xref: /openbmc/qemu/hw/arm/armv7m.c (revision 259ebed4)
1 /*
2  * ARMV7M System emulation.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "hw/arm/armv7m.h"
12 #include "qapi/error.h"
13 #include "hw/sysbus.h"
14 #include "hw/arm/boot.h"
15 #include "hw/loader.h"
16 #include "hw/qdev-properties.h"
17 #include "hw/qdev-clock.h"
18 #include "elf.h"
19 #include "sysemu/reset.h"
20 #include "qemu/error-report.h"
21 #include "qemu/module.h"
22 #include "qemu/log.h"
23 #include "target/arm/idau.h"
24 #include "target/arm/cpu-features.h"
25 #include "migration/vmstate.h"
26 
27 /* Bitbanded IO.  Each word corresponds to a single bit.  */
28 
29 /* Get the byte address of the real memory for a bitband access.  */
30 static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset)
31 {
32     return s->base | (offset & 0x1ffffff) >> 5;
33 }
34 
35 static MemTxResult bitband_read(void *opaque, hwaddr offset,
36                                 uint64_t *data, unsigned size, MemTxAttrs attrs)
37 {
38     BitBandState *s = opaque;
39     uint8_t buf[4];
40     MemTxResult res;
41     int bitpos, bit;
42     hwaddr addr;
43 
44     assert(size <= 4);
45 
46     /* Find address in underlying memory and round down to multiple of size */
47     addr = bitband_addr(s, offset) & (-size);
48     res = address_space_read(&s->source_as, addr, attrs, buf, size);
49     if (res) {
50         return res;
51     }
52     /* Bit position in the N bytes read... */
53     bitpos = (offset >> 2) & ((size * 8) - 1);
54     /* ...converted to byte in buffer and bit in byte */
55     bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1;
56     *data = bit;
57     return MEMTX_OK;
58 }
59 
60 static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value,
61                                  unsigned size, MemTxAttrs attrs)
62 {
63     BitBandState *s = opaque;
64     uint8_t buf[4];
65     MemTxResult res;
66     int bitpos, bit;
67     hwaddr addr;
68 
69     assert(size <= 4);
70 
71     /* Find address in underlying memory and round down to multiple of size */
72     addr = bitband_addr(s, offset) & (-size);
73     res = address_space_read(&s->source_as, addr, attrs, buf, size);
74     if (res) {
75         return res;
76     }
77     /* Bit position in the N bytes read... */
78     bitpos = (offset >> 2) & ((size * 8) - 1);
79     /* ...converted to byte in buffer and bit in byte */
80     bit = 1 << (bitpos & 7);
81     if (value & 1) {
82         buf[bitpos >> 3] |= bit;
83     } else {
84         buf[bitpos >> 3] &= ~bit;
85     }
86     return address_space_write(&s->source_as, addr, attrs, buf, size);
87 }
88 
89 static const MemoryRegionOps bitband_ops = {
90     .read_with_attrs = bitband_read,
91     .write_with_attrs = bitband_write,
92     .endianness = DEVICE_NATIVE_ENDIAN,
93     .impl.min_access_size = 1,
94     .impl.max_access_size = 4,
95     .valid.min_access_size = 1,
96     .valid.max_access_size = 4,
97 };
98 
99 static void bitband_init(Object *obj)
100 {
101     BitBandState *s = BITBAND(obj);
102     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
103 
104     memory_region_init_io(&s->iomem, obj, &bitband_ops, s,
105                           "bitband", 0x02000000);
106     sysbus_init_mmio(dev, &s->iomem);
107 }
108 
109 static void bitband_realize(DeviceState *dev, Error **errp)
110 {
111     BitBandState *s = BITBAND(dev);
112 
113     if (!s->source_memory) {
114         error_setg(errp, "source-memory property not set");
115         return;
116     }
117 
118     address_space_init(&s->source_as, s->source_memory, "bitband-source");
119 }
120 
121 /* Board init.  */
122 
123 static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = {
124     0x20000000, 0x40000000
125 };
126 
127 static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
128     0x22000000, 0x42000000
129 };
130 
131 static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr,
132                                        uint64_t value, unsigned size,
133                                        MemTxAttrs attrs)
134 {
135     MemoryRegion *mr = opaque;
136 
137     if (attrs.secure) {
138         /* S accesses to the alias act like NS accesses to the real region */
139         attrs.secure = 0;
140         return memory_region_dispatch_write(mr, addr, value,
141                                             size_memop(size) | MO_TE, attrs);
142     } else {
143         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
144         if (attrs.user) {
145             return MEMTX_ERROR;
146         }
147         return MEMTX_OK;
148     }
149 }
150 
151 static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr,
152                                       uint64_t *data, unsigned size,
153                                       MemTxAttrs attrs)
154 {
155     MemoryRegion *mr = opaque;
156 
157     if (attrs.secure) {
158         /* S accesses to the alias act like NS accesses to the real region */
159         attrs.secure = 0;
160         return memory_region_dispatch_read(mr, addr, data,
161                                            size_memop(size) | MO_TE, attrs);
162     } else {
163         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
164         if (attrs.user) {
165             return MEMTX_ERROR;
166         }
167         *data = 0;
168         return MEMTX_OK;
169     }
170 }
171 
172 static const MemoryRegionOps v7m_sysreg_ns_ops = {
173     .read_with_attrs = v7m_sysreg_ns_read,
174     .write_with_attrs = v7m_sysreg_ns_write,
175     .endianness = DEVICE_NATIVE_ENDIAN,
176 };
177 
178 static MemTxResult v7m_systick_write(void *opaque, hwaddr addr,
179                                      uint64_t value, unsigned size,
180                                      MemTxAttrs attrs)
181 {
182     ARMv7MState *s = opaque;
183     MemoryRegion *mr;
184 
185     /* Direct the access to the correct systick */
186     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
187     return memory_region_dispatch_write(mr, addr, value,
188                                         size_memop(size) | MO_TE, attrs);
189 }
190 
191 static MemTxResult v7m_systick_read(void *opaque, hwaddr addr,
192                                     uint64_t *data, unsigned size,
193                                     MemTxAttrs attrs)
194 {
195     ARMv7MState *s = opaque;
196     MemoryRegion *mr;
197 
198     /* Direct the access to the correct systick */
199     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
200     return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
201                                        attrs);
202 }
203 
204 static const MemoryRegionOps v7m_systick_ops = {
205     .read_with_attrs = v7m_systick_read,
206     .write_with_attrs = v7m_systick_write,
207     .endianness = DEVICE_NATIVE_ENDIAN,
208 };
209 
210 /*
211  * Unassigned portions of the PPB space are RAZ/WI for privileged
212  * accesses, and fault for non-privileged accesses.
213  */
214 static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
215                                     uint64_t *data, unsigned size,
216                                     MemTxAttrs attrs)
217 {
218     qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
219                   (uint32_t)addr);
220     if (attrs.user) {
221         return MEMTX_ERROR;
222     }
223     *data = 0;
224     return MEMTX_OK;
225 }
226 
227 static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
228                                      uint64_t value, unsigned size,
229                                      MemTxAttrs attrs)
230 {
231     qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
232                   (uint32_t)addr);
233     if (attrs.user) {
234         return MEMTX_ERROR;
235     }
236     return MEMTX_OK;
237 }
238 
239 static const MemoryRegionOps ppb_default_ops = {
240     .read_with_attrs = ppb_default_read,
241     .write_with_attrs = ppb_default_write,
242     .endianness = DEVICE_NATIVE_ENDIAN,
243     .valid.min_access_size = 1,
244     .valid.max_access_size = 8,
245 };
246 
247 static void armv7m_instance_init(Object *obj)
248 {
249     ARMv7MState *s = ARMV7M(obj);
250     int i;
251 
252     /* Can't init the cpu here, we don't yet know which model to use */
253 
254     memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX);
255 
256     object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC);
257     object_property_add_alias(obj, "num-irq",
258                               OBJECT(&s->nvic), "num-irq");
259 
260     object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS],
261                             TYPE_SYSTICK);
262     /*
263      * We can't initialize the secure systick here, as we don't know
264      * yet if we need it.
265      */
266 
267     for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
268         object_initialize_child(obj, "bitband[*]", &s->bitband[i],
269                                 TYPE_BITBAND);
270     }
271 
272     s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0);
273     s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0);
274 }
275 
276 static void armv7m_realize(DeviceState *dev, Error **errp)
277 {
278     ARMv7MState *s = ARMV7M(dev);
279     SysBusDevice *sbd;
280     Error *err = NULL;
281     int i;
282 
283     if (!s->board_memory) {
284         error_setg(errp, "memory property was not set");
285         return;
286     }
287 
288     /* cpuclk must be connected; refclk is optional */
289     if (!clock_has_source(s->cpuclk)) {
290         error_setg(errp, "armv7m: cpuclk must be connected");
291         return;
292     }
293 
294     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
295 
296     s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu",
297                                            &err, NULL));
298     if (err != NULL) {
299         error_propagate(errp, err);
300         return;
301     }
302 
303     object_property_set_link(OBJECT(s->cpu), "memory", OBJECT(&s->container),
304                              &error_abort);
305     if (object_property_find(OBJECT(s->cpu), "idau")) {
306         object_property_set_link(OBJECT(s->cpu), "idau", s->idau,
307                                  &error_abort);
308     }
309     if (object_property_find(OBJECT(s->cpu), "init-svtor")) {
310         if (!object_property_set_uint(OBJECT(s->cpu), "init-svtor",
311                                       s->init_svtor, errp)) {
312             return;
313         }
314     }
315     if (object_property_find(OBJECT(s->cpu), "init-nsvtor")) {
316         if (!object_property_set_uint(OBJECT(s->cpu), "init-nsvtor",
317                                       s->init_nsvtor, errp)) {
318             return;
319         }
320     }
321     if (object_property_find(OBJECT(s->cpu), "start-powered-off")) {
322         if (!object_property_set_bool(OBJECT(s->cpu), "start-powered-off",
323                                       s->start_powered_off, errp)) {
324             return;
325         }
326     }
327     if (object_property_find(OBJECT(s->cpu), "vfp")) {
328         if (!object_property_set_bool(OBJECT(s->cpu), "vfp", s->vfp, errp)) {
329             return;
330         }
331     }
332     if (object_property_find(OBJECT(s->cpu), "dsp")) {
333         if (!object_property_set_bool(OBJECT(s->cpu), "dsp", s->dsp, errp)) {
334             return;
335         }
336     }
337 
338     /*
339      * Real M-profile hardware can be configured with a different number of
340      * MPU regions for Secure vs NonSecure. QEMU's CPU implementation doesn't
341      * support that yet, so catch attempts to select that.
342      */
343     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
344         s->mpu_ns_regions != s->mpu_s_regions) {
345         error_setg(errp,
346                    "mpu-ns-regions and mpu-s-regions properties must have the same value");
347         return;
348     }
349     if (s->mpu_ns_regions != UINT_MAX &&
350         object_property_find(OBJECT(s->cpu), "pmsav7-dregion")) {
351         if (!object_property_set_uint(OBJECT(s->cpu), "pmsav7-dregion",
352                                       s->mpu_ns_regions, errp)) {
353             return;
354         }
355     }
356 
357     /*
358      * Tell the CPU where the NVIC is; it will fail realize if it doesn't
359      * have one. Similarly, tell the NVIC where its CPU is.
360      */
361     s->cpu->env.nvic = &s->nvic;
362     s->nvic.cpu = s->cpu;
363 
364     if (!qdev_realize(DEVICE(s->cpu), NULL, errp)) {
365         return;
366     }
367 
368     /* Note that we must realize the NVIC after the CPU */
369     if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvic), errp)) {
370         return;
371     }
372 
373     /* Alias the NVIC's input and output GPIOs as our own so the board
374      * code can wire them up. (We do this in realize because the
375      * NVIC doesn't create the input GPIO array until realize.)
376      */
377     qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL);
378     qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
379     qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI");
380 
381     /*
382      * We map various devices into the container MR at their architected
383      * addresses. In particular, we map everything corresponding to the
384      * "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff
385      * and includes the NVIC, the System Control Space (system registers),
386      * the systick timer, and for CPUs with the Security extension an NS
387      * banked version of all of these.
388      *
389      * The default behaviour for unimplemented registers/ranges
390      * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
391      * is to RAZ/WI for privileged access and BusFault for non-privileged
392      * access.
393      *
394      * The NVIC and System Control Space (SCS) starts at 0xe000e000
395      * and looks like this:
396      *  0x004 - ICTR
397      *  0x010 - 0xff - systick
398      *  0x100..0x7ec - NVIC
399      *  0x7f0..0xcff - Reserved
400      *  0xd00..0xd3c - SCS registers
401      *  0xd40..0xeff - Reserved or Not implemented
402      *  0xf00 - STIR
403      *
404      * Some registers within this space are banked between security states.
405      * In v8M there is a second range 0xe002e000..0xe002efff which is the
406      * NonSecure alias SCS; secure accesses to this behave like NS accesses
407      * to the main SCS range, and non-secure accesses (including when
408      * the security extension is not implemented) are RAZ/WI.
409      * Note that both the main SCS range and the alias range are defined
410      * to be exempt from memory attribution (R_BLJT) and so the memory
411      * transaction attribute always matches the current CPU security
412      * state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops
413      * wrappers we change attrs.secure to indicate the NS access; so
414      * generally code determining which banked register to use should
415      * use attrs.secure; code determining actual behaviour of the system
416      * should use env->v7m.secure.
417      *
418      * Within the PPB space, some MRs overlap, and the priority
419      * of overlapping regions is:
420      *  - default region (for RAZ/WI and BusFault) : -1
421      *  - system register regions (provided by the NVIC) : 0
422      *  - systick : 1
423      * This is because the systick device is a small block of registers
424      * in the middle of the other system control registers.
425      */
426 
427     memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
428                           "nvic-default", 0x100000);
429     memory_region_add_subregion_overlap(&s->container, 0xe0000000,
430                                         &s->defaultmem, -1);
431 
432     /* Wire the NVIC up to the CPU */
433     sbd = SYS_BUS_DEVICE(&s->nvic);
434     sysbus_connect_irq(sbd, 0,
435                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
436 
437     memory_region_add_subregion(&s->container, 0xe000e000,
438                                 sysbus_mmio_get_region(sbd, 0));
439     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
440         /* Create the NS alias region for the NVIC sysregs */
441         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
442                               &v7m_sysreg_ns_ops,
443                               sysbus_mmio_get_region(sbd, 0),
444                               "nvic_sysregs_ns", 0x1000);
445         memory_region_add_subregion(&s->container, 0xe002e000,
446                                     &s->sysreg_ns_mem);
447     }
448 
449     /*
450      * Create and map the systick devices. Note that we only connect
451      * refclk if it has been connected to us; otherwise the systick
452      * device gets the wrong answer for clock_has_source(refclk), because
453      * it has an immediate source (the ARMv7M's clock object) but not
454      * an ultimate source, and then it won't correctly auto-select the
455      * CPU clock as its only possible clock source.
456      */
457     if (clock_has_source(s->refclk)) {
458         qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk",
459                               s->refclk);
460     }
461     qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk);
462     if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
463         return;
464     }
465     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
466                        qdev_get_gpio_in_named(DEVICE(&s->nvic),
467                                               "systick-trigger", M_REG_NS));
468 
469     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
470         /*
471          * We couldn't init the secure systick device in instance_init
472          * as we didn't know then if the CPU had the security extensions;
473          * so we have to do it here.
474          */
475         object_initialize_child(OBJECT(dev), "systick-reg-s",
476                                 &s->systick[M_REG_S], TYPE_SYSTICK);
477         if (clock_has_source(s->refclk)) {
478             qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk",
479                                   s->refclk);
480         }
481         qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk",
482                               s->cpuclk);
483 
484         if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
485             return;
486         }
487         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
488                            qdev_get_gpio_in_named(DEVICE(&s->nvic),
489                                                   "systick-trigger", M_REG_S));
490     }
491 
492     memory_region_init_io(&s->systickmem, OBJECT(s),
493                           &v7m_systick_ops, s,
494                           "v7m_systick", 0xe0);
495 
496     memory_region_add_subregion_overlap(&s->container, 0xe000e010,
497                                         &s->systickmem, 1);
498     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
499         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
500                               &v7m_sysreg_ns_ops, &s->systickmem,
501                               "v7m_systick_ns", 0xe0);
502         memory_region_add_subregion_overlap(&s->container, 0xe002e010,
503                                             &s->systick_ns_mem, 1);
504     }
505 
506     /* If the CPU has RAS support, create the RAS register block */
507     if (cpu_isar_feature(aa32_ras, s->cpu)) {
508         object_initialize_child(OBJECT(dev), "armv7m-ras",
509                                 &s->ras, TYPE_ARMV7M_RAS);
510         sbd = SYS_BUS_DEVICE(&s->ras);
511         if (!sysbus_realize(sbd, errp)) {
512             return;
513         }
514         memory_region_add_subregion_overlap(&s->container, 0xe0005000,
515                                             sysbus_mmio_get_region(sbd, 0), 1);
516     }
517 
518     for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
519         if (s->enable_bitband) {
520             Object *obj = OBJECT(&s->bitband[i]);
521             sbd = SYS_BUS_DEVICE(&s->bitband[i]);
522 
523             if (!object_property_set_int(obj, "base",
524                                          bitband_input_addr[i], errp)) {
525                 return;
526             }
527             object_property_set_link(obj, "source-memory",
528                                      OBJECT(s->board_memory), &error_abort);
529             if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
530                 return;
531             }
532 
533             memory_region_add_subregion(&s->container, bitband_output_addr[i],
534                                         sysbus_mmio_get_region(sbd, 0));
535         } else {
536             object_unparent(OBJECT(&s->bitband[i]));
537         }
538     }
539 }
540 
541 static Property armv7m_properties[] = {
542     DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type),
543     DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION,
544                      MemoryRegion *),
545     DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
546     DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0),
547     DEFINE_PROP_UINT32("init-nsvtor", ARMv7MState, init_nsvtor, 0),
548     DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false),
549     DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off,
550                      false),
551     DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true),
552     DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true),
553     DEFINE_PROP_UINT32("mpu-ns-regions", ARMv7MState, mpu_ns_regions, UINT_MAX),
554     DEFINE_PROP_UINT32("mpu-s-regions", ARMv7MState, mpu_s_regions, UINT_MAX),
555     DEFINE_PROP_END_OF_LIST(),
556 };
557 
558 static const VMStateDescription vmstate_armv7m = {
559     .name = "armv7m",
560     .version_id = 1,
561     .minimum_version_id = 1,
562     .fields = (VMStateField[]) {
563         VMSTATE_CLOCK(refclk, ARMv7MState),
564         VMSTATE_CLOCK(cpuclk, ARMv7MState),
565         VMSTATE_END_OF_LIST()
566     }
567 };
568 
569 static void armv7m_class_init(ObjectClass *klass, void *data)
570 {
571     DeviceClass *dc = DEVICE_CLASS(klass);
572 
573     dc->realize = armv7m_realize;
574     dc->vmsd = &vmstate_armv7m;
575     device_class_set_props(dc, armv7m_properties);
576 }
577 
578 static const TypeInfo armv7m_info = {
579     .name = TYPE_ARMV7M,
580     .parent = TYPE_SYS_BUS_DEVICE,
581     .instance_size = sizeof(ARMv7MState),
582     .instance_init = armv7m_instance_init,
583     .class_init = armv7m_class_init,
584 };
585 
586 static void armv7m_reset(void *opaque)
587 {
588     ARMCPU *cpu = opaque;
589 
590     cpu_reset(CPU(cpu));
591 }
592 
593 void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename,
594                         hwaddr mem_base, int mem_size)
595 {
596     ssize_t image_size;
597     uint64_t entry;
598     AddressSpace *as;
599     int asidx;
600     CPUState *cs = CPU(cpu);
601 
602     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
603         asidx = ARMASIdx_S;
604     } else {
605         asidx = ARMASIdx_NS;
606     }
607     as = cpu_get_address_space(cs, asidx);
608 
609     if (kernel_filename) {
610         image_size = load_elf_as(kernel_filename, NULL, NULL, NULL,
611                                  &entry, NULL, NULL,
612                                  NULL, 0, EM_ARM, 1, 0, as);
613         if (image_size < 0) {
614             image_size = load_image_targphys_as(kernel_filename, mem_base,
615                                                 mem_size, as);
616         }
617         if (image_size < 0) {
618             error_report("Could not load kernel '%s'", kernel_filename);
619             exit(1);
620         }
621     }
622 
623     /* CPU objects (unlike devices) are not automatically reset on system
624      * reset, so we must always register a handler to do so. Unlike
625      * A-profile CPUs, we don't need to do anything special in the
626      * handler to arrange that it starts correctly.
627      * This is arguably the wrong place to do this, but it matches the
628      * way A-profile does it. Note that this means that every M profile
629      * board must call this function!
630      */
631     qemu_register_reset(armv7m_reset, cpu);
632 }
633 
634 static Property bitband_properties[] = {
635     DEFINE_PROP_UINT32("base", BitBandState, base, 0),
636     DEFINE_PROP_LINK("source-memory", BitBandState, source_memory,
637                      TYPE_MEMORY_REGION, MemoryRegion *),
638     DEFINE_PROP_END_OF_LIST(),
639 };
640 
641 static void bitband_class_init(ObjectClass *klass, void *data)
642 {
643     DeviceClass *dc = DEVICE_CLASS(klass);
644 
645     dc->realize = bitband_realize;
646     device_class_set_props(dc, bitband_properties);
647 }
648 
649 static const TypeInfo bitband_info = {
650     .name          = TYPE_BITBAND,
651     .parent        = TYPE_SYS_BUS_DEVICE,
652     .instance_size = sizeof(BitBandState),
653     .instance_init = bitband_init,
654     .class_init    = bitband_class_init,
655 };
656 
657 static void armv7m_register_types(void)
658 {
659     type_register_static(&bitband_info);
660     type_register_static(&armv7m_info);
661 }
662 
663 type_init(armv7m_register_types)
664