xref: /openbmc/qemu/hw/arm/boot.c (revision 0221d73c)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu-common.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "sysemu/reset.h"
22 #include "hw/loader.h"
23 #include "elf.h"
24 #include "sysemu/device_tree.h"
25 #include "qemu/config-file.h"
26 #include "qemu/option.h"
27 #include "exec/address-spaces.h"
28 #include "qemu/units.h"
29 
30 /* Kernel boot protocol is specified in the kernel docs
31  * Documentation/arm/Booting and Documentation/arm64/booting.txt
32  * They have different preferred image load offsets from system RAM base.
33  */
34 #define KERNEL_ARGS_ADDR   0x100
35 #define KERNEL_NOLOAD_ADDR 0x02000000
36 #define KERNEL_LOAD_ADDR   0x00010000
37 #define KERNEL64_LOAD_ADDR 0x00080000
38 
39 #define ARM64_TEXT_OFFSET_OFFSET    8
40 #define ARM64_MAGIC_OFFSET          56
41 
42 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
43 
44 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
45                                      const struct arm_boot_info *info)
46 {
47     /* Return the address space to use for bootloader reads and writes.
48      * We prefer the secure address space if the CPU has it and we're
49      * going to boot the guest into it.
50      */
51     int asidx;
52     CPUState *cs = CPU(cpu);
53 
54     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
55         asidx = ARMASIdx_S;
56     } else {
57         asidx = ARMASIdx_NS;
58     }
59 
60     return cpu_get_address_space(cs, asidx);
61 }
62 
63 typedef enum {
64     FIXUP_NONE = 0,     /* do nothing */
65     FIXUP_TERMINATOR,   /* end of insns */
66     FIXUP_BOARDID,      /* overwrite with board ID number */
67     FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
68     FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
69     FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
70     FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
71     FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
72     FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
73     FIXUP_BOOTREG,      /* overwrite with boot register address */
74     FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
75     FIXUP_MAX,
76 } FixupType;
77 
78 typedef struct ARMInsnFixup {
79     uint32_t insn;
80     FixupType fixup;
81 } ARMInsnFixup;
82 
83 static const ARMInsnFixup bootloader_aarch64[] = {
84     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
85     { 0xaa1f03e1 }, /* mov x1, xzr */
86     { 0xaa1f03e2 }, /* mov x2, xzr */
87     { 0xaa1f03e3 }, /* mov x3, xzr */
88     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
89     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
90     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
91     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
92     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
93     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
94     { 0, FIXUP_TERMINATOR }
95 };
96 
97 /* A very small bootloader: call the board-setup code (if needed),
98  * set r0-r2, then jump to the kernel.
99  * If we're not calling boot setup code then we don't copy across
100  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
101  */
102 
103 static const ARMInsnFixup bootloader[] = {
104     { 0xe28fe004 }, /* add     lr, pc, #4 */
105     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
106     { 0, FIXUP_BOARD_SETUP },
107 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
108     { 0xe3a00000 }, /* mov     r0, #0 */
109     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
110     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
111     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
112     { 0, FIXUP_BOARDID },
113     { 0, FIXUP_ARGPTR_LO },
114     { 0, FIXUP_ENTRYPOINT_LO },
115     { 0, FIXUP_TERMINATOR }
116 };
117 
118 /* Handling for secondary CPU boot in a multicore system.
119  * Unlike the uniprocessor/primary CPU boot, this is platform
120  * dependent. The default code here is based on the secondary
121  * CPU boot protocol used on realview/vexpress boards, with
122  * some parameterisation to increase its flexibility.
123  * QEMU platform models for which this code is not appropriate
124  * should override write_secondary_boot and secondary_cpu_reset_hook
125  * instead.
126  *
127  * This code enables the interrupt controllers for the secondary
128  * CPUs and then puts all the secondary CPUs into a loop waiting
129  * for an interprocessor interrupt and polling a configurable
130  * location for the kernel secondary CPU entry point.
131  */
132 #define DSB_INSN 0xf57ff04f
133 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
134 
135 static const ARMInsnFixup smpboot[] = {
136     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
137     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
138     { 0xe3a01001 }, /* mov r1, #1 */
139     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
140     { 0xe3a010ff }, /* mov r1, #0xff */
141     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
142     { 0, FIXUP_DSB },   /* dsb */
143     { 0xe320f003 }, /* wfi */
144     { 0xe5901000 }, /* ldr     r1, [r0] */
145     { 0xe1110001 }, /* tst     r1, r1 */
146     { 0x0afffffb }, /* beq     <wfi> */
147     { 0xe12fff11 }, /* bx      r1 */
148     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
149     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
150     { 0, FIXUP_TERMINATOR }
151 };
152 
153 static void write_bootloader(const char *name, hwaddr addr,
154                              const ARMInsnFixup *insns, uint32_t *fixupcontext,
155                              AddressSpace *as)
156 {
157     /* Fix up the specified bootloader fragment and write it into
158      * guest memory using rom_add_blob_fixed(). fixupcontext is
159      * an array giving the values to write in for the fixup types
160      * which write a value into the code array.
161      */
162     int i, len;
163     uint32_t *code;
164 
165     len = 0;
166     while (insns[len].fixup != FIXUP_TERMINATOR) {
167         len++;
168     }
169 
170     code = g_new0(uint32_t, len);
171 
172     for (i = 0; i < len; i++) {
173         uint32_t insn = insns[i].insn;
174         FixupType fixup = insns[i].fixup;
175 
176         switch (fixup) {
177         case FIXUP_NONE:
178             break;
179         case FIXUP_BOARDID:
180         case FIXUP_BOARD_SETUP:
181         case FIXUP_ARGPTR_LO:
182         case FIXUP_ARGPTR_HI:
183         case FIXUP_ENTRYPOINT_LO:
184         case FIXUP_ENTRYPOINT_HI:
185         case FIXUP_GIC_CPU_IF:
186         case FIXUP_BOOTREG:
187         case FIXUP_DSB:
188             insn = fixupcontext[fixup];
189             break;
190         default:
191             abort();
192         }
193         code[i] = tswap32(insn);
194     }
195 
196     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
197 
198     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
199 
200     g_free(code);
201 }
202 
203 static void default_write_secondary(ARMCPU *cpu,
204                                     const struct arm_boot_info *info)
205 {
206     uint32_t fixupcontext[FIXUP_MAX];
207     AddressSpace *as = arm_boot_address_space(cpu, info);
208 
209     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
210     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
211     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
212         fixupcontext[FIXUP_DSB] = DSB_INSN;
213     } else {
214         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
215     }
216 
217     write_bootloader("smpboot", info->smp_loader_start,
218                      smpboot, fixupcontext, as);
219 }
220 
221 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
222                                             const struct arm_boot_info *info,
223                                             hwaddr mvbar_addr)
224 {
225     AddressSpace *as = arm_boot_address_space(cpu, info);
226     int n;
227     uint32_t mvbar_blob[] = {
228         /* mvbar_addr: secure monitor vectors
229          * Default unimplemented and unused vectors to spin. Makes it
230          * easier to debug (as opposed to the CPU running away).
231          */
232         0xeafffffe, /* (spin) */
233         0xeafffffe, /* (spin) */
234         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
235         0xeafffffe, /* (spin) */
236         0xeafffffe, /* (spin) */
237         0xeafffffe, /* (spin) */
238         0xeafffffe, /* (spin) */
239         0xeafffffe, /* (spin) */
240     };
241     uint32_t board_setup_blob[] = {
242         /* board setup addr */
243         0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
244         0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
245         0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
246         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
247         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
248         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
249         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
250         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
251         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
252         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
253         0xe1a0f001, /* mov     pc, r1                 ;return */
254     };
255 
256     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
257     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
258 
259     /* check that these blobs don't overlap */
260     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
261           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
262 
263     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
264         mvbar_blob[n] = tswap32(mvbar_blob[n]);
265     }
266     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
267                           mvbar_addr, as);
268 
269     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
270         board_setup_blob[n] = tswap32(board_setup_blob[n]);
271     }
272     rom_add_blob_fixed_as("board-setup", board_setup_blob,
273                           sizeof(board_setup_blob), info->board_setup_addr, as);
274 }
275 
276 static void default_reset_secondary(ARMCPU *cpu,
277                                     const struct arm_boot_info *info)
278 {
279     AddressSpace *as = arm_boot_address_space(cpu, info);
280     CPUState *cs = CPU(cpu);
281 
282     address_space_stl_notdirty(as, info->smp_bootreg_addr,
283                                0, MEMTXATTRS_UNSPECIFIED, NULL);
284     cpu_set_pc(cs, info->smp_loader_start);
285 }
286 
287 static inline bool have_dtb(const struct arm_boot_info *info)
288 {
289     return info->dtb_filename || info->get_dtb;
290 }
291 
292 #define WRITE_WORD(p, value) do { \
293     address_space_stl_notdirty(as, p, value, \
294                                MEMTXATTRS_UNSPECIFIED, NULL);  \
295     p += 4;                       \
296 } while (0)
297 
298 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
299 {
300     int initrd_size = info->initrd_size;
301     hwaddr base = info->loader_start;
302     hwaddr p;
303 
304     p = base + KERNEL_ARGS_ADDR;
305     /* ATAG_CORE */
306     WRITE_WORD(p, 5);
307     WRITE_WORD(p, 0x54410001);
308     WRITE_WORD(p, 1);
309     WRITE_WORD(p, 0x1000);
310     WRITE_WORD(p, 0);
311     /* ATAG_MEM */
312     /* TODO: handle multiple chips on one ATAG list */
313     WRITE_WORD(p, 4);
314     WRITE_WORD(p, 0x54410002);
315     WRITE_WORD(p, info->ram_size);
316     WRITE_WORD(p, info->loader_start);
317     if (initrd_size) {
318         /* ATAG_INITRD2 */
319         WRITE_WORD(p, 4);
320         WRITE_WORD(p, 0x54420005);
321         WRITE_WORD(p, info->initrd_start);
322         WRITE_WORD(p, initrd_size);
323     }
324     if (info->kernel_cmdline && *info->kernel_cmdline) {
325         /* ATAG_CMDLINE */
326         int cmdline_size;
327 
328         cmdline_size = strlen(info->kernel_cmdline);
329         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
330                             (const uint8_t *)info->kernel_cmdline,
331                             cmdline_size + 1);
332         cmdline_size = (cmdline_size >> 2) + 1;
333         WRITE_WORD(p, cmdline_size + 2);
334         WRITE_WORD(p, 0x54410009);
335         p += cmdline_size * 4;
336     }
337     if (info->atag_board) {
338         /* ATAG_BOARD */
339         int atag_board_len;
340         uint8_t atag_board_buf[0x1000];
341 
342         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
343         WRITE_WORD(p, (atag_board_len + 8) >> 2);
344         WRITE_WORD(p, 0x414f4d50);
345         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
346                             atag_board_buf, atag_board_len);
347         p += atag_board_len;
348     }
349     /* ATAG_END */
350     WRITE_WORD(p, 0);
351     WRITE_WORD(p, 0);
352 }
353 
354 static void set_kernel_args_old(const struct arm_boot_info *info,
355                                 AddressSpace *as)
356 {
357     hwaddr p;
358     const char *s;
359     int initrd_size = info->initrd_size;
360     hwaddr base = info->loader_start;
361 
362     /* see linux/include/asm-arm/setup.h */
363     p = base + KERNEL_ARGS_ADDR;
364     /* page_size */
365     WRITE_WORD(p, 4096);
366     /* nr_pages */
367     WRITE_WORD(p, info->ram_size / 4096);
368     /* ramdisk_size */
369     WRITE_WORD(p, 0);
370 #define FLAG_READONLY	1
371 #define FLAG_RDLOAD	4
372 #define FLAG_RDPROMPT	8
373     /* flags */
374     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
375     /* rootdev */
376     WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
377     /* video_num_cols */
378     WRITE_WORD(p, 0);
379     /* video_num_rows */
380     WRITE_WORD(p, 0);
381     /* video_x */
382     WRITE_WORD(p, 0);
383     /* video_y */
384     WRITE_WORD(p, 0);
385     /* memc_control_reg */
386     WRITE_WORD(p, 0);
387     /* unsigned char sounddefault */
388     /* unsigned char adfsdrives */
389     /* unsigned char bytes_per_char_h */
390     /* unsigned char bytes_per_char_v */
391     WRITE_WORD(p, 0);
392     /* pages_in_bank[4] */
393     WRITE_WORD(p, 0);
394     WRITE_WORD(p, 0);
395     WRITE_WORD(p, 0);
396     WRITE_WORD(p, 0);
397     /* pages_in_vram */
398     WRITE_WORD(p, 0);
399     /* initrd_start */
400     if (initrd_size) {
401         WRITE_WORD(p, info->initrd_start);
402     } else {
403         WRITE_WORD(p, 0);
404     }
405     /* initrd_size */
406     WRITE_WORD(p, initrd_size);
407     /* rd_start */
408     WRITE_WORD(p, 0);
409     /* system_rev */
410     WRITE_WORD(p, 0);
411     /* system_serial_low */
412     WRITE_WORD(p, 0);
413     /* system_serial_high */
414     WRITE_WORD(p, 0);
415     /* mem_fclk_21285 */
416     WRITE_WORD(p, 0);
417     /* zero unused fields */
418     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
419         WRITE_WORD(p, 0);
420     }
421     s = info->kernel_cmdline;
422     if (s) {
423         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
424                             (const uint8_t *)s, strlen(s) + 1);
425     } else {
426         WRITE_WORD(p, 0);
427     }
428 }
429 
430 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
431                                uint32_t scells, hwaddr mem_len,
432                                int numa_node_id)
433 {
434     char *nodename;
435     int ret;
436 
437     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
438     qemu_fdt_add_subnode(fdt, nodename);
439     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
440     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
441                                        scells, mem_len);
442     if (ret < 0) {
443         goto out;
444     }
445 
446     /* only set the NUMA ID if it is specified */
447     if (numa_node_id >= 0) {
448         ret = qemu_fdt_setprop_cell(fdt, nodename,
449                                     "numa-node-id", numa_node_id);
450     }
451 out:
452     g_free(nodename);
453     return ret;
454 }
455 
456 static void fdt_add_psci_node(void *fdt)
457 {
458     uint32_t cpu_suspend_fn;
459     uint32_t cpu_off_fn;
460     uint32_t cpu_on_fn;
461     uint32_t migrate_fn;
462     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
463     const char *psci_method;
464     int64_t psci_conduit;
465     int rc;
466 
467     psci_conduit = object_property_get_int(OBJECT(armcpu),
468                                            "psci-conduit",
469                                            &error_abort);
470     switch (psci_conduit) {
471     case QEMU_PSCI_CONDUIT_DISABLED:
472         return;
473     case QEMU_PSCI_CONDUIT_HVC:
474         psci_method = "hvc";
475         break;
476     case QEMU_PSCI_CONDUIT_SMC:
477         psci_method = "smc";
478         break;
479     default:
480         g_assert_not_reached();
481     }
482 
483     /*
484      * If /psci node is present in provided DTB, assume that no fixup
485      * is necessary and all PSCI configuration should be taken as-is
486      */
487     rc = fdt_path_offset(fdt, "/psci");
488     if (rc >= 0) {
489         return;
490     }
491 
492     qemu_fdt_add_subnode(fdt, "/psci");
493     if (armcpu->psci_version == 2) {
494         const char comp[] = "arm,psci-0.2\0arm,psci";
495         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
496 
497         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
498         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
499             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
500             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
501             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
502         } else {
503             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
504             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
505             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
506         }
507     } else {
508         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
509 
510         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
511         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
512         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
513         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
514     }
515 
516     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
517      * to the instruction that should be used to invoke PSCI functions.
518      * However, the device tree binding uses 'method' instead, so that is
519      * what we should use here.
520      */
521     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
522 
523     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
524     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
525     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
526     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
527 }
528 
529 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
530                  hwaddr addr_limit, AddressSpace *as, MachineState *ms)
531 {
532     void *fdt = NULL;
533     int size, rc, n = 0;
534     uint32_t acells, scells;
535     unsigned int i;
536     hwaddr mem_base, mem_len;
537     char **node_path;
538     Error *err = NULL;
539 
540     if (binfo->dtb_filename) {
541         char *filename;
542         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
543         if (!filename) {
544             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
545             goto fail;
546         }
547 
548         fdt = load_device_tree(filename, &size);
549         if (!fdt) {
550             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
551             g_free(filename);
552             goto fail;
553         }
554         g_free(filename);
555     } else {
556         fdt = binfo->get_dtb(binfo, &size);
557         if (!fdt) {
558             fprintf(stderr, "Board was unable to create a dtb blob\n");
559             goto fail;
560         }
561     }
562 
563     if (addr_limit > addr && size > (addr_limit - addr)) {
564         /* Installing the device tree blob at addr would exceed addr_limit.
565          * Whether this constitutes failure is up to the caller to decide,
566          * so just return 0 as size, i.e., no error.
567          */
568         g_free(fdt);
569         return 0;
570     }
571 
572     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
573                                    NULL, &error_fatal);
574     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
575                                    NULL, &error_fatal);
576     if (acells == 0 || scells == 0) {
577         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
578         goto fail;
579     }
580 
581     if (scells < 2 && binfo->ram_size >= 4 * GiB) {
582         /* This is user error so deserves a friendlier error message
583          * than the failure of setprop_sized_cells would provide
584          */
585         fprintf(stderr, "qemu: dtb file not compatible with "
586                 "RAM size > 4GB\n");
587         goto fail;
588     }
589 
590     /* nop all root nodes matching /memory or /memory@unit-address */
591     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
592     if (err) {
593         error_report_err(err);
594         goto fail;
595     }
596     while (node_path[n]) {
597         if (g_str_has_prefix(node_path[n], "/memory")) {
598             qemu_fdt_nop_node(fdt, node_path[n]);
599         }
600         n++;
601     }
602     g_strfreev(node_path);
603 
604     if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
605         mem_base = binfo->loader_start;
606         for (i = 0; i < ms->numa_state->num_nodes; i++) {
607             mem_len = ms->numa_state->nodes[i].node_mem;
608             rc = fdt_add_memory_node(fdt, acells, mem_base,
609                                      scells, mem_len, i);
610             if (rc < 0) {
611                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
612                         mem_base);
613                 goto fail;
614             }
615 
616             mem_base += mem_len;
617         }
618     } else {
619         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
620                                  scells, binfo->ram_size, -1);
621         if (rc < 0) {
622             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
623                     binfo->loader_start);
624             goto fail;
625         }
626     }
627 
628     rc = fdt_path_offset(fdt, "/chosen");
629     if (rc < 0) {
630         qemu_fdt_add_subnode(fdt, "/chosen");
631     }
632 
633     if (ms->kernel_cmdline && *ms->kernel_cmdline) {
634         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
635                                      ms->kernel_cmdline);
636         if (rc < 0) {
637             fprintf(stderr, "couldn't set /chosen/bootargs\n");
638             goto fail;
639         }
640     }
641 
642     if (binfo->initrd_size) {
643         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
644                                    binfo->initrd_start);
645         if (rc < 0) {
646             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
647             goto fail;
648         }
649 
650         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
651                                    binfo->initrd_start + binfo->initrd_size);
652         if (rc < 0) {
653             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
654             goto fail;
655         }
656     }
657 
658     fdt_add_psci_node(fdt);
659 
660     if (binfo->modify_dtb) {
661         binfo->modify_dtb(binfo, fdt);
662     }
663 
664     qemu_fdt_dumpdtb(fdt, size);
665 
666     /* Put the DTB into the memory map as a ROM image: this will ensure
667      * the DTB is copied again upon reset, even if addr points into RAM.
668      */
669     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
670 
671     g_free(fdt);
672 
673     return size;
674 
675 fail:
676     g_free(fdt);
677     return -1;
678 }
679 
680 static void do_cpu_reset(void *opaque)
681 {
682     ARMCPU *cpu = opaque;
683     CPUState *cs = CPU(cpu);
684     CPUARMState *env = &cpu->env;
685     const struct arm_boot_info *info = env->boot_info;
686 
687     cpu_reset(cs);
688     if (info) {
689         if (!info->is_linux) {
690             int i;
691             /* Jump to the entry point.  */
692             uint64_t entry = info->entry;
693 
694             switch (info->endianness) {
695             case ARM_ENDIANNESS_LE:
696                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
697                 for (i = 1; i < 4; ++i) {
698                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
699                 }
700                 env->uncached_cpsr &= ~CPSR_E;
701                 break;
702             case ARM_ENDIANNESS_BE8:
703                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
704                 for (i = 1; i < 4; ++i) {
705                     env->cp15.sctlr_el[i] |= SCTLR_EE;
706                 }
707                 env->uncached_cpsr |= CPSR_E;
708                 break;
709             case ARM_ENDIANNESS_BE32:
710                 env->cp15.sctlr_el[1] |= SCTLR_B;
711                 break;
712             case ARM_ENDIANNESS_UNKNOWN:
713                 break; /* Board's decision */
714             default:
715                 g_assert_not_reached();
716             }
717 
718             cpu_set_pc(cs, entry);
719         } else {
720             /* If we are booting Linux then we need to check whether we are
721              * booting into secure or non-secure state and adjust the state
722              * accordingly.  Out of reset, ARM is defined to be in secure state
723              * (SCR.NS = 0), we change that here if non-secure boot has been
724              * requested.
725              */
726             if (arm_feature(env, ARM_FEATURE_EL3)) {
727                 /* AArch64 is defined to come out of reset into EL3 if enabled.
728                  * If we are booting Linux then we need to adjust our EL as
729                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
730                  * SVC, which Linux expects, so no privilege/exception level to
731                  * adjust.
732                  */
733                 if (env->aarch64) {
734                     env->cp15.scr_el3 |= SCR_RW;
735                     if (arm_feature(env, ARM_FEATURE_EL2)) {
736                         env->cp15.hcr_el2 |= HCR_RW;
737                         env->pstate = PSTATE_MODE_EL2h;
738                     } else {
739                         env->pstate = PSTATE_MODE_EL1h;
740                     }
741                     /* AArch64 kernels never boot in secure mode */
742                     assert(!info->secure_boot);
743                     /* This hook is only supported for AArch32 currently:
744                      * bootloader_aarch64[] will not call the hook, and
745                      * the code above has already dropped us into EL2 or EL1.
746                      */
747                     assert(!info->secure_board_setup);
748                 }
749 
750                 if (arm_feature(env, ARM_FEATURE_EL2)) {
751                     /* If we have EL2 then Linux expects the HVC insn to work */
752                     env->cp15.scr_el3 |= SCR_HCE;
753                 }
754 
755                 /* Set to non-secure if not a secure boot */
756                 if (!info->secure_boot &&
757                     (cs != first_cpu || !info->secure_board_setup)) {
758                     /* Linux expects non-secure state */
759                     env->cp15.scr_el3 |= SCR_NS;
760                     /* Set NSACR.{CP11,CP10} so NS can access the FPU */
761                     env->cp15.nsacr |= 3 << 10;
762                 }
763             }
764 
765             if (!env->aarch64 && !info->secure_boot &&
766                 arm_feature(env, ARM_FEATURE_EL2)) {
767                 /*
768                  * This is an AArch32 boot not to Secure state, and
769                  * we have Hyp mode available, so boot the kernel into
770                  * Hyp mode. This is not how the CPU comes out of reset,
771                  * so we need to manually put it there.
772                  */
773                 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
774             }
775 
776             if (cs == first_cpu) {
777                 AddressSpace *as = arm_boot_address_space(cpu, info);
778 
779                 cpu_set_pc(cs, info->loader_start);
780 
781                 if (!have_dtb(info)) {
782                     if (old_param) {
783                         set_kernel_args_old(info, as);
784                     } else {
785                         set_kernel_args(info, as);
786                     }
787                 }
788             } else {
789                 info->secondary_cpu_reset_hook(cpu, info);
790             }
791         }
792         arm_rebuild_hflags(env);
793     }
794 }
795 
796 /**
797  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
798  *                          by key.
799  * @fw_cfg:         The firmware config instance to store the data in.
800  * @size_key:       The firmware config key to store the size of the loaded
801  *                  data under, with fw_cfg_add_i32().
802  * @data_key:       The firmware config key to store the loaded data under,
803  *                  with fw_cfg_add_bytes().
804  * @image_name:     The name of the image file to load. If it is NULL, the
805  *                  function returns without doing anything.
806  * @try_decompress: Whether the image should be decompressed (gunzipped) before
807  *                  adding it to fw_cfg. If decompression fails, the image is
808  *                  loaded as-is.
809  *
810  * In case of failure, the function prints an error message to stderr and the
811  * process exits with status 1.
812  */
813 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
814                                  uint16_t data_key, const char *image_name,
815                                  bool try_decompress)
816 {
817     size_t size = -1;
818     uint8_t *data;
819 
820     if (image_name == NULL) {
821         return;
822     }
823 
824     if (try_decompress) {
825         size = load_image_gzipped_buffer(image_name,
826                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
827     }
828 
829     if (size == (size_t)-1) {
830         gchar *contents;
831         gsize length;
832 
833         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
834             error_report("failed to load \"%s\"", image_name);
835             exit(1);
836         }
837         size = length;
838         data = (uint8_t *)contents;
839     }
840 
841     fw_cfg_add_i32(fw_cfg, size_key, size);
842     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
843 }
844 
845 static int do_arm_linux_init(Object *obj, void *opaque)
846 {
847     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
848         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
849         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
850         struct arm_boot_info *info = opaque;
851 
852         if (albifc->arm_linux_init) {
853             albifc->arm_linux_init(albif, info->secure_boot);
854         }
855     }
856     return 0;
857 }
858 
859 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
860                             uint64_t *lowaddr, uint64_t *highaddr,
861                             int elf_machine, AddressSpace *as)
862 {
863     bool elf_is64;
864     union {
865         Elf32_Ehdr h32;
866         Elf64_Ehdr h64;
867     } elf_header;
868     int data_swab = 0;
869     bool big_endian;
870     int64_t ret = -1;
871     Error *err = NULL;
872 
873 
874     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
875     if (err) {
876         error_free(err);
877         return ret;
878     }
879 
880     if (elf_is64) {
881         big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
882         info->endianness = big_endian ? ARM_ENDIANNESS_BE8
883                                       : ARM_ENDIANNESS_LE;
884     } else {
885         big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
886         if (big_endian) {
887             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
888                 info->endianness = ARM_ENDIANNESS_BE8;
889             } else {
890                 info->endianness = ARM_ENDIANNESS_BE32;
891                 /* In BE32, the CPU has a different view of the per-byte
892                  * address map than the rest of the system. BE32 ELF files
893                  * are organised such that they can be programmed through
894                  * the CPU's per-word byte-reversed view of the world. QEMU
895                  * however loads ELF files independently of the CPU. So
896                  * tell the ELF loader to byte reverse the data for us.
897                  */
898                 data_swab = 2;
899             }
900         } else {
901             info->endianness = ARM_ENDIANNESS_LE;
902         }
903     }
904 
905     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
906                       pentry, lowaddr, highaddr, big_endian, elf_machine,
907                       1, data_swab, as);
908     if (ret <= 0) {
909         /* The header loaded but the image didn't */
910         exit(1);
911     }
912 
913     return ret;
914 }
915 
916 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
917                                    hwaddr *entry, AddressSpace *as)
918 {
919     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
920     uint64_t kernel_size = 0;
921     uint8_t *buffer;
922     int size;
923 
924     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
925     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
926                                      &buffer);
927 
928     if (size < 0) {
929         gsize len;
930 
931         /* Load as raw file otherwise */
932         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
933             return -1;
934         }
935         size = len;
936     }
937 
938     /* check the arm64 magic header value -- very old kernels may not have it */
939     if (size > ARM64_MAGIC_OFFSET + 4 &&
940         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
941         uint64_t hdrvals[2];
942 
943         /* The arm64 Image header has text_offset and image_size fields at 8 and
944          * 16 bytes into the Image header, respectively. The text_offset field
945          * is only valid if the image_size is non-zero.
946          */
947         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
948 
949         kernel_size = le64_to_cpu(hdrvals[1]);
950 
951         if (kernel_size != 0) {
952             kernel_load_offset = le64_to_cpu(hdrvals[0]);
953 
954             /*
955              * We write our startup "bootloader" at the very bottom of RAM,
956              * so that bit can't be used for the image. Luckily the Image
957              * format specification is that the image requests only an offset
958              * from a 2MB boundary, not an absolute load address. So if the
959              * image requests an offset that might mean it overlaps with the
960              * bootloader, we can just load it starting at 2MB+offset rather
961              * than 0MB + offset.
962              */
963             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
964                 kernel_load_offset += 2 * MiB;
965             }
966         }
967     }
968 
969     /*
970      * Kernels before v3.17 don't populate the image_size field, and
971      * raw images have no header. For those our best guess at the size
972      * is the size of the Image file itself.
973      */
974     if (kernel_size == 0) {
975         kernel_size = size;
976     }
977 
978     *entry = mem_base + kernel_load_offset;
979     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
980 
981     g_free(buffer);
982 
983     return kernel_size;
984 }
985 
986 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
987                                          struct arm_boot_info *info)
988 {
989     /* Set up for a direct boot of a kernel image file. */
990     CPUState *cs;
991     AddressSpace *as = arm_boot_address_space(cpu, info);
992     int kernel_size;
993     int initrd_size;
994     int is_linux = 0;
995     uint64_t elf_entry;
996     /* Addresses of first byte used and first byte not used by the image */
997     uint64_t image_low_addr = 0, image_high_addr = 0;
998     int elf_machine;
999     hwaddr entry;
1000     static const ARMInsnFixup *primary_loader;
1001     uint64_t ram_end = info->loader_start + info->ram_size;
1002 
1003     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1004         primary_loader = bootloader_aarch64;
1005         elf_machine = EM_AARCH64;
1006     } else {
1007         primary_loader = bootloader;
1008         if (!info->write_board_setup) {
1009             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1010         }
1011         elf_machine = EM_ARM;
1012     }
1013 
1014     if (!info->secondary_cpu_reset_hook) {
1015         info->secondary_cpu_reset_hook = default_reset_secondary;
1016     }
1017     if (!info->write_secondary_boot) {
1018         info->write_secondary_boot = default_write_secondary;
1019     }
1020 
1021     if (info->nb_cpus == 0)
1022         info->nb_cpus = 1;
1023 
1024     /* Assume that raw images are linux kernels, and ELF images are not.  */
1025     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1026                                &image_high_addr, elf_machine, as);
1027     if (kernel_size > 0 && have_dtb(info)) {
1028         /*
1029          * If there is still some room left at the base of RAM, try and put
1030          * the DTB there like we do for images loaded with -bios or -pflash.
1031          */
1032         if (image_low_addr > info->loader_start
1033             || image_high_addr < info->loader_start) {
1034             /*
1035              * Set image_low_addr as address limit for arm_load_dtb if it may be
1036              * pointing into RAM, otherwise pass '0' (no limit)
1037              */
1038             if (image_low_addr < info->loader_start) {
1039                 image_low_addr = 0;
1040             }
1041             info->dtb_start = info->loader_start;
1042             info->dtb_limit = image_low_addr;
1043         }
1044     }
1045     entry = elf_entry;
1046     if (kernel_size < 0) {
1047         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1048         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1049                                      &is_linux, NULL, NULL, as);
1050         if (kernel_size >= 0) {
1051             image_low_addr = loadaddr;
1052             image_high_addr = image_low_addr + kernel_size;
1053         }
1054     }
1055     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1056         kernel_size = load_aarch64_image(info->kernel_filename,
1057                                          info->loader_start, &entry, as);
1058         is_linux = 1;
1059         if (kernel_size >= 0) {
1060             image_low_addr = entry;
1061             image_high_addr = image_low_addr + kernel_size;
1062         }
1063     } else if (kernel_size < 0) {
1064         /* 32-bit ARM */
1065         entry = info->loader_start + KERNEL_LOAD_ADDR;
1066         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1067                                              ram_end - KERNEL_LOAD_ADDR, as);
1068         is_linux = 1;
1069         if (kernel_size >= 0) {
1070             image_low_addr = entry;
1071             image_high_addr = image_low_addr + kernel_size;
1072         }
1073     }
1074     if (kernel_size < 0) {
1075         error_report("could not load kernel '%s'", info->kernel_filename);
1076         exit(1);
1077     }
1078 
1079     if (kernel_size > info->ram_size) {
1080         error_report("kernel '%s' is too large to fit in RAM "
1081                      "(kernel size %d, RAM size %" PRId64 ")",
1082                      info->kernel_filename, kernel_size, info->ram_size);
1083         exit(1);
1084     }
1085 
1086     info->entry = entry;
1087 
1088     /*
1089      * We want to put the initrd far enough into RAM that when the
1090      * kernel is uncompressed it will not clobber the initrd. However
1091      * on boards without much RAM we must ensure that we still leave
1092      * enough room for a decent sized initrd, and on boards with large
1093      * amounts of RAM we must avoid the initrd being so far up in RAM
1094      * that it is outside lowmem and inaccessible to the kernel.
1095      * So for boards with less  than 256MB of RAM we put the initrd
1096      * halfway into RAM, and for boards with 256MB of RAM or more we put
1097      * the initrd at 128MB.
1098      * We also refuse to put the initrd somewhere that will definitely
1099      * overlay the kernel we just loaded, though for kernel formats which
1100      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1101      * we might still make a bad choice here.
1102      */
1103     info->initrd_start = info->loader_start +
1104         MIN(info->ram_size / 2, 128 * MiB);
1105     if (image_high_addr) {
1106         info->initrd_start = MAX(info->initrd_start, image_high_addr);
1107     }
1108     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1109 
1110     if (is_linux) {
1111         uint32_t fixupcontext[FIXUP_MAX];
1112 
1113         if (info->initrd_filename) {
1114 
1115             if (info->initrd_start >= ram_end) {
1116                 error_report("not enough space after kernel to load initrd");
1117                 exit(1);
1118             }
1119 
1120             initrd_size = load_ramdisk_as(info->initrd_filename,
1121                                           info->initrd_start,
1122                                           ram_end - info->initrd_start, as);
1123             if (initrd_size < 0) {
1124                 initrd_size = load_image_targphys_as(info->initrd_filename,
1125                                                      info->initrd_start,
1126                                                      ram_end -
1127                                                      info->initrd_start,
1128                                                      as);
1129             }
1130             if (initrd_size < 0) {
1131                 error_report("could not load initrd '%s'",
1132                              info->initrd_filename);
1133                 exit(1);
1134             }
1135             if (info->initrd_start + initrd_size > ram_end) {
1136                 error_report("could not load initrd '%s': "
1137                              "too big to fit into RAM after the kernel",
1138                              info->initrd_filename);
1139                 exit(1);
1140             }
1141         } else {
1142             initrd_size = 0;
1143         }
1144         info->initrd_size = initrd_size;
1145 
1146         fixupcontext[FIXUP_BOARDID] = info->board_id;
1147         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1148 
1149         /*
1150          * for device tree boot, we pass the DTB directly in r2. Otherwise
1151          * we point to the kernel args.
1152          */
1153         if (have_dtb(info)) {
1154             hwaddr align;
1155 
1156             if (elf_machine == EM_AARCH64) {
1157                 /*
1158                  * Some AArch64 kernels on early bootup map the fdt region as
1159                  *
1160                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1161                  *
1162                  * Let's play safe and prealign it to 2MB to give us some space.
1163                  */
1164                 align = 2 * MiB;
1165             } else {
1166                 /*
1167                  * Some 32bit kernels will trash anything in the 4K page the
1168                  * initrd ends in, so make sure the DTB isn't caught up in that.
1169                  */
1170                 align = 4 * KiB;
1171             }
1172 
1173             /* Place the DTB after the initrd in memory with alignment. */
1174             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1175                                            align);
1176             if (info->dtb_start >= ram_end) {
1177                 error_report("Not enough space for DTB after kernel/initrd");
1178                 exit(1);
1179             }
1180             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1181             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1182         } else {
1183             fixupcontext[FIXUP_ARGPTR_LO] =
1184                 info->loader_start + KERNEL_ARGS_ADDR;
1185             fixupcontext[FIXUP_ARGPTR_HI] =
1186                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1187             if (info->ram_size >= 4 * GiB) {
1188                 error_report("RAM size must be less than 4GB to boot"
1189                              " Linux kernel using ATAGS (try passing a device tree"
1190                              " using -dtb)");
1191                 exit(1);
1192             }
1193         }
1194         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1195         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1196 
1197         write_bootloader("bootloader", info->loader_start,
1198                          primary_loader, fixupcontext, as);
1199 
1200         if (info->nb_cpus > 1) {
1201             info->write_secondary_boot(cpu, info);
1202         }
1203         if (info->write_board_setup) {
1204             info->write_board_setup(cpu, info);
1205         }
1206 
1207         /*
1208          * Notify devices which need to fake up firmware initialization
1209          * that we're doing a direct kernel boot.
1210          */
1211         object_child_foreach_recursive(object_get_root(),
1212                                        do_arm_linux_init, info);
1213     }
1214     info->is_linux = is_linux;
1215 
1216     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1217         ARM_CPU(cs)->env.boot_info = info;
1218     }
1219 }
1220 
1221 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1222 {
1223     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1224 
1225     if (have_dtb(info)) {
1226         /*
1227          * If we have a device tree blob, but no kernel to supply it to (or
1228          * the kernel is supposed to be loaded by the bootloader), copy the
1229          * DTB to the base of RAM for the bootloader to pick up.
1230          */
1231         info->dtb_start = info->loader_start;
1232     }
1233 
1234     if (info->kernel_filename) {
1235         FWCfgState *fw_cfg;
1236         bool try_decompressing_kernel;
1237 
1238         fw_cfg = fw_cfg_find();
1239         try_decompressing_kernel = arm_feature(&cpu->env,
1240                                                ARM_FEATURE_AARCH64);
1241 
1242         /*
1243          * Expose the kernel, the command line, and the initrd in fw_cfg.
1244          * We don't process them here at all, it's all left to the
1245          * firmware.
1246          */
1247         load_image_to_fw_cfg(fw_cfg,
1248                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1249                              info->kernel_filename,
1250                              try_decompressing_kernel);
1251         load_image_to_fw_cfg(fw_cfg,
1252                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1253                              info->initrd_filename, false);
1254 
1255         if (info->kernel_cmdline) {
1256             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1257                            strlen(info->kernel_cmdline) + 1);
1258             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1259                               info->kernel_cmdline);
1260         }
1261     }
1262 
1263     /*
1264      * We will start from address 0 (typically a boot ROM image) in the
1265      * same way as hardware. Leave env->boot_info NULL, so that
1266      * do_cpu_reset() knows it does not need to alter the PC on reset.
1267      */
1268 }
1269 
1270 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1271 {
1272     CPUState *cs;
1273     AddressSpace *as = arm_boot_address_space(cpu, info);
1274 
1275     /*
1276      * CPU objects (unlike devices) are not automatically reset on system
1277      * reset, so we must always register a handler to do so. If we're
1278      * actually loading a kernel, the handler is also responsible for
1279      * arranging that we start it correctly.
1280      */
1281     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1282         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1283     }
1284 
1285     /*
1286      * The board code is not supposed to set secure_board_setup unless
1287      * running its code in secure mode is actually possible, and KVM
1288      * doesn't support secure.
1289      */
1290     assert(!(info->secure_board_setup && kvm_enabled()));
1291     info->kernel_filename = ms->kernel_filename;
1292     info->kernel_cmdline = ms->kernel_cmdline;
1293     info->initrd_filename = ms->initrd_filename;
1294     info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
1295     info->dtb_limit = 0;
1296 
1297     /* Load the kernel.  */
1298     if (!info->kernel_filename || info->firmware_loaded) {
1299         arm_setup_firmware_boot(cpu, info);
1300     } else {
1301         arm_setup_direct_kernel_boot(cpu, info);
1302     }
1303 
1304     if (!info->skip_dtb_autoload && have_dtb(info)) {
1305         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1306             exit(1);
1307         }
1308     }
1309 }
1310 
1311 static const TypeInfo arm_linux_boot_if_info = {
1312     .name = TYPE_ARM_LINUX_BOOT_IF,
1313     .parent = TYPE_INTERFACE,
1314     .class_size = sizeof(ARMLinuxBootIfClass),
1315 };
1316 
1317 static void arm_linux_boot_register_types(void)
1318 {
1319     type_register_static(&arm_linux_boot_if_info);
1320 }
1321 
1322 type_init(arm_linux_boot_register_types)
1323