1 /* 2 * ARMV7M System emulation. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "hw/arm/armv7m.h" 12 #include "qapi/error.h" 13 #include "hw/sysbus.h" 14 #include "hw/arm/boot.h" 15 #include "hw/loader.h" 16 #include "hw/qdev-properties.h" 17 #include "hw/qdev-clock.h" 18 #include "elf.h" 19 #include "sysemu/reset.h" 20 #include "qemu/error-report.h" 21 #include "qemu/module.h" 22 #include "qemu/log.h" 23 #include "target/arm/idau.h" 24 #include "migration/vmstate.h" 25 26 /* Bitbanded IO. Each word corresponds to a single bit. */ 27 28 /* Get the byte address of the real memory for a bitband access. */ 29 static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset) 30 { 31 return s->base | (offset & 0x1ffffff) >> 5; 32 } 33 34 static MemTxResult bitband_read(void *opaque, hwaddr offset, 35 uint64_t *data, unsigned size, MemTxAttrs attrs) 36 { 37 BitBandState *s = opaque; 38 uint8_t buf[4]; 39 MemTxResult res; 40 int bitpos, bit; 41 hwaddr addr; 42 43 assert(size <= 4); 44 45 /* Find address in underlying memory and round down to multiple of size */ 46 addr = bitband_addr(s, offset) & (-size); 47 res = address_space_read(&s->source_as, addr, attrs, buf, size); 48 if (res) { 49 return res; 50 } 51 /* Bit position in the N bytes read... */ 52 bitpos = (offset >> 2) & ((size * 8) - 1); 53 /* ...converted to byte in buffer and bit in byte */ 54 bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1; 55 *data = bit; 56 return MEMTX_OK; 57 } 58 59 static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value, 60 unsigned size, MemTxAttrs attrs) 61 { 62 BitBandState *s = opaque; 63 uint8_t buf[4]; 64 MemTxResult res; 65 int bitpos, bit; 66 hwaddr addr; 67 68 assert(size <= 4); 69 70 /* Find address in underlying memory and round down to multiple of size */ 71 addr = bitband_addr(s, offset) & (-size); 72 res = address_space_read(&s->source_as, addr, attrs, buf, size); 73 if (res) { 74 return res; 75 } 76 /* Bit position in the N bytes read... */ 77 bitpos = (offset >> 2) & ((size * 8) - 1); 78 /* ...converted to byte in buffer and bit in byte */ 79 bit = 1 << (bitpos & 7); 80 if (value & 1) { 81 buf[bitpos >> 3] |= bit; 82 } else { 83 buf[bitpos >> 3] &= ~bit; 84 } 85 return address_space_write(&s->source_as, addr, attrs, buf, size); 86 } 87 88 static const MemoryRegionOps bitband_ops = { 89 .read_with_attrs = bitband_read, 90 .write_with_attrs = bitband_write, 91 .endianness = DEVICE_NATIVE_ENDIAN, 92 .impl.min_access_size = 1, 93 .impl.max_access_size = 4, 94 .valid.min_access_size = 1, 95 .valid.max_access_size = 4, 96 }; 97 98 static void bitband_init(Object *obj) 99 { 100 BitBandState *s = BITBAND(obj); 101 SysBusDevice *dev = SYS_BUS_DEVICE(obj); 102 103 memory_region_init_io(&s->iomem, obj, &bitband_ops, s, 104 "bitband", 0x02000000); 105 sysbus_init_mmio(dev, &s->iomem); 106 } 107 108 static void bitband_realize(DeviceState *dev, Error **errp) 109 { 110 BitBandState *s = BITBAND(dev); 111 112 if (!s->source_memory) { 113 error_setg(errp, "source-memory property not set"); 114 return; 115 } 116 117 address_space_init(&s->source_as, s->source_memory, "bitband-source"); 118 } 119 120 /* Board init. */ 121 122 static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = { 123 0x20000000, 0x40000000 124 }; 125 126 static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = { 127 0x22000000, 0x42000000 128 }; 129 130 static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr, 131 uint64_t value, unsigned size, 132 MemTxAttrs attrs) 133 { 134 MemoryRegion *mr = opaque; 135 136 if (attrs.secure) { 137 /* S accesses to the alias act like NS accesses to the real region */ 138 attrs.secure = 0; 139 return memory_region_dispatch_write(mr, addr, value, 140 size_memop(size) | MO_TE, attrs); 141 } else { 142 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 143 if (attrs.user) { 144 return MEMTX_ERROR; 145 } 146 return MEMTX_OK; 147 } 148 } 149 150 static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr, 151 uint64_t *data, unsigned size, 152 MemTxAttrs attrs) 153 { 154 MemoryRegion *mr = opaque; 155 156 if (attrs.secure) { 157 /* S accesses to the alias act like NS accesses to the real region */ 158 attrs.secure = 0; 159 return memory_region_dispatch_read(mr, addr, data, 160 size_memop(size) | MO_TE, attrs); 161 } else { 162 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 163 if (attrs.user) { 164 return MEMTX_ERROR; 165 } 166 *data = 0; 167 return MEMTX_OK; 168 } 169 } 170 171 static const MemoryRegionOps v7m_sysreg_ns_ops = { 172 .read_with_attrs = v7m_sysreg_ns_read, 173 .write_with_attrs = v7m_sysreg_ns_write, 174 .endianness = DEVICE_NATIVE_ENDIAN, 175 }; 176 177 static MemTxResult v7m_systick_write(void *opaque, hwaddr addr, 178 uint64_t value, unsigned size, 179 MemTxAttrs attrs) 180 { 181 ARMv7MState *s = opaque; 182 MemoryRegion *mr; 183 184 /* Direct the access to the correct systick */ 185 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 186 return memory_region_dispatch_write(mr, addr, value, 187 size_memop(size) | MO_TE, attrs); 188 } 189 190 static MemTxResult v7m_systick_read(void *opaque, hwaddr addr, 191 uint64_t *data, unsigned size, 192 MemTxAttrs attrs) 193 { 194 ARMv7MState *s = opaque; 195 MemoryRegion *mr; 196 197 /* Direct the access to the correct systick */ 198 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 199 return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE, 200 attrs); 201 } 202 203 static const MemoryRegionOps v7m_systick_ops = { 204 .read_with_attrs = v7m_systick_read, 205 .write_with_attrs = v7m_systick_write, 206 .endianness = DEVICE_NATIVE_ENDIAN, 207 }; 208 209 /* 210 * Unassigned portions of the PPB space are RAZ/WI for privileged 211 * accesses, and fault for non-privileged accesses. 212 */ 213 static MemTxResult ppb_default_read(void *opaque, hwaddr addr, 214 uint64_t *data, unsigned size, 215 MemTxAttrs attrs) 216 { 217 qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n", 218 (uint32_t)addr); 219 if (attrs.user) { 220 return MEMTX_ERROR; 221 } 222 *data = 0; 223 return MEMTX_OK; 224 } 225 226 static MemTxResult ppb_default_write(void *opaque, hwaddr addr, 227 uint64_t value, unsigned size, 228 MemTxAttrs attrs) 229 { 230 qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n", 231 (uint32_t)addr); 232 if (attrs.user) { 233 return MEMTX_ERROR; 234 } 235 return MEMTX_OK; 236 } 237 238 static const MemoryRegionOps ppb_default_ops = { 239 .read_with_attrs = ppb_default_read, 240 .write_with_attrs = ppb_default_write, 241 .endianness = DEVICE_NATIVE_ENDIAN, 242 .valid.min_access_size = 1, 243 .valid.max_access_size = 8, 244 }; 245 246 static void armv7m_instance_init(Object *obj) 247 { 248 ARMv7MState *s = ARMV7M(obj); 249 int i; 250 251 /* Can't init the cpu here, we don't yet know which model to use */ 252 253 memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX); 254 255 object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC); 256 object_property_add_alias(obj, "num-irq", 257 OBJECT(&s->nvic), "num-irq"); 258 259 object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS], 260 TYPE_SYSTICK); 261 /* 262 * We can't initialize the secure systick here, as we don't know 263 * yet if we need it. 264 */ 265 266 for (i = 0; i < ARRAY_SIZE(s->bitband); i++) { 267 object_initialize_child(obj, "bitband[*]", &s->bitband[i], 268 TYPE_BITBAND); 269 } 270 271 s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0); 272 s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0); 273 } 274 275 static void armv7m_realize(DeviceState *dev, Error **errp) 276 { 277 ARMv7MState *s = ARMV7M(dev); 278 SysBusDevice *sbd; 279 Error *err = NULL; 280 int i; 281 282 if (!s->board_memory) { 283 error_setg(errp, "memory property was not set"); 284 return; 285 } 286 287 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1); 288 289 s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu", 290 &err, NULL)); 291 if (err != NULL) { 292 error_propagate(errp, err); 293 return; 294 } 295 296 object_property_set_link(OBJECT(s->cpu), "memory", OBJECT(&s->container), 297 &error_abort); 298 if (object_property_find(OBJECT(s->cpu), "idau")) { 299 object_property_set_link(OBJECT(s->cpu), "idau", s->idau, 300 &error_abort); 301 } 302 if (object_property_find(OBJECT(s->cpu), "init-svtor")) { 303 if (!object_property_set_uint(OBJECT(s->cpu), "init-svtor", 304 s->init_svtor, errp)) { 305 return; 306 } 307 } 308 if (object_property_find(OBJECT(s->cpu), "init-nsvtor")) { 309 if (!object_property_set_uint(OBJECT(s->cpu), "init-nsvtor", 310 s->init_nsvtor, errp)) { 311 return; 312 } 313 } 314 if (object_property_find(OBJECT(s->cpu), "start-powered-off")) { 315 if (!object_property_set_bool(OBJECT(s->cpu), "start-powered-off", 316 s->start_powered_off, errp)) { 317 return; 318 } 319 } 320 if (object_property_find(OBJECT(s->cpu), "vfp")) { 321 if (!object_property_set_bool(OBJECT(s->cpu), "vfp", s->vfp, errp)) { 322 return; 323 } 324 } 325 if (object_property_find(OBJECT(s->cpu), "dsp")) { 326 if (!object_property_set_bool(OBJECT(s->cpu), "dsp", s->dsp, errp)) { 327 return; 328 } 329 } 330 331 /* 332 * Tell the CPU where the NVIC is; it will fail realize if it doesn't 333 * have one. Similarly, tell the NVIC where its CPU is. 334 */ 335 s->cpu->env.nvic = &s->nvic; 336 s->nvic.cpu = s->cpu; 337 338 if (!qdev_realize(DEVICE(s->cpu), NULL, errp)) { 339 return; 340 } 341 342 /* Note that we must realize the NVIC after the CPU */ 343 if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvic), errp)) { 344 return; 345 } 346 347 /* Alias the NVIC's input and output GPIOs as our own so the board 348 * code can wire them up. (We do this in realize because the 349 * NVIC doesn't create the input GPIO array until realize.) 350 */ 351 qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL); 352 qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ"); 353 qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI"); 354 355 /* 356 * We map various devices into the container MR at their architected 357 * addresses. In particular, we map everything corresponding to the 358 * "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff 359 * and includes the NVIC, the System Control Space (system registers), 360 * the systick timer, and for CPUs with the Security extension an NS 361 * banked version of all of these. 362 * 363 * The default behaviour for unimplemented registers/ranges 364 * (for instance the Data Watchpoint and Trace unit at 0xe0001000) 365 * is to RAZ/WI for privileged access and BusFault for non-privileged 366 * access. 367 * 368 * The NVIC and System Control Space (SCS) starts at 0xe000e000 369 * and looks like this: 370 * 0x004 - ICTR 371 * 0x010 - 0xff - systick 372 * 0x100..0x7ec - NVIC 373 * 0x7f0..0xcff - Reserved 374 * 0xd00..0xd3c - SCS registers 375 * 0xd40..0xeff - Reserved or Not implemented 376 * 0xf00 - STIR 377 * 378 * Some registers within this space are banked between security states. 379 * In v8M there is a second range 0xe002e000..0xe002efff which is the 380 * NonSecure alias SCS; secure accesses to this behave like NS accesses 381 * to the main SCS range, and non-secure accesses (including when 382 * the security extension is not implemented) are RAZ/WI. 383 * Note that both the main SCS range and the alias range are defined 384 * to be exempt from memory attribution (R_BLJT) and so the memory 385 * transaction attribute always matches the current CPU security 386 * state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops 387 * wrappers we change attrs.secure to indicate the NS access; so 388 * generally code determining which banked register to use should 389 * use attrs.secure; code determining actual behaviour of the system 390 * should use env->v7m.secure. 391 * 392 * Within the PPB space, some MRs overlap, and the priority 393 * of overlapping regions is: 394 * - default region (for RAZ/WI and BusFault) : -1 395 * - system register regions (provided by the NVIC) : 0 396 * - systick : 1 397 * This is because the systick device is a small block of registers 398 * in the middle of the other system control registers. 399 */ 400 401 memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s, 402 "nvic-default", 0x100000); 403 memory_region_add_subregion_overlap(&s->container, 0xe0000000, 404 &s->defaultmem, -1); 405 406 /* Wire the NVIC up to the CPU */ 407 sbd = SYS_BUS_DEVICE(&s->nvic); 408 sysbus_connect_irq(sbd, 0, 409 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ)); 410 411 memory_region_add_subregion(&s->container, 0xe000e000, 412 sysbus_mmio_get_region(sbd, 0)); 413 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 414 /* Create the NS alias region for the NVIC sysregs */ 415 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 416 &v7m_sysreg_ns_ops, 417 sysbus_mmio_get_region(sbd, 0), 418 "nvic_sysregs_ns", 0x1000); 419 memory_region_add_subregion(&s->container, 0xe002e000, 420 &s->sysreg_ns_mem); 421 } 422 423 /* Create and map the systick devices */ 424 qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk", s->refclk); 425 qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk); 426 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) { 427 return; 428 } 429 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 430 qdev_get_gpio_in_named(DEVICE(&s->nvic), 431 "systick-trigger", M_REG_NS)); 432 433 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 434 /* 435 * We couldn't init the secure systick device in instance_init 436 * as we didn't know then if the CPU had the security extensions; 437 * so we have to do it here. 438 */ 439 object_initialize_child(OBJECT(dev), "systick-reg-s", 440 &s->systick[M_REG_S], TYPE_SYSTICK); 441 qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk", 442 s->refclk); 443 qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk", 444 s->cpuclk); 445 446 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) { 447 return; 448 } 449 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 450 qdev_get_gpio_in_named(DEVICE(&s->nvic), 451 "systick-trigger", M_REG_S)); 452 } 453 454 memory_region_init_io(&s->systickmem, OBJECT(s), 455 &v7m_systick_ops, s, 456 "v7m_systick", 0xe0); 457 458 memory_region_add_subregion_overlap(&s->container, 0xe000e010, 459 &s->systickmem, 1); 460 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 461 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 462 &v7m_sysreg_ns_ops, &s->systickmem, 463 "v7m_systick_ns", 0xe0); 464 memory_region_add_subregion_overlap(&s->container, 0xe002e010, 465 &s->systick_ns_mem, 1); 466 } 467 468 /* If the CPU has RAS support, create the RAS register block */ 469 if (cpu_isar_feature(aa32_ras, s->cpu)) { 470 object_initialize_child(OBJECT(dev), "armv7m-ras", 471 &s->ras, TYPE_ARMV7M_RAS); 472 sbd = SYS_BUS_DEVICE(&s->ras); 473 if (!sysbus_realize(sbd, errp)) { 474 return; 475 } 476 memory_region_add_subregion_overlap(&s->container, 0xe0005000, 477 sysbus_mmio_get_region(sbd, 0), 1); 478 } 479 480 for (i = 0; i < ARRAY_SIZE(s->bitband); i++) { 481 if (s->enable_bitband) { 482 Object *obj = OBJECT(&s->bitband[i]); 483 SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]); 484 485 if (!object_property_set_int(obj, "base", 486 bitband_input_addr[i], errp)) { 487 return; 488 } 489 object_property_set_link(obj, "source-memory", 490 OBJECT(s->board_memory), &error_abort); 491 if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) { 492 return; 493 } 494 495 memory_region_add_subregion(&s->container, bitband_output_addr[i], 496 sysbus_mmio_get_region(sbd, 0)); 497 } else { 498 object_unparent(OBJECT(&s->bitband[i])); 499 } 500 } 501 } 502 503 static Property armv7m_properties[] = { 504 DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type), 505 DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION, 506 MemoryRegion *), 507 DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *), 508 DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0), 509 DEFINE_PROP_UINT32("init-nsvtor", ARMv7MState, init_nsvtor, 0), 510 DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false), 511 DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off, 512 false), 513 DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true), 514 DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true), 515 DEFINE_PROP_END_OF_LIST(), 516 }; 517 518 static const VMStateDescription vmstate_armv7m = { 519 .name = "armv7m", 520 .version_id = 1, 521 .minimum_version_id = 1, 522 .fields = (VMStateField[]) { 523 VMSTATE_CLOCK(refclk, SysTickState), 524 VMSTATE_CLOCK(cpuclk, SysTickState), 525 VMSTATE_END_OF_LIST() 526 } 527 }; 528 529 static void armv7m_class_init(ObjectClass *klass, void *data) 530 { 531 DeviceClass *dc = DEVICE_CLASS(klass); 532 533 dc->realize = armv7m_realize; 534 dc->vmsd = &vmstate_armv7m; 535 device_class_set_props(dc, armv7m_properties); 536 } 537 538 static const TypeInfo armv7m_info = { 539 .name = TYPE_ARMV7M, 540 .parent = TYPE_SYS_BUS_DEVICE, 541 .instance_size = sizeof(ARMv7MState), 542 .instance_init = armv7m_instance_init, 543 .class_init = armv7m_class_init, 544 }; 545 546 static void armv7m_reset(void *opaque) 547 { 548 ARMCPU *cpu = opaque; 549 550 cpu_reset(CPU(cpu)); 551 } 552 553 void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename, int mem_size) 554 { 555 int image_size; 556 uint64_t entry; 557 int big_endian; 558 AddressSpace *as; 559 int asidx; 560 CPUState *cs = CPU(cpu); 561 562 #ifdef TARGET_WORDS_BIGENDIAN 563 big_endian = 1; 564 #else 565 big_endian = 0; 566 #endif 567 568 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 569 asidx = ARMASIdx_S; 570 } else { 571 asidx = ARMASIdx_NS; 572 } 573 as = cpu_get_address_space(cs, asidx); 574 575 if (kernel_filename) { 576 image_size = load_elf_as(kernel_filename, NULL, NULL, NULL, 577 &entry, NULL, NULL, 578 NULL, big_endian, EM_ARM, 1, 0, as); 579 if (image_size < 0) { 580 image_size = load_image_targphys_as(kernel_filename, 0, 581 mem_size, as); 582 } 583 if (image_size < 0) { 584 error_report("Could not load kernel '%s'", kernel_filename); 585 exit(1); 586 } 587 } 588 589 /* CPU objects (unlike devices) are not automatically reset on system 590 * reset, so we must always register a handler to do so. Unlike 591 * A-profile CPUs, we don't need to do anything special in the 592 * handler to arrange that it starts correctly. 593 * This is arguably the wrong place to do this, but it matches the 594 * way A-profile does it. Note that this means that every M profile 595 * board must call this function! 596 */ 597 qemu_register_reset(armv7m_reset, cpu); 598 } 599 600 static Property bitband_properties[] = { 601 DEFINE_PROP_UINT32("base", BitBandState, base, 0), 602 DEFINE_PROP_LINK("source-memory", BitBandState, source_memory, 603 TYPE_MEMORY_REGION, MemoryRegion *), 604 DEFINE_PROP_END_OF_LIST(), 605 }; 606 607 static void bitband_class_init(ObjectClass *klass, void *data) 608 { 609 DeviceClass *dc = DEVICE_CLASS(klass); 610 611 dc->realize = bitband_realize; 612 device_class_set_props(dc, bitband_properties); 613 } 614 615 static const TypeInfo bitband_info = { 616 .name = TYPE_BITBAND, 617 .parent = TYPE_SYS_BUS_DEVICE, 618 .instance_size = sizeof(BitBandState), 619 .instance_init = bitband_init, 620 .class_init = bitband_class_init, 621 }; 622 623 static void armv7m_register_types(void) 624 { 625 type_register_static(&bitband_info); 626 type_register_static(&armv7m_info); 627 } 628 629 type_init(armv7m_register_types) 630