->modify_dtb) {
678         binfo->modify_dtb(binfo, fdt);
679     }
680 
681     qemu_fdt_dumpdtb(fdt, size);
682 
683     /* Put the DTB into the memory map as a ROM image: this will ensure
684      * the DTB is copied again upon reset, even if addr points into RAM.
685      */
686     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
687 
688     g_free(fdt);
689 
690     return size;
691 
692 fail:
693     g_free(fdt);
694     return -1;
695 }
696 
697 static void do_cpu_reset(void *opaque)
698 {
699     ARMCPU *cpu = opaque;
700     CPUState *cs = CPU(cpu);
701     CPUARMState *env = &cpu->env;
702     const struct arm_boot_info *info = env->boot_info;
703 
704     cpu_reset(cs);
705     if (info) {
706         if (!info->is_linux) {
707             int i;
708             /* Jump to the entry point.  */
709             uint64_t entry = info->entry;
710 
711             switch (info->endianness) {
712             case ARM_ENDIANNESS_LE:
713                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
714                 for (i = 1; i < 4; ++i) {
715                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
716                 }
717                 env->uncached_cpsr &= ~CPSR_E;
718                 break;
719             case ARM_ENDIANNESS_BE8:
720                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
721                 for (i = 1; i < 4; ++i) {
722                     env->cp15.sctlr_el[i] |= SCTLR_EE;
723                 }
724                 env->uncached_cpsr |= CPSR_E;
725                 break;
726             case ARM_ENDIANNESS_BE32:
727                 env->cp15.sctlr_el[1] |= SCTLR_B;
728                 break;
729             case ARM_ENDIANNESS_UNKNOWN:
730                 break; /* Board's decision */
731             default:
732                 g_assert_not_reached();
733             }
734 
735             cpu_set_pc(cs, entry);
736         } else {
737             /* If we are booting Linux then we need to check whether we are
738              * booting into secure or non-secure state and adjust the state
739              * accordingly.  Out of reset, ARM is defined to be in secure state
740              * (SCR.NS = 0), we change that here if non-secure boot has been
741              * requested.
742              */
743             if (arm_feature(env, ARM_FEATURE_EL3)) {
744                 /* AArch64 is defined to come out of reset into EL3 if enabled.
745                  * If we are booting Linux then we need to adjust our EL as
746                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
747                  * SVC, which Linux expects, so no privilege/exception level to
748                  * adjust.
749                  */
750                 if (env->aarch64) {
751                     env->cp15.scr_el3 |= SCR_RW;
752                     if (arm_feature(env, ARM_FEATURE_EL2)) {
753                         env->cp15.hcr_el2 |= HCR_RW;
754                         env->pstate = PSTATE_MODE_EL2h;
755                     } else {
756                         env->pstate = PSTATE_MODE_EL1h;
757                     }
758                     if (cpu_isar_feature(aa64_pauth, cpu)) {
759                         env->cp15.scr_el3 |= SCR_API | SCR_APK;
760                     }
761                     if (cpu_isar_feature(aa64_mte, cpu)) {
762                         env->cp15.scr_el3 |= SCR_ATA;
763                     }
764                     if (cpu_isar_feature(aa64_sve, cpu)) {
765                         env->cp15.cptr_el[3] |= CPTR_EZ;
766                     }
767                     /* AArch64 kernels never boot in secure mode */
768                     assert(!info->secure_boot);
769                     /* This hook is only supported for AArch32 currently:
770                      * bootloader_aarch64[] will not call the hook, and
771                      * the code above has already dropped us into EL2 or EL1.
772                      */
773                     assert(!info->secure_board_setup);
774                 }
775 
776                 if (arm_feature(env, ARM_FEATURE_EL2)) {
777                     /* If we have EL2 then Linux expects the HVC insn to work */
778                     env->cp15.scr_el3 |= SCR_HCE;
779                 }
780 
781                 /* Set to non-secure if not a secure boot */
782                 if (!info->secure_boot &&
783                     (cs != first_cpu || !info->secure_board_setup)) {
784                     /* Linux expects non-secure state */
785                     env->cp15.scr_el3 |= SCR_NS;
786                     /* Set NSACR.{CP11,CP10} so NS can access the FPU */
787                     env->cp15.nsacr |= 3 << 10;
788                 }
789             }
790 
791             if (!env->aarch64 && !info->secure_boot &&
792                 arm_feature(env, ARM_FEATURE_EL2)) {
793                 /*
794                  * This is an AArch32 boot not to Secure state, and
795                  * we have Hyp mode available, so boot the kernel into
796                  * Hyp mode. This is not how the CPU comes out of reset,
797                  * so we need to manually put it there.
798                  */
799                 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
800             }
801 
802             if (cs == first_cpu) {
803                 AddressSpace *as = arm_boot_address_space(cpu, info);
804 
805                 cpu_set_pc(cs, info->loader_start);
806 
807                 if (!have_dtb(info)) {
808                     if (old_param) {
809                         set_kernel_args_old(info, as);
810                     } else {
811                         set_kernel_args(info, as);
812                     }
813                 }
814             } else if (info->secondary_cpu_reset_hook) {
815                 info->secondary_cpu_reset_hook(cpu, info);
816             }
817         }
818         arm_rebuild_hflags(env);
819     }
820 }
821 
822 /**
823  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
824  *                          by key.
825  * @fw_cfg:         The firmware config instance to store the data in.
826  * @size_key:       The firmware config key to store the size of the loaded
827  *                  data under, with fw_cfg_add_i32().
828  * @data_key:       The firmware config key to store the loaded data under,
829  *                  with fw_cfg_add_bytes().
830  * @image_name:     The name of the image file to load. If it is NULL, the
831  *                  function returns without doing anything.
832  * @try_decompress: Whether the image should be decompressed (gunzipped) before
833  *                  adding it to fw_cfg. If decompression fails, the image is
834  *                  loaded as-is.
835  *
836  * In case of failure, the function prints an error message to stderr and the
837  * process exits with status 1.
838  */
839 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
840                                  uint16_t data_key, const char *image_name,
841                                  bool try_decompress)
842 {
843     size_t size = -1;
844     uint8_t *data;
845 
846     if (image_name == NULL) {
847         return;
848     }
849 
850     if (try_decompress) {
851         size = load_image_gzipped_buffer(image_name,
852                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
853     }
854 
855     if (size == (size_t)-1) {
856         gchar *contents;
857         gsize length;
858 
859         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
860             error_report("failed to load \"%s\"", image_name);
861             exit(1);
862         }
863         size = length;
864         data = (uint8_t *)contents;
865     }
866 
867     fw_cfg_add_i32(fw_cfg, size_key, size);
868     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
869 }
870 
871 static int do_arm_linux_init(Object *obj, void *opaque)
872 {
873     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
874         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
875         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
876         struct arm_boot_info *info = opaque;
877 
878         if (albifc->arm_linux_init) {
879             albifc->arm_linux_init(albif, info->secure_boot);
880         }
881     }
882     return 0;
883 }
884 
885 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
886                             uint64_t *lowaddr, uint64_t *highaddr,
887                             int elf_machine, AddressSpace *as)
888 {
889     bool elf_is64;
890     union {
891         Elf32_Ehdr h32;
892         Elf64_Ehdr h64;
893     } elf_header;
894     int data_swab = 0;
895     bool big_endian;
896     int64_t ret = -1;
897     Error *err = NULL;
898 
899 
900     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
901     if (err) {
902         error_free(err);
903         return ret;
904     }
905 
906     if (elf_is64) {
907         big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
908         info->endianness = big_endian ? ARM_ENDIANNESS_BE8
909                                       : ARM_ENDIANNESS_LE;
910     } else {
911         big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
912         if (big_endian) {
913             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
914                 info->endianness = ARM_ENDIANNESS_BE8;
915             } else {
916                 info->endianness = ARM_ENDIANNESS_BE32;
917                 /* In BE32, the CPU has a different view of the per-byte
918                  * address map than the rest of the system. BE32 ELF files
919                  * are organised such that they can be programmed through
920                  * the CPU's per-word byte-reversed view of the world. QEMU
921                  * however loads ELF files independently of the CPU. So
922                  * tell the ELF loader to byte reverse the data for us.
923                  */
924                 data_swab = 2;
925             }
926         } else {
927             info->endianness = ARM_ENDIANNESS_LE;
928         }
929     }
930 
931     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
932                       pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
933                       1, data_swab, as);
934     if (ret <= 0) {
935         /* The header loaded but the image didn't */
936         exit(1);
937     }
938 
939     return ret;
940 }
941 
942 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
943                                    hwaddr *entry, AddressSpace *as)
944 {
945     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
946     uint64_t kernel_size = 0;
947     uint8_t *buffer;
948     int size;
949 
950     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
951     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
952                                      &buffer);
953 
954     if (size < 0) {
955         gsize len;
956 
957         /* Load as raw file otherwise */
958         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
959             return -1;
960         }
961         size = len;
962     }
963 
964     /* check the arm64 magic header value -- very old kernels may not have it */
965     if (size > ARM64_MAGIC_OFFSET + 4 &&
966         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
967         uint64_t hdrvals[2];
968 
969         /* The arm64 Image header has text_offset and image_size fields at 8 and
970          * 16 bytes into the Image header, respectively. The text_offset field
971          * is only valid if the image_size is non-zero.
972          */
973         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
974 
975         kernel_size = le64_to_cpu(hdrvals[1]);
976 
977         if (kernel_size != 0) {
978             kernel_load_offset = le64_to_cpu(hdrvals[0]);
979 
980             /*
981              * We write our startup "bootloader" at the very bottom of RAM,
982              * so that bit can't be used for the image. Luckily the Image
983              * format specification is that the image requests only an offset
984              * from a 2MB boundary, not an absolute load address. So if the
985              * image requests an offset that might mean it overlaps with the
986              * bootloader, we can just load it starting at 2MB+offset rather
987              * than 0MB + offset.
988              */
989             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
990                 kernel_load_offset += 2 * MiB;
991             }
992         }
993     }
994 
995     /*
996      * Kernels before v3.17 don't populate the image_size field, and
997      * raw images have no header. For those our best guess at the size
998      * is the size of the Image file itself.
999      */
1000     if (kernel_size == 0) {
1001         kernel_size = size;
1002     }
1003 
1004     *entry = mem_base + kernel_load_offset;
1005     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
1006 
1007     g_free(buffer);
1008 
1009     return kernel_size;
1010 }
1011 
1012 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
1013                                          struct arm_boot_info *info)
1014 {
1015     /* Set up for a direct boot of a kernel image file. */
1016     CPUState *cs;
1017     AddressSpace *as = arm_boot_address_space(cpu, info);
1018     int kernel_size;
1019     int initrd_size;
1020     int is_linux = 0;
1021     uint64_t elf_entry;
1022     /* Addresses of first byte used and first byte not used by the image */
1023     uint64_t image_low_addr = 0, image_high_addr = 0;
1024     int elf_machine;
1025     hwaddr entry;
1026     static const ARMInsnFixup *primary_loader;
1027     uint64_t ram_end = info->loader_start + info->ram_size;
1028 
1029     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1030         primary_loader = bootloader_aarch64;
1031         elf_machine = EM_AARCH64;
1032     } else {
1033         primary_loader = bootloader;
1034         if (!info->write_board_setup) {
1035             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1036         }
1037         elf_machine = EM_ARM;
1038     }
1039 
1040     /* Assume that raw images are linux kernels, and ELF images are not.  */
1041     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1042                                &image_high_addr, elf_machine, as);
1043     if (kernel_size > 0 && have_dtb(info)) {
1044         /*
1045          * If there is still some room left at the base of RAM, try and put
1046          * the DTB there like we do for images loaded with -bios or -pflash.
1047          */
1048         if (image_low_addr > info->loader_start
1049             || image_high_addr < info->loader_start) {
1050             /*
1051              * Set image_low_addr as address limit for arm_load_dtb if it may be
1052              * pointing into RAM, otherwise pass '0' (no limit)
1053              */
1054             if (image_low_addr < info->loader_start) {
1055                 image_low_addr = 0;
1056             }
1057             info->dtb_start = info->loader_start;
1058             info->dtb_limit = image_low_addr;
1059         }
1060     }
1061     entry = elf_entry;
1062     if (kernel_size < 0) {
1063         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1064         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1065                                      &is_linux, NULL, NULL, as);
1066         if (kernel_size >= 0) {
1067             image_low_addr = loadaddr;
1068             image_high_addr = image_low_addr + kernel_size;
1069         }
1070     }
1071     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1072         kernel_size = load_aarch64_image(info->kernel_filename,
1073                                          info->loader_start, &entry, as);
1074         is_linux = 1;
1075         if (kernel_size >= 0) {
1076             image_low_addr = entry;
1077             image_high_addr = image_low_addr + kernel_size;
1078         }
1079     } else if (kernel_size < 0) {
1080         /* 32-bit ARM */
1081         entry = info->loader_start + KERNEL_LOAD_ADDR;
1082         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1083                                              ram_end - KERNEL_LOAD_ADDR, as);
1084         is_linux = 1;
1085         if (kernel_size >= 0) {
1086             image_low_addr = entry;
1087             image_high_addr = image_low_addr + kernel_size;
1088         }
1089     }
1090     if (kernel_size < 0) {
1091         error_report("could not load kernel '%s'", info->kernel_filename);
1092         exit(1);
1093     }
1094 
1095     if (kernel_size > info->ram_size) {
1096         error_report("kernel '%s' is too large to fit in RAM "
1097                      "(kernel size %d, RAM size %" PRId64 ")",
1098                      info->kernel_filename, kernel_size, info->ram_size);
1099         exit(1);
1100     }
1101 
1102     info->entry = entry;
1103 
1104     /*
1105      * We want to put the initrd far enough into RAM that when the
1106      * kernel is uncompressed it will not clobber the initrd. However
1107      * on boards without much RAM we must ensure that we still leave
1108      * enough room for a decent sized initrd, and on boards with large
1109      * amounts of RAM we must avoid the initrd being so far up in RAM
1110      * that it is outside lowmem and inaccessible to the kernel.
1111      * So for boards with less  than 256MB of RAM we put the initrd
1112      * halfway into RAM, and for boards with 256MB of RAM or more we put
1113      * the initrd at 128MB.
1114      * We also refuse to put the initrd somewhere that will definitely
1115      * overlay the kernel we just loaded, though for kernel formats which
1116      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1117      * we might still make a bad choice here.
1118      */
1119     info->initrd_start = info->loader_start +
1120         MIN(info->ram_size / 2, 128 * MiB);
1121     if (image_high_addr) {
1122         info->initrd_start = MAX(info->initrd_start, image_high_addr);
1123     }
1124     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1125 
1126     if (is_linux) {
1127         uint32_t fixupcontext[FIXUP_MAX];
1128 
1129         if (info->initrd_filename) {
1130 
1131             if (info->initrd_start >= ram_end) {
1132                 error_report("not enough space after kernel to load initrd");
1133                 exit(1);
1134             }
1135 
1136             initrd_size = load_ramdisk_as(info->initrd_filename,
1137                                           info->initrd_start,
1138                                           ram_end - info->initrd_start, as);
1139             if (initrd_size < 0) {
1140                 initrd_size = load_image_targphys_as(info->initrd_filename,
1141                                                      info->initrd_start,
1142                                                      ram_end -
1143                                                      info->initrd_start,
1144                                                      as);
1145             }
1146             if (initrd_size < 0) {
1147                 error_report("could not load initrd '%s'",
1148                              info->initrd_filename);
1149                 exit(1);
1150             }
1151             if (info->initrd_start + initrd_size > ram_end) {
1152                 error_report("could not load initrd '%s': "
1153                              "too big to fit into RAM after the kernel",
1154                              info->initrd_filename);
1155                 exit(1);
1156             }
1157         } else {
1158             initrd_size = 0;
1159         }
1160         info->initrd_size = initrd_size;
1161 
1162         fixupcontext[FIXUP_BOARDID] = info->board_id;
1163         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1164 
1165         /*
1166          * for device tree boot, we pass the DTB directly in r2. Otherwise
1167          * we point to the kernel args.
1168          */
1169         if (have_dtb(info)) {
1170             hwaddr align;
1171 
1172             if (elf_machine == EM_AARCH64) {
1173                 /*
1174                  * Some AArch64 kernels on early bootup map the fdt region as
1175                  *
1176                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1177                  *
1178                  * Let's play safe and prealign it to 2MB to give us some space.
1179                  */
1180                 align = 2 * MiB;
1181             } else {
1182                 /*
1183                  * Some 32bit kernels will trash anything in the 4K page the
1184                  * initrd ends in, so make sure the DTB isn't caught up in that.
1185                  */
1186                 align = 4 * KiB;
1187             }
1188 
1189             /* Place the DTB after the initrd in memory with alignment. */
1190             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1191                                            align);
1192             if (info->dtb_start >= ram_end) {
1193                 error_report("Not enough space for DTB after kernel/initrd");
1194                 exit(1);
1195             }
1196             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1197             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1198         } else {
1199             fixupcontext[FIXUP_ARGPTR_LO] =
1200                 info->loader_start + KERNEL_ARGS_ADDR;
1201             fixupcontext[FIXUP_ARGPTR_HI] =
1202                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1203             if (info->ram_size >= 4 * GiB) {
1204                 error_report("RAM size must be less than 4GB to boot"
1205                              " Linux kernel using ATAGS (try passing a device tree"
1206                              " using -dtb)");
1207                 exit(1);
1208             }
1209         }
1210         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1211         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1212 
1213         write_bootloader("bootloader", info->loader_start,
1214                          primary_loader, fixupcontext, as);
1215 
1216         if (info->write_board_setup) {
1217             info->write_board_setup(cpu, info);
1218         }
1219 
1220         /*
1221          * Notify devices which need to fake up firmware initialization
1222          * that we're doing a direct kernel boot.
1223          */
1224         object_child_foreach_recursive(object_get_root(),
1225                                        do_arm_linux_init, info);
1226     }
1227     info->is_linux = is_linux;
1228 
1229     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1230         ARM_CPU(cs)->env.boot_info = info;
1231     }
1232 }
1233 
1234 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1235 {
1236     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1237 
1238     if (have_dtb(info)) {
1239         /*
1240          * If we have a device tree blob, but no kernel to supply it to (or
1241          * the kernel is supposed to be loaded by the bootloader), copy the
1242          * DTB to the base of RAM for the bootloader to pick up.
1243          */
1244         info->dtb_start = info->loader_start;
1245     }
1246 
1247     if (info->kernel_filename) {
1248         FWCfgState *fw_cfg;
1249         bool try_decompressing_kernel;
1250 
1251         fw_cfg = fw_cfg_find();
1252 
1253         if (!fw_cfg) {
1254             error_report("This machine type does not support loading both "
1255                          "a guest firmware/BIOS image and a guest kernel at "
1256                          "the same time. You should change your QEMU command "
1257                          "line to specify one or the other, but not both.");
1258             exit(1);
1259         }
1260 
1261         try_decompressing_kernel = arm_feature(&cpu->env,
1262                                                ARM_FEATURE_AARCH64);
1263 
1264         /*
1265          * Expose the kernel, the command line, and the initrd in fw_cfg.
1266          * We don't process them here at all, it's all left to the
1267          * firmware.
1268          */
1269         load_image_to_fw_cfg(fw_cfg,
1270                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1271                              info->kernel_filename,
1272                              try_decompressing_kernel);
1273         load_image_to_fw_cfg(fw_cfg,
1274                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1275                              info->initrd_filename, false);
1276 
1277         if (info->kernel_cmdline) {
1278             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1279                            strlen(info->kernel_cmdline) + 1);
1280             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1281                               info->kernel_cmdline);
1282         }
1283     }
1284 
1285     /*
1286      * We will start from address 0 (typically a boot ROM image) in the
1287      * same way as hardware. Leave env->boot_info NULL, so that
1288      * do_cpu_reset() knows it does not need to alter the PC on reset.
1289      */
1290 }
1291 
1292 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1293 {
1294     CPUState *cs;
1295     AddressSpace *as = arm_boot_address_space(cpu, info);
1296     int boot_el;
1297     CPUARMState *env = &cpu->env;
1298     int nb_cpus = 0;
1299 
1300     /*
1301      * CPU objects (unlike devices) are not automatically reset on system
1302      * reset, so we must always register a handler to do so. If we're
1303      * actually loading a kernel, the handler is also responsible for
1304      * arranging that we start it correctly.
1305      */
1306     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1307         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1308         nb_cpus++;
1309     }
1310 
1311     /*
1312      * The board code is not supposed to set secure_board_setup unless
1313      * running its code in secure mode is actually possible, and KVM
1314      * doesn't support secure.
1315      */
1316     assert(!(info->secure_board_setup && kvm_enabled()));
1317     info->kernel_filename = ms->kernel_filename;
1318     info->kernel_cmdline = ms->kernel_cmdline;
1319     info->initrd_filename = ms->initrd_filename;
1320     info->dtb_filename = ms->dtb;
1321     info->dtb_limit = 0;
1322 
1323     /* Load the kernel.  */
1324     if (!info->kernel_filename || info->firmware_loaded) {
1325         arm_setup_firmware_boot(cpu, info);
1326     } else {
1327         arm_setup_direct_kernel_boot(cpu, info);
1328     }
1329 
1330     /*
1331      * Disable the PSCI conduit if it is set up to target the same
1332      * or a lower EL than the one we're going to start the guest code in.
1333      * This logic needs to agree with the code in do_cpu_reset() which
1334      * decides whether we're going to boot the guest in the highest
1335      * supported exception level or in a lower one.
1336      */
1337 
1338     /*
1339      * If PSCI is enabled, then SMC calls all go to the PSCI handler and
1340      * are never emulated to trap into guest code. It therefore does not
1341      * make sense for the board to have a setup code fragment that runs
1342      * in Secure, because this will probably need to itself issue an SMC of some
1343      * kind as part of its operation.
1344      */
1345     assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED ||
1346            !info->secure_board_setup);
1347 
1348     /* Boot into highest supported EL ... */
1349     if (arm_feature(env, ARM_FEATURE_EL3)) {
1350         boot_el = 3;
1351     } else if (arm_feature(env, ARM_FEATURE_EL2)) {
1352         boot_el = 2;
1353     } else {
1354         boot_el = 1;
1355     }
1356     /* ...except that if we're booting Linux we adjust the EL we boot into */
1357     if (info->is_linux && !info->secure_boot) {
1358         boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
1359     }
1360 
1361     if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) ||
1362         (info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) {
1363         info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1364     }
1365 
1366     if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1367         for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1368             Object *cpuobj = OBJECT(cs);
1369 
1370             object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit,
1371                                     &error_abort);
1372             /*
1373              * Secondary CPUs start in PSCI powered-down state. Like the
1374              * code in do_cpu_reset(), we assume first_cpu is the primary
1375              * CPU.
1376              */
1377             if (cs != first_cpu) {
1378                 object_property_set_bool(cpuobj, "start-powered-off", true,
1379                                          &error_abort);
1380             }
1381         }
1382     }
1383 
1384     if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED &&
1385         info->is_linux && nb_cpus > 1) {
1386         /*
1387          * We're booting Linux but not using PSCI, so for SMP we need
1388          * to write a custom secondary CPU boot loader stub, and arrange
1389          * for the secondary CPU reset to make the accompanying initialization.
1390          */
1391         if (!info->secondary_cpu_reset_hook) {
1392             info->secondary_cpu_reset_hook = default_reset_secondary;
1393         }
1394         if (!info->write_secondary_boot) {
1395             info->write_secondary_boot = default_write_secondary;
1396         }
1397         info->write_secondary_boot(cpu, info);
1398     } else {
1399         /*
1400          * No secondary boot stub; don't use the reset hook that would
1401          * have set the CPU up to call it
1402          */
1403         info->write_secondary_boot = NULL;
1404         info->secondary_cpu_reset_hook = NULL;
1405     }
1406 
1407     /*
1408      * arm_load_dtb() may add a PSCI node so it must be called after we have
1409      * decided whether to enable PSCI and set the psci-conduit CPU properties.
1410      */
1411     if (!info->skip_dtb_autoload && have_dtb(info)) {
1412         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1413             exit(1);
1414         }
1415     }
1416 }
1417 
1418 static const TypeInfo arm_linux_boot_if_info = {
1419     .name = TYPE_ARM_LINUX_BOOT_IF,
1420     .parent = TYPE_INTERFACE,
1421     .class_size = sizeof(ARMLinuxBootIfClass),
1422 };
1423 
1424 static void arm_linux_boot_register_types(void)
1425 {
1426     type_register_static(&arm_linux_boot_if_info);
1427 }
1428 
1429 type_init(arm_linux_boot_register_types)
1430