1 /* 2 * ARMV7M System emulation. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "hw/arm/armv7m.h" 12 #include "qapi/error.h" 13 #include "qemu-common.h" 14 #include "cpu.h" 15 #include "hw/sysbus.h" 16 #include "hw/arm/arm.h" 17 #include "hw/loader.h" 18 #include "elf.h" 19 #include "sysemu/qtest.h" 20 #include "qemu/error-report.h" 21 #include "exec/address-spaces.h" 22 23 /* Bitbanded IO. Each word corresponds to a single bit. */ 24 25 /* Get the byte address of the real memory for a bitband access. */ 26 static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset) 27 { 28 return s->base | (offset & 0x1ffffff) >> 5; 29 } 30 31 static MemTxResult bitband_read(void *opaque, hwaddr offset, 32 uint64_t *data, unsigned size, MemTxAttrs attrs) 33 { 34 BitBandState *s = opaque; 35 uint8_t buf[4]; 36 MemTxResult res; 37 int bitpos, bit; 38 hwaddr addr; 39 40 assert(size <= 4); 41 42 /* Find address in underlying memory and round down to multiple of size */ 43 addr = bitband_addr(s, offset) & (-size); 44 res = address_space_read(&s->source_as, addr, attrs, buf, size); 45 if (res) { 46 return res; 47 } 48 /* Bit position in the N bytes read... */ 49 bitpos = (offset >> 2) & ((size * 8) - 1); 50 /* ...converted to byte in buffer and bit in byte */ 51 bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1; 52 *data = bit; 53 return MEMTX_OK; 54 } 55 56 static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value, 57 unsigned size, MemTxAttrs attrs) 58 { 59 BitBandState *s = opaque; 60 uint8_t buf[4]; 61 MemTxResult res; 62 int bitpos, bit; 63 hwaddr addr; 64 65 assert(size <= 4); 66 67 /* Find address in underlying memory and round down to multiple of size */ 68 addr = bitband_addr(s, offset) & (-size); 69 res = address_space_read(&s->source_as, addr, attrs, buf, size); 70 if (res) { 71 return res; 72 } 73 /* Bit position in the N bytes read... */ 74 bitpos = (offset >> 2) & ((size * 8) - 1); 75 /* ...converted to byte in buffer and bit in byte */ 76 bit = 1 << (bitpos & 7); 77 if (value & 1) { 78 buf[bitpos >> 3] |= bit; 79 } else { 80 buf[bitpos >> 3] &= ~bit; 81 } 82 return address_space_write(&s->source_as, addr, attrs, buf, size); 83 } 84 85 static const MemoryRegionOps bitband_ops = { 86 .read_with_attrs = bitband_read, 87 .write_with_attrs = bitband_write, 88 .endianness = DEVICE_NATIVE_ENDIAN, 89 .impl.min_access_size = 1, 90 .impl.max_access_size = 4, 91 .valid.min_access_size = 1, 92 .valid.max_access_size = 4, 93 }; 94 95 static void bitband_init(Object *obj) 96 { 97 BitBandState *s = BITBAND(obj); 98 SysBusDevice *dev = SYS_BUS_DEVICE(obj); 99 100 memory_region_init_io(&s->iomem, obj, &bitband_ops, s, 101 "bitband", 0x02000000); 102 sysbus_init_mmio(dev, &s->iomem); 103 } 104 105 static void bitband_realize(DeviceState *dev, Error **errp) 106 { 107 BitBandState *s = BITBAND(dev); 108 109 if (!s->source_memory) { 110 error_setg(errp, "source-memory property not set"); 111 return; 112 } 113 114 address_space_init(&s->source_as, s->source_memory, "bitband-source"); 115 } 116 117 /* Board init. */ 118 119 static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = { 120 0x20000000, 0x40000000 121 }; 122 123 static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = { 124 0x22000000, 0x42000000 125 }; 126 127 static void armv7m_instance_init(Object *obj) 128 { 129 ARMv7MState *s = ARMV7M(obj); 130 int i; 131 132 /* Can't init the cpu here, we don't yet know which model to use */ 133 134 memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX); 135 136 object_initialize(&s->nvic, sizeof(s->nvic), TYPE_NVIC); 137 qdev_set_parent_bus(DEVICE(&s->nvic), sysbus_get_default()); 138 object_property_add_alias(obj, "num-irq", 139 OBJECT(&s->nvic), "num-irq", &error_abort); 140 141 for (i = 0; i < ARRAY_SIZE(s->bitband); i++) { 142 object_initialize(&s->bitband[i], sizeof(s->bitband[i]), TYPE_BITBAND); 143 qdev_set_parent_bus(DEVICE(&s->bitband[i]), sysbus_get_default()); 144 } 145 } 146 147 static void armv7m_realize(DeviceState *dev, Error **errp) 148 { 149 ARMv7MState *s = ARMV7M(dev); 150 SysBusDevice *sbd; 151 Error *err = NULL; 152 int i; 153 154 if (!s->board_memory) { 155 error_setg(errp, "memory property was not set"); 156 return; 157 } 158 159 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1); 160 161 s->cpu = ARM_CPU(object_new(s->cpu_type)); 162 163 object_property_set_link(OBJECT(s->cpu), OBJECT(&s->container), "memory", 164 &error_abort); 165 object_property_set_bool(OBJECT(s->cpu), true, "realized", &err); 166 if (err != NULL) { 167 error_propagate(errp, err); 168 return; 169 } 170 171 /* Note that we must realize the NVIC after the CPU */ 172 object_property_set_bool(OBJECT(&s->nvic), true, "realized", &err); 173 if (err != NULL) { 174 error_propagate(errp, err); 175 return; 176 } 177 178 /* Alias the NVIC's input and output GPIOs as our own so the board 179 * code can wire them up. (We do this in realize because the 180 * NVIC doesn't create the input GPIO array until realize.) 181 */ 182 qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL); 183 qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ"); 184 185 /* Wire the NVIC up to the CPU */ 186 sbd = SYS_BUS_DEVICE(&s->nvic); 187 sysbus_connect_irq(sbd, 0, 188 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ)); 189 s->cpu->env.nvic = &s->nvic; 190 191 memory_region_add_subregion(&s->container, 0xe000e000, 192 sysbus_mmio_get_region(sbd, 0)); 193 194 for (i = 0; i < ARRAY_SIZE(s->bitband); i++) { 195 Object *obj = OBJECT(&s->bitband[i]); 196 SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]); 197 198 object_property_set_int(obj, bitband_input_addr[i], "base", &err); 199 if (err != NULL) { 200 error_propagate(errp, err); 201 return; 202 } 203 object_property_set_link(obj, OBJECT(s->board_memory), 204 "source-memory", &error_abort); 205 object_property_set_bool(obj, true, "realized", &err); 206 if (err != NULL) { 207 error_propagate(errp, err); 208 return; 209 } 210 211 memory_region_add_subregion(&s->container, bitband_output_addr[i], 212 sysbus_mmio_get_region(sbd, 0)); 213 } 214 } 215 216 static Property armv7m_properties[] = { 217 DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type), 218 DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION, 219 MemoryRegion *), 220 DEFINE_PROP_END_OF_LIST(), 221 }; 222 223 static void armv7m_class_init(ObjectClass *klass, void *data) 224 { 225 DeviceClass *dc = DEVICE_CLASS(klass); 226 227 dc->realize = armv7m_realize; 228 dc->props = armv7m_properties; 229 } 230 231 static const TypeInfo armv7m_info = { 232 .name = TYPE_ARMV7M, 233 .parent = TYPE_SYS_BUS_DEVICE, 234 .instance_size = sizeof(ARMv7MState), 235 .instance_init = armv7m_instance_init, 236 .class_init = armv7m_class_init, 237 }; 238 239 static void armv7m_reset(void *opaque) 240 { 241 ARMCPU *cpu = opaque; 242 243 cpu_reset(CPU(cpu)); 244 } 245 246 /* Init CPU and memory for a v7-M based board. 247 mem_size is in bytes. 248 Returns the ARMv7M device. */ 249 250 DeviceState *armv7m_init(MemoryRegion *system_memory, int mem_size, int num_irq, 251 const char *kernel_filename, const char *cpu_type) 252 { 253 DeviceState *armv7m; 254 255 armv7m = qdev_create(NULL, TYPE_ARMV7M); 256 qdev_prop_set_uint32(armv7m, "num-irq", num_irq); 257 qdev_prop_set_string(armv7m, "cpu-type", cpu_type); 258 object_property_set_link(OBJECT(armv7m), OBJECT(get_system_memory()), 259 "memory", &error_abort); 260 /* This will exit with an error if the user passed us a bad cpu_type */ 261 qdev_init_nofail(armv7m); 262 263 armv7m_load_kernel(ARM_CPU(first_cpu), kernel_filename, mem_size); 264 return armv7m; 265 } 266 267 void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename, int mem_size) 268 { 269 int image_size; 270 uint64_t entry; 271 uint64_t lowaddr; 272 int big_endian; 273 274 #ifdef TARGET_WORDS_BIGENDIAN 275 big_endian = 1; 276 #else 277 big_endian = 0; 278 #endif 279 280 if (!kernel_filename && !qtest_enabled()) { 281 fprintf(stderr, "Guest image must be specified (using -kernel)\n"); 282 exit(1); 283 } 284 285 if (kernel_filename) { 286 image_size = load_elf(kernel_filename, NULL, NULL, &entry, &lowaddr, 287 NULL, big_endian, EM_ARM, 1, 0); 288 if (image_size < 0) { 289 image_size = load_image_targphys(kernel_filename, 0, mem_size); 290 lowaddr = 0; 291 } 292 if (image_size < 0) { 293 error_report("Could not load kernel '%s'", kernel_filename); 294 exit(1); 295 } 296 } 297 298 /* CPU objects (unlike devices) are not automatically reset on system 299 * reset, so we must always register a handler to do so. Unlike 300 * A-profile CPUs, we don't need to do anything special in the 301 * handler to arrange that it starts correctly. 302 * This is arguably the wrong place to do this, but it matches the 303 * way A-profile does it. Note that this means that every M profile 304 * board must call this function! 305 */ 306 qemu_register_reset(armv7m_reset, cpu); 307 } 308 309 static Property bitband_properties[] = { 310 DEFINE_PROP_UINT32("base", BitBandState, base, 0), 311 DEFINE_PROP_LINK("source-memory", BitBandState, source_memory, 312 TYPE_MEMORY_REGION, MemoryRegion *), 313 DEFINE_PROP_END_OF_LIST(), 314 }; 315 316 static void bitband_class_init(ObjectClass *klass, void *data) 317 { 318 DeviceClass *dc = DEVICE_CLASS(klass); 319 320 dc->realize = bitband_realize; 321 dc->props = bitband_properties; 322 } 323 324 static const TypeInfo bitband_info = { 325 .name = TYPE_BITBAND, 326 .parent = TYPE_SYS_BUS_DEVICE, 327 .instance_size = sizeof(BitBandState), 328 .instance_init = bitband_init, 329 .class_init = bitband_class_init, 330 }; 331 332 static void armv7m_register_types(void) 333 { 334 type_register_static(&bitband_info); 335 type_register_static(&armv7m_info); 336 } 337 338 type_init(armv7m_register_types) 339