1 /* 2 * ARMV7M System emulation. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "hw/arm/armv7m.h" 12 #include "qapi/error.h" 13 #include "qemu-common.h" 14 #include "cpu.h" 15 #include "hw/sysbus.h" 16 #include "hw/arm/arm.h" 17 #include "hw/loader.h" 18 #include "elf.h" 19 #include "sysemu/qtest.h" 20 #include "qemu/error-report.h" 21 #include "exec/address-spaces.h" 22 #include "target/arm/idau.h" 23 24 /* Bitbanded IO. Each word corresponds to a single bit. */ 25 26 /* Get the byte address of the real memory for a bitband access. */ 27 static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset) 28 { 29 return s->base | (offset & 0x1ffffff) >> 5; 30 } 31 32 static MemTxResult bitband_read(void *opaque, hwaddr offset, 33 uint64_t *data, unsigned size, MemTxAttrs attrs) 34 { 35 BitBandState *s = opaque; 36 uint8_t buf[4]; 37 MemTxResult res; 38 int bitpos, bit; 39 hwaddr addr; 40 41 assert(size <= 4); 42 43 /* Find address in underlying memory and round down to multiple of size */ 44 addr = bitband_addr(s, offset) & (-size); 45 res = address_space_read(&s->source_as, addr, attrs, buf, size); 46 if (res) { 47 return res; 48 } 49 /* Bit position in the N bytes read... */ 50 bitpos = (offset >> 2) & ((size * 8) - 1); 51 /* ...converted to byte in buffer and bit in byte */ 52 bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1; 53 *data = bit; 54 return MEMTX_OK; 55 } 56 57 static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value, 58 unsigned size, MemTxAttrs attrs) 59 { 60 BitBandState *s = opaque; 61 uint8_t buf[4]; 62 MemTxResult res; 63 int bitpos, bit; 64 hwaddr addr; 65 66 assert(size <= 4); 67 68 /* Find address in underlying memory and round down to multiple of size */ 69 addr = bitband_addr(s, offset) & (-size); 70 res = address_space_read(&s->source_as, addr, attrs, buf, size); 71 if (res) { 72 return res; 73 } 74 /* Bit position in the N bytes read... */ 75 bitpos = (offset >> 2) & ((size * 8) - 1); 76 /* ...converted to byte in buffer and bit in byte */ 77 bit = 1 << (bitpos & 7); 78 if (value & 1) { 79 buf[bitpos >> 3] |= bit; 80 } else { 81 buf[bitpos >> 3] &= ~bit; 82 } 83 return address_space_write(&s->source_as, addr, attrs, buf, size); 84 } 85 86 static const MemoryRegionOps bitband_ops = { 87 .read_with_attrs = bitband_read, 88 .write_with_attrs = bitband_write, 89 .endianness = DEVICE_NATIVE_ENDIAN, 90 .impl.min_access_size = 1, 91 .impl.max_access_size = 4, 92 .valid.min_access_size = 1, 93 .valid.max_access_size = 4, 94 }; 95 96 static void bitband_init(Object *obj) 97 { 98 BitBandState *s = BITBAND(obj); 99 SysBusDevice *dev = SYS_BUS_DEVICE(obj); 100 101 memory_region_init_io(&s->iomem, obj, &bitband_ops, s, 102 "bitband", 0x02000000); 103 sysbus_init_mmio(dev, &s->iomem); 104 } 105 106 static void bitband_realize(DeviceState *dev, Error **errp) 107 { 108 BitBandState *s = BITBAND(dev); 109 110 if (!s->source_memory) { 111 error_setg(errp, "source-memory property not set"); 112 return; 113 } 114 115 address_space_init(&s->source_as, s->source_memory, "bitband-source"); 116 } 117 118 /* Board init. */ 119 120 static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = { 121 0x20000000, 0x40000000 122 }; 123 124 static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = { 125 0x22000000, 0x42000000 126 }; 127 128 static void armv7m_instance_init(Object *obj) 129 { 130 ARMv7MState *s = ARMV7M(obj); 131 int i; 132 133 /* Can't init the cpu here, we don't yet know which model to use */ 134 135 memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX); 136 137 sysbus_init_child_obj(obj, "nvnic", &s->nvic, sizeof(s->nvic), TYPE_NVIC); 138 object_property_add_alias(obj, "num-irq", 139 OBJECT(&s->nvic), "num-irq", &error_abort); 140 141 for (i = 0; i < ARRAY_SIZE(s->bitband); i++) { 142 sysbus_init_child_obj(obj, "bitband[*]", &s->bitband[i], 143 sizeof(s->bitband[i]), TYPE_BITBAND); 144 } 145 } 146 147 static void armv7m_realize(DeviceState *dev, Error **errp) 148 { 149 ARMv7MState *s = ARMV7M(dev); 150 SysBusDevice *sbd; 151 Error *err = NULL; 152 int i; 153 154 if (!s->board_memory) { 155 error_setg(errp, "memory property was not set"); 156 return; 157 } 158 159 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1); 160 161 s->cpu = ARM_CPU(object_new(s->cpu_type)); 162 163 object_property_set_link(OBJECT(s->cpu), OBJECT(&s->container), "memory", 164 &error_abort); 165 if (object_property_find(OBJECT(s->cpu), "idau", NULL)) { 166 object_property_set_link(OBJECT(s->cpu), s->idau, "idau", &err); 167 if (err != NULL) { 168 error_propagate(errp, err); 169 return; 170 } 171 } 172 if (object_property_find(OBJECT(s->cpu), "init-svtor", NULL)) { 173 object_property_set_uint(OBJECT(s->cpu), s->init_svtor, 174 "init-svtor", &err); 175 if (err != NULL) { 176 error_propagate(errp, err); 177 return; 178 } 179 } 180 181 /* Tell the CPU where the NVIC is; it will fail realize if it doesn't 182 * have one. 183 */ 184 s->cpu->env.nvic = &s->nvic; 185 186 object_property_set_bool(OBJECT(s->cpu), true, "realized", &err); 187 if (err != NULL) { 188 error_propagate(errp, err); 189 return; 190 } 191 192 /* Note that we must realize the NVIC after the CPU */ 193 object_property_set_bool(OBJECT(&s->nvic), true, "realized", &err); 194 if (err != NULL) { 195 error_propagate(errp, err); 196 return; 197 } 198 199 /* Alias the NVIC's input and output GPIOs as our own so the board 200 * code can wire them up. (We do this in realize because the 201 * NVIC doesn't create the input GPIO array until realize.) 202 */ 203 qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL); 204 qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ"); 205 qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI"); 206 207 /* Wire the NVIC up to the CPU */ 208 sbd = SYS_BUS_DEVICE(&s->nvic); 209 sysbus_connect_irq(sbd, 0, 210 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ)); 211 212 memory_region_add_subregion(&s->container, 0xe000e000, 213 sysbus_mmio_get_region(sbd, 0)); 214 215 if (s->enable_bitband) { 216 for (i = 0; i < ARRAY_SIZE(s->bitband); i++) { 217 Object *obj = OBJECT(&s->bitband[i]); 218 SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]); 219 220 object_property_set_int(obj, bitband_input_addr[i], "base", &err); 221 if (err != NULL) { 222 error_propagate(errp, err); 223 return; 224 } 225 object_property_set_link(obj, OBJECT(s->board_memory), 226 "source-memory", &error_abort); 227 object_property_set_bool(obj, true, "realized", &err); 228 if (err != NULL) { 229 error_propagate(errp, err); 230 return; 231 } 232 233 memory_region_add_subregion(&s->container, bitband_output_addr[i], 234 sysbus_mmio_get_region(sbd, 0)); 235 } 236 } 237 } 238 239 static Property armv7m_properties[] = { 240 DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type), 241 DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION, 242 MemoryRegion *), 243 DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *), 244 DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0), 245 DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false), 246 DEFINE_PROP_END_OF_LIST(), 247 }; 248 249 static void armv7m_class_init(ObjectClass *klass, void *data) 250 { 251 DeviceClass *dc = DEVICE_CLASS(klass); 252 253 dc->realize = armv7m_realize; 254 dc->props = armv7m_properties; 255 } 256 257 static const TypeInfo armv7m_info = { 258 .name = TYPE_ARMV7M, 259 .parent = TYPE_SYS_BUS_DEVICE, 260 .instance_size = sizeof(ARMv7MState), 261 .instance_init = armv7m_instance_init, 262 .class_init = armv7m_class_init, 263 }; 264 265 static void armv7m_reset(void *opaque) 266 { 267 ARMCPU *cpu = opaque; 268 269 cpu_reset(CPU(cpu)); 270 } 271 272 void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename, int mem_size) 273 { 274 int image_size; 275 uint64_t entry; 276 uint64_t lowaddr; 277 int big_endian; 278 AddressSpace *as; 279 int asidx; 280 CPUState *cs = CPU(cpu); 281 282 #ifdef TARGET_WORDS_BIGENDIAN 283 big_endian = 1; 284 #else 285 big_endian = 0; 286 #endif 287 288 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 289 asidx = ARMASIdx_S; 290 } else { 291 asidx = ARMASIdx_NS; 292 } 293 as = cpu_get_address_space(cs, asidx); 294 295 if (kernel_filename) { 296 image_size = load_elf_as(kernel_filename, NULL, NULL, &entry, &lowaddr, 297 NULL, big_endian, EM_ARM, 1, 0, as); 298 if (image_size < 0) { 299 image_size = load_image_targphys_as(kernel_filename, 0, 300 mem_size, as); 301 lowaddr = 0; 302 } 303 if (image_size < 0) { 304 error_report("Could not load kernel '%s'", kernel_filename); 305 exit(1); 306 } 307 } 308 309 /* CPU objects (unlike devices) are not automatically reset on system 310 * reset, so we must always register a handler to do so. Unlike 311 * A-profile CPUs, we don't need to do anything special in the 312 * handler to arrange that it starts correctly. 313 * This is arguably the wrong place to do this, but it matches the 314 * way A-profile does it. Note that this means that every M profile 315 * board must call this function! 316 */ 317 qemu_register_reset(armv7m_reset, cpu); 318 } 319 320 static Property bitband_properties[] = { 321 DEFINE_PROP_UINT32("base", BitBandState, base, 0), 322 DEFINE_PROP_LINK("source-memory", BitBandState, source_memory, 323 TYPE_MEMORY_REGION, MemoryRegion *), 324 DEFINE_PROP_END_OF_LIST(), 325 }; 326 327 static void bitband_class_init(ObjectClass *klass, void *data) 328 { 329 DeviceClass *dc = DEVICE_CLASS(klass); 330 331 dc->realize = bitband_realize; 332 dc->props = bitband_properties; 333 } 334 335 static const TypeInfo bitband_info = { 336 .name = TYPE_BITBAND, 337 .parent = TYPE_SYS_BUS_DEVICE, 338 .instance_size = sizeof(BitBandState), 339 .instance_init = bitband_init, 340 .class_init = bitband_class_init, 341 }; 342 343 static void armv7m_register_types(void) 344 { 345 type_register_static(&bitband_info); 346 type_register_static(&armv7m_info); 347 } 348 349 type_init(armv7m_register_types) 350