xref: /openbmc/qemu/hw/arm/armv7m.c (revision 6016b7b46edb714a53a31536b30ead9c3aafaef7)
1 /*
2  * ARMV7M System emulation.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "hw/arm/armv7m.h"
12 #include "qapi/error.h"
13 #include "hw/sysbus.h"
14 #include "hw/arm/boot.h"
15 #include "hw/loader.h"
16 #include "hw/qdev-properties.h"
17 #include "hw/qdev-clock.h"
18 #include "elf.h"
19 #include "sysemu/reset.h"
20 #include "qemu/error-report.h"
21 #include "qemu/module.h"
22 #include "qemu/log.h"
23 #include "target/arm/idau.h"
24 #include "migration/vmstate.h"
25 
26 /* Bitbanded IO.  Each word corresponds to a single bit.  */
27 
28 /* Get the byte address of the real memory for a bitband access.  */
29 static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset)
30 {
31     return s->base | (offset & 0x1ffffff) >> 5;
32 }
33 
34 static MemTxResult bitband_read(void *opaque, hwaddr offset,
35                                 uint64_t *data, unsigned size, MemTxAttrs attrs)
36 {
37     BitBandState *s = opaque;
38     uint8_t buf[4];
39     MemTxResult res;
40     int bitpos, bit;
41     hwaddr addr;
42 
43     assert(size <= 4);
44 
45     /* Find address in underlying memory and round down to multiple of size */
46     addr = bitband_addr(s, offset) & (-size);
47     res = address_space_read(&s->source_as, addr, attrs, buf, size);
48     if (res) {
49         return res;
50     }
51     /* Bit position in the N bytes read... */
52     bitpos = (offset >> 2) & ((size * 8) - 1);
53     /* ...converted to byte in buffer and bit in byte */
54     bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1;
55     *data = bit;
56     return MEMTX_OK;
57 }
58 
59 static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value,
60                                  unsigned size, MemTxAttrs attrs)
61 {
62     BitBandState *s = opaque;
63     uint8_t buf[4];
64     MemTxResult res;
65     int bitpos, bit;
66     hwaddr addr;
67 
68     assert(size <= 4);
69 
70     /* Find address in underlying memory and round down to multiple of size */
71     addr = bitband_addr(s, offset) & (-size);
72     res = address_space_read(&s->source_as, addr, attrs, buf, size);
73     if (res) {
74         return res;
75     }
76     /* Bit position in the N bytes read... */
77     bitpos = (offset >> 2) & ((size * 8) - 1);
78     /* ...converted to byte in buffer and bit in byte */
79     bit = 1 << (bitpos & 7);
80     if (value & 1) {
81         buf[bitpos >> 3] |= bit;
82     } else {
83         buf[bitpos >> 3] &= ~bit;
84     }
85     return address_space_write(&s->source_as, addr, attrs, buf, size);
86 }
87 
88 static const MemoryRegionOps bitband_ops = {
89     .read_with_attrs = bitband_read,
90     .write_with_attrs = bitband_write,
91     .endianness = DEVICE_NATIVE_ENDIAN,
92     .impl.min_access_size = 1,
93     .impl.max_access_size = 4,
94     .valid.min_access_size = 1,
95     .valid.max_access_size = 4,
96 };
97 
98 static void bitband_init(Object *obj)
99 {
100     BitBandState *s = BITBAND(obj);
101     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
102 
103     memory_region_init_io(&s->iomem, obj, &bitband_ops, s,
104                           "bitband", 0x02000000);
105     sysbus_init_mmio(dev, &s->iomem);
106 }
107 
108 static void bitband_realize(DeviceState *dev, Error **errp)
109 {
110     BitBandState *s = BITBAND(dev);
111 
112     if (!s->source_memory) {
113         error_setg(errp, "source-memory property not set");
114         return;
115     }
116 
117     address_space_init(&s->source_as, s->source_memory, "bitband-source");
118 }
119 
120 /* Board init.  */
121 
122 static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = {
123     0x20000000, 0x40000000
124 };
125 
126 static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
127     0x22000000, 0x42000000
128 };
129 
130 static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr,
131                                        uint64_t value, unsigned size,
132                                        MemTxAttrs attrs)
133 {
134     MemoryRegion *mr = opaque;
135 
136     if (attrs.secure) {
137         /* S accesses to the alias act like NS accesses to the real region */
138         attrs.secure = 0;
139         return memory_region_dispatch_write(mr, addr, value,
140                                             size_memop(size) | MO_TE, attrs);
141     } else {
142         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
143         if (attrs.user) {
144             return MEMTX_ERROR;
145         }
146         return MEMTX_OK;
147     }
148 }
149 
150 static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr,
151                                       uint64_t *data, unsigned size,
152                                       MemTxAttrs attrs)
153 {
154     MemoryRegion *mr = opaque;
155 
156     if (attrs.secure) {
157         /* S accesses to the alias act like NS accesses to the real region */
158         attrs.secure = 0;
159         return memory_region_dispatch_read(mr, addr, data,
160                                            size_memop(size) | MO_TE, attrs);
161     } else {
162         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
163         if (attrs.user) {
164             return MEMTX_ERROR;
165         }
166         *data = 0;
167         return MEMTX_OK;
168     }
169 }
170 
171 static const MemoryRegionOps v7m_sysreg_ns_ops = {
172     .read_with_attrs = v7m_sysreg_ns_read,
173     .write_with_attrs = v7m_sysreg_ns_write,
174     .endianness = DEVICE_NATIVE_ENDIAN,
175 };
176 
177 static MemTxResult v7m_systick_write(void *opaque, hwaddr addr,
178                                      uint64_t value, unsigned size,
179                                      MemTxAttrs attrs)
180 {
181     ARMv7MState *s = opaque;
182     MemoryRegion *mr;
183 
184     /* Direct the access to the correct systick */
185     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
186     return memory_region_dispatch_write(mr, addr, value,
187                                         size_memop(size) | MO_TE, attrs);
188 }
189 
190 static MemTxResult v7m_systick_read(void *opaque, hwaddr addr,
191                                     uint64_t *data, unsigned size,
192                                     MemTxAttrs attrs)
193 {
194     ARMv7MState *s = opaque;
195     MemoryRegion *mr;
196 
197     /* Direct the access to the correct systick */
198     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
199     return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
200                                        attrs);
201 }
202 
203 static const MemoryRegionOps v7m_systick_ops = {
204     .read_with_attrs = v7m_systick_read,
205     .write_with_attrs = v7m_systick_write,
206     .endianness = DEVICE_NATIVE_ENDIAN,
207 };
208 
209 /*
210  * Unassigned portions of the PPB space are RAZ/WI for privileged
211  * accesses, and fault for non-privileged accesses.
212  */
213 static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
214                                     uint64_t *data, unsigned size,
215                                     MemTxAttrs attrs)
216 {
217     qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
218                   (uint32_t)addr);
219     if (attrs.user) {
220         return MEMTX_ERROR;
221     }
222     *data = 0;
223     return MEMTX_OK;
224 }
225 
226 static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
227                                      uint64_t value, unsigned size,
228                                      MemTxAttrs attrs)
229 {
230     qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
231                   (uint32_t)addr);
232     if (attrs.user) {
233         return MEMTX_ERROR;
234     }
235     return MEMTX_OK;
236 }
237 
238 static const MemoryRegionOps ppb_default_ops = {
239     .read_with_attrs = ppb_default_read,
240     .write_with_attrs = ppb_default_write,
241     .endianness = DEVICE_NATIVE_ENDIAN,
242     .valid.min_access_size = 1,
243     .valid.max_access_size = 8,
244 };
245 
246 static void armv7m_instance_init(Object *obj)
247 {
248     ARMv7MState *s = ARMV7M(obj);
249     int i;
250 
251     /* Can't init the cpu here, we don't yet know which model to use */
252 
253     memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX);
254 
255     object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC);
256     object_property_add_alias(obj, "num-irq",
257                               OBJECT(&s->nvic), "num-irq");
258 
259     object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS],
260                             TYPE_SYSTICK);
261     /*
262      * We can't initialize the secure systick here, as we don't know
263      * yet if we need it.
264      */
265 
266     for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
267         object_initialize_child(obj, "bitband[*]", &s->bitband[i],
268                                 TYPE_BITBAND);
269     }
270 
271     s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0);
272     s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0);
273 }
274 
275 static void armv7m_realize(DeviceState *dev, Error **errp)
276 {
277     ARMv7MState *s = ARMV7M(dev);
278     SysBusDevice *sbd;
279     Error *err = NULL;
280     int i;
281 
282     if (!s->board_memory) {
283         error_setg(errp, "memory property was not set");
284         return;
285     }
286 
287     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
288 
289     s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu",
290                                            &err, NULL));
291     if (err != NULL) {
292         error_propagate(errp, err);
293         return;
294     }
295 
296     object_property_set_link(OBJECT(s->cpu), "memory", OBJECT(&s->container),
297                              &error_abort);
298     if (object_property_find(OBJECT(s->cpu), "idau")) {
299         object_property_set_link(OBJECT(s->cpu), "idau", s->idau,
300                                  &error_abort);
301     }
302     if (object_property_find(OBJECT(s->cpu), "init-svtor")) {
303         if (!object_property_set_uint(OBJECT(s->cpu), "init-svtor",
304                                       s->init_svtor, errp)) {
305             return;
306         }
307     }
308     if (object_property_find(OBJECT(s->cpu), "init-nsvtor")) {
309         if (!object_property_set_uint(OBJECT(s->cpu), "init-nsvtor",
310                                       s->init_nsvtor, errp)) {
311             return;
312         }
313     }
314     if (object_property_find(OBJECT(s->cpu), "start-powered-off")) {
315         if (!object_property_set_bool(OBJECT(s->cpu), "start-powered-off",
316                                       s->start_powered_off, errp)) {
317             return;
318         }
319     }
320     if (object_property_find(OBJECT(s->cpu), "vfp")) {
321         if (!object_property_set_bool(OBJECT(s->cpu), "vfp", s->vfp, errp)) {
322             return;
323         }
324     }
325     if (object_property_find(OBJECT(s->cpu), "dsp")) {
326         if (!object_property_set_bool(OBJECT(s->cpu), "dsp", s->dsp, errp)) {
327             return;
328         }
329     }
330 
331     /*
332      * Tell the CPU where the NVIC is; it will fail realize if it doesn't
333      * have one. Similarly, tell the NVIC where its CPU is.
334      */
335     s->cpu->env.nvic = &s->nvic;
336     s->nvic.cpu = s->cpu;
337 
338     if (!qdev_realize(DEVICE(s->cpu), NULL, errp)) {
339         return;
340     }
341 
342     /* Note that we must realize the NVIC after the CPU */
343     if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvic), errp)) {
344         return;
345     }
346 
347     /* Alias the NVIC's input and output GPIOs as our own so the board
348      * code can wire them up. (We do this in realize because the
349      * NVIC doesn't create the input GPIO array until realize.)
350      */
351     qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL);
352     qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
353     qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI");
354 
355     /*
356      * We map various devices into the container MR at their architected
357      * addresses. In particular, we map everything corresponding to the
358      * "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff
359      * and includes the NVIC, the System Control Space (system registers),
360      * the systick timer, and for CPUs with the Security extension an NS
361      * banked version of all of these.
362      *
363      * The default behaviour for unimplemented registers/ranges
364      * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
365      * is to RAZ/WI for privileged access and BusFault for non-privileged
366      * access.
367      *
368      * The NVIC and System Control Space (SCS) starts at 0xe000e000
369      * and looks like this:
370      *  0x004 - ICTR
371      *  0x010 - 0xff - systick
372      *  0x100..0x7ec - NVIC
373      *  0x7f0..0xcff - Reserved
374      *  0xd00..0xd3c - SCS registers
375      *  0xd40..0xeff - Reserved or Not implemented
376      *  0xf00 - STIR
377      *
378      * Some registers within this space are banked between security states.
379      * In v8M there is a second range 0xe002e000..0xe002efff which is the
380      * NonSecure alias SCS; secure accesses to this behave like NS accesses
381      * to the main SCS range, and non-secure accesses (including when
382      * the security extension is not implemented) are RAZ/WI.
383      * Note that both the main SCS range and the alias range are defined
384      * to be exempt from memory attribution (R_BLJT) and so the memory
385      * transaction attribute always matches the current CPU security
386      * state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops
387      * wrappers we change attrs.secure to indicate the NS access; so
388      * generally code determining which banked register to use should
389      * use attrs.secure; code determining actual behaviour of the system
390      * should use env->v7m.secure.
391      *
392      * Within the PPB space, some MRs overlap, and the priority
393      * of overlapping regions is:
394      *  - default region (for RAZ/WI and BusFault) : -1
395      *  - system register regions (provided by the NVIC) : 0
396      *  - systick : 1
397      * This is because the systick device is a small block of registers
398      * in the middle of the other system control registers.
399      */
400 
401     memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
402                           "nvic-default", 0x100000);
403     memory_region_add_subregion_overlap(&s->container, 0xe0000000,
404                                         &s->defaultmem, -1);
405 
406     /* Wire the NVIC up to the CPU */
407     sbd = SYS_BUS_DEVICE(&s->nvic);
408     sysbus_connect_irq(sbd, 0,
409                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
410 
411     memory_region_add_subregion(&s->container, 0xe000e000,
412                                 sysbus_mmio_get_region(sbd, 0));
413     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
414         /* Create the NS alias region for the NVIC sysregs */
415         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
416                               &v7m_sysreg_ns_ops,
417                               sysbus_mmio_get_region(sbd, 0),
418                               "nvic_sysregs_ns", 0x1000);
419         memory_region_add_subregion(&s->container, 0xe002e000,
420                                     &s->sysreg_ns_mem);
421     }
422 
423     /* Create and map the systick devices */
424     qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk", s->refclk);
425     qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk);
426     if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
427         return;
428     }
429     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
430                        qdev_get_gpio_in_named(DEVICE(&s->nvic),
431                                               "systick-trigger", M_REG_NS));
432 
433     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
434         /*
435          * We couldn't init the secure systick device in instance_init
436          * as we didn't know then if the CPU had the security extensions;
437          * so we have to do it here.
438          */
439         object_initialize_child(OBJECT(dev), "systick-reg-s",
440                                 &s->systick[M_REG_S], TYPE_SYSTICK);
441         qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk",
442                               s->refclk);
443         qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk",
444                               s->cpuclk);
445 
446         if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
447             return;
448         }
449         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
450                            qdev_get_gpio_in_named(DEVICE(&s->nvic),
451                                                   "systick-trigger", M_REG_S));
452     }
453 
454     memory_region_init_io(&s->systickmem, OBJECT(s),
455                           &v7m_systick_ops, s,
456                           "v7m_systick", 0xe0);
457 
458     memory_region_add_subregion_overlap(&s->container, 0xe000e010,
459                                         &s->systickmem, 1);
460     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
461         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
462                               &v7m_sysreg_ns_ops, &s->systickmem,
463                               "v7m_systick_ns", 0xe0);
464         memory_region_add_subregion_overlap(&s->container, 0xe002e010,
465                                             &s->systick_ns_mem, 1);
466     }
467 
468     /* If the CPU has RAS support, create the RAS register block */
469     if (cpu_isar_feature(aa32_ras, s->cpu)) {
470         object_initialize_child(OBJECT(dev), "armv7m-ras",
471                                 &s->ras, TYPE_ARMV7M_RAS);
472         sbd = SYS_BUS_DEVICE(&s->ras);
473         if (!sysbus_realize(sbd, errp)) {
474             return;
475         }
476         memory_region_add_subregion_overlap(&s->container, 0xe0005000,
477                                             sysbus_mmio_get_region(sbd, 0), 1);
478     }
479 
480     for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
481         if (s->enable_bitband) {
482             Object *obj = OBJECT(&s->bitband[i]);
483             SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]);
484 
485             if (!object_property_set_int(obj, "base",
486                                          bitband_input_addr[i], errp)) {
487                 return;
488             }
489             object_property_set_link(obj, "source-memory",
490                                      OBJECT(s->board_memory), &error_abort);
491             if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
492                 return;
493             }
494 
495             memory_region_add_subregion(&s->container, bitband_output_addr[i],
496                                         sysbus_mmio_get_region(sbd, 0));
497         } else {
498             object_unparent(OBJECT(&s->bitband[i]));
499         }
500     }
501 }
502 
503 static Property armv7m_properties[] = {
504     DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type),
505     DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION,
506                      MemoryRegion *),
507     DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
508     DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0),
509     DEFINE_PROP_UINT32("init-nsvtor", ARMv7MState, init_nsvtor, 0),
510     DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false),
511     DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off,
512                      false),
513     DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true),
514     DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true),
515     DEFINE_PROP_END_OF_LIST(),
516 };
517 
518 static const VMStateDescription vmstate_armv7m = {
519     .name = "armv7m",
520     .version_id = 1,
521     .minimum_version_id = 1,
522     .fields = (VMStateField[]) {
523         VMSTATE_CLOCK(refclk, SysTickState),
524         VMSTATE_CLOCK(cpuclk, SysTickState),
525         VMSTATE_END_OF_LIST()
526     }
527 };
528 
529 static void armv7m_class_init(ObjectClass *klass, void *data)
530 {
531     DeviceClass *dc = DEVICE_CLASS(klass);
532 
533     dc->realize = armv7m_realize;
534     dc->vmsd = &vmstate_armv7m;
535     device_class_set_props(dc, armv7m_properties);
536 }
537 
538 static const TypeInfo armv7m_info = {
539     .name = TYPE_ARMV7M,
540     .parent = TYPE_SYS_BUS_DEVICE,
541     .instance_size = sizeof(ARMv7MState),
542     .instance_init = armv7m_instance_init,
543     .class_init = armv7m_class_init,
544 };
545 
546 static void armv7m_reset(void *opaque)
547 {
548     ARMCPU *cpu = opaque;
549 
550     cpu_reset(CPU(cpu));
551 }
552 
553 void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename, int mem_size)
554 {
555     int image_size;
556     uint64_t entry;
557     int big_endian;
558     AddressSpace *as;
559     int asidx;
560     CPUState *cs = CPU(cpu);
561 
562 #ifdef TARGET_WORDS_BIGENDIAN
563     big_endian = 1;
564 #else
565     big_endian = 0;
566 #endif
567 
568     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
569         asidx = ARMASIdx_S;
570     } else {
571         asidx = ARMASIdx_NS;
572     }
573     as = cpu_get_address_space(cs, asidx);
574 
575     if (kernel_filename) {
576         image_size = load_elf_as(kernel_filename, NULL, NULL, NULL,
577                                  &entry, NULL, NULL,
578                                  NULL, big_endian, EM_ARM, 1, 0, as);
579         if (image_size < 0) {
580             image_size = load_image_targphys_as(kernel_filename, 0,
581                                                 mem_size, as);
582         }
583         if (image_size < 0) {
584             error_report("Could not load kernel '%s'", kernel_filename);
585             exit(1);
586         }
587     }
588 
589     /* CPU objects (unlike devices) are not automatically reset on system
590      * reset, so we must always register a handler to do so. Unlike
591      * A-profile CPUs, we don't need to do anything special in the
592      * handler to arrange that it starts correctly.
593      * This is arguably the wrong place to do this, but it matches the
594      * way A-profile does it. Note that this means that every M profile
595      * board must call this function!
596      */
597     qemu_register_reset(armv7m_reset, cpu);
598 }
599 
600 static Property bitband_properties[] = {
601     DEFINE_PROP_UINT32("base", BitBandState, base, 0),
602     DEFINE_PROP_LINK("source-memory", BitBandState, source_memory,
603                      TYPE_MEMORY_REGION, MemoryRegion *),
604     DEFINE_PROP_END_OF_LIST(),
605 };
606 
607 static void bitband_class_init(ObjectClass *klass, void *data)
608 {
609     DeviceClass *dc = DEVICE_CLASS(klass);
610 
611     dc->realize = bitband_realize;
612     device_class_set_props(dc, bitband_properties);
613 }
614 
615 static const TypeInfo bitband_info = {
616     .name          = TYPE_BITBAND,
617     .parent        = TYPE_SYS_BUS_DEVICE,
618     .instance_size = sizeof(BitBandState),
619     .instance_init = bitband_init,
620     .class_init    = bitband_class_init,
621 };
622 
623 static void armv7m_register_types(void)
624 {
625     type_register_static(&bitband_info);
626     type_register_static(&armv7m_info);
627 }
628 
629 type_init(armv7m_register_types)
630