1 /* 2 * Arm SSE (Subsystems for Embedded): IoTKit 3 * 4 * Copyright (c) 2018 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 or 9 * (at your option) any later version. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/log.h" 14 #include "qemu/module.h" 15 #include "qemu/bitops.h" 16 #include "qapi/error.h" 17 #include "trace.h" 18 #include "hw/sysbus.h" 19 #include "migration/vmstate.h" 20 #include "hw/registerfields.h" 21 #include "hw/arm/armsse.h" 22 #include "hw/arm/boot.h" 23 #include "hw/irq.h" 24 25 /* Format of the System Information block SYS_CONFIG register */ 26 typedef enum SysConfigFormat { 27 IoTKitFormat, 28 SSE200Format, 29 } SysConfigFormat; 30 31 struct ARMSSEInfo { 32 const char *name; 33 int sram_banks; 34 int num_cpus; 35 uint32_t sys_version; 36 uint32_t cpuwait_rst; 37 SysConfigFormat sys_config_format; 38 bool has_mhus; 39 bool has_ppus; 40 bool has_cachectrl; 41 bool has_cpusecctrl; 42 bool has_cpuid; 43 Property *props; 44 }; 45 46 static Property iotkit_properties[] = { 47 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, 48 MemoryRegion *), 49 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), 50 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0), 51 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), 52 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), 53 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true), 54 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true), 55 DEFINE_PROP_END_OF_LIST() 56 }; 57 58 static Property armsse_properties[] = { 59 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, 60 MemoryRegion *), 61 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), 62 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0), 63 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), 64 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), 65 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false), 66 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false), 67 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true), 68 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true), 69 DEFINE_PROP_END_OF_LIST() 70 }; 71 72 static const ARMSSEInfo armsse_variants[] = { 73 { 74 .name = TYPE_IOTKIT, 75 .sram_banks = 1, 76 .num_cpus = 1, 77 .sys_version = 0x41743, 78 .cpuwait_rst = 0, 79 .sys_config_format = IoTKitFormat, 80 .has_mhus = false, 81 .has_ppus = false, 82 .has_cachectrl = false, 83 .has_cpusecctrl = false, 84 .has_cpuid = false, 85 .props = iotkit_properties, 86 }, 87 { 88 .name = TYPE_SSE200, 89 .sram_banks = 4, 90 .num_cpus = 2, 91 .sys_version = 0x22041743, 92 .cpuwait_rst = 2, 93 .sys_config_format = SSE200Format, 94 .has_mhus = true, 95 .has_ppus = true, 96 .has_cachectrl = true, 97 .has_cpusecctrl = true, 98 .has_cpuid = true, 99 .props = armsse_properties, 100 }, 101 }; 102 103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info) 104 { 105 /* Return the SYS_CONFIG value for this SSE */ 106 uint32_t sys_config; 107 108 switch (info->sys_config_format) { 109 case IoTKitFormat: 110 sys_config = 0; 111 sys_config = deposit32(sys_config, 0, 4, info->sram_banks); 112 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12); 113 break; 114 case SSE200Format: 115 sys_config = 0; 116 sys_config = deposit32(sys_config, 0, 4, info->sram_banks); 117 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width); 118 sys_config = deposit32(sys_config, 24, 4, 2); 119 if (info->num_cpus > 1) { 120 sys_config = deposit32(sys_config, 10, 1, 1); 121 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1); 122 sys_config = deposit32(sys_config, 28, 4, 2); 123 } 124 break; 125 default: 126 g_assert_not_reached(); 127 } 128 return sys_config; 129 } 130 131 /* Clock frequency in HZ of the 32KHz "slow clock" */ 132 #define S32KCLK (32 * 1000) 133 134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */ 135 static bool irq_is_common[32] = { 136 [0 ... 5] = true, 137 /* 6, 7: per-CPU MHU interrupts */ 138 [8 ... 12] = true, 139 /* 13: per-CPU icache interrupt */ 140 /* 14: reserved */ 141 [15 ... 20] = true, 142 /* 21: reserved */ 143 [22 ... 26] = true, 144 /* 27: reserved */ 145 /* 28, 29: per-CPU CTI interrupts */ 146 /* 30, 31: reserved */ 147 }; 148 149 /* 150 * Create an alias region in @container of @size bytes starting at @base 151 * which mirrors the memory starting at @orig. 152 */ 153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container, 154 const char *name, hwaddr base, hwaddr size, hwaddr orig) 155 { 156 memory_region_init_alias(mr, NULL, name, container, orig, size); 157 /* The alias is even lower priority than unimplemented_device regions */ 158 memory_region_add_subregion_overlap(container, base, mr, -1500); 159 } 160 161 static void irq_status_forwarder(void *opaque, int n, int level) 162 { 163 qemu_irq destirq = opaque; 164 165 qemu_set_irq(destirq, level); 166 } 167 168 static void nsccfg_handler(void *opaque, int n, int level) 169 { 170 ARMSSE *s = ARMSSE(opaque); 171 172 s->nsccfg = level; 173 } 174 175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum) 176 { 177 /* Each of the 4 AHB and 4 APB PPCs that might be present in a 178 * system using the ARMSSE has a collection of control lines which 179 * are provided by the security controller and which we want to 180 * expose as control lines on the ARMSSE device itself, so the 181 * code using the ARMSSE can wire them up to the PPCs. 182 */ 183 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum]; 184 DeviceState *armssedev = DEVICE(s); 185 DeviceState *dev_secctl = DEVICE(&s->secctl); 186 DeviceState *dev_splitter = DEVICE(splitter); 187 char *name; 188 189 name = g_strdup_printf("%s_nonsec", ppcname); 190 qdev_pass_gpios(dev_secctl, armssedev, name); 191 g_free(name); 192 name = g_strdup_printf("%s_ap", ppcname); 193 qdev_pass_gpios(dev_secctl, armssedev, name); 194 g_free(name); 195 name = g_strdup_printf("%s_irq_enable", ppcname); 196 qdev_pass_gpios(dev_secctl, armssedev, name); 197 g_free(name); 198 name = g_strdup_printf("%s_irq_clear", ppcname); 199 qdev_pass_gpios(dev_secctl, armssedev, name); 200 g_free(name); 201 202 /* irq_status is a little more tricky, because we need to 203 * split it so we can send it both to the security controller 204 * and to our OR gate for the NVIC interrupt line. 205 * Connect up the splitter's outputs, and create a GPIO input 206 * which will pass the line state to the input splitter. 207 */ 208 name = g_strdup_printf("%s_irq_status", ppcname); 209 qdev_connect_gpio_out(dev_splitter, 0, 210 qdev_get_gpio_in_named(dev_secctl, 211 name, 0)); 212 qdev_connect_gpio_out(dev_splitter, 1, 213 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum)); 214 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0); 215 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder, 216 s->irq_status_in[ppcnum], name, 1); 217 g_free(name); 218 } 219 220 static void armsse_forward_sec_resp_cfg(ARMSSE *s) 221 { 222 /* Forward the 3rd output from the splitter device as a 223 * named GPIO output of the armsse object. 224 */ 225 DeviceState *dev = DEVICE(s); 226 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter); 227 228 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1); 229 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder, 230 s->sec_resp_cfg, 1); 231 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); 232 } 233 234 static void armsse_init(Object *obj) 235 { 236 ARMSSE *s = ARMSSE(obj); 237 ARMSSEClass *asc = ARMSSE_GET_CLASS(obj); 238 const ARMSSEInfo *info = asc->info; 239 int i; 240 241 assert(info->sram_banks <= MAX_SRAM_BANKS); 242 assert(info->num_cpus <= SSE_MAX_CPUS); 243 244 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX); 245 246 for (i = 0; i < info->num_cpus; i++) { 247 /* 248 * We put each CPU in its own cluster as they are logically 249 * distinct and may be configured differently. 250 */ 251 char *name; 252 253 name = g_strdup_printf("cluster%d", i); 254 object_initialize_child(obj, name, &s->cluster[i], 255 sizeof(s->cluster[i]), TYPE_CPU_CLUSTER, 256 &error_abort, NULL); 257 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i); 258 g_free(name); 259 260 name = g_strdup_printf("armv7m%d", i); 261 sysbus_init_child_obj(OBJECT(&s->cluster[i]), name, 262 &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M); 263 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", 264 ARM_CPU_TYPE_NAME("cortex-m33")); 265 g_free(name); 266 name = g_strdup_printf("arm-sse-cpu-container%d", i); 267 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX); 268 g_free(name); 269 if (i > 0) { 270 name = g_strdup_printf("arm-sse-container-alias%d", i); 271 memory_region_init_alias(&s->container_alias[i - 1], obj, 272 name, &s->container, 0, UINT64_MAX); 273 g_free(name); 274 } 275 } 276 277 sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl), 278 TYPE_IOTKIT_SECCTL); 279 sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0), 280 TYPE_TZ_PPC); 281 sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1), 282 TYPE_TZ_PPC); 283 for (i = 0; i < info->sram_banks; i++) { 284 char *name = g_strdup_printf("mpc%d", i); 285 sysbus_init_child_obj(obj, name, &s->mpc[i], 286 sizeof(s->mpc[i]), TYPE_TZ_MPC); 287 g_free(name); 288 } 289 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate, 290 sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ, 291 &error_abort, NULL); 292 293 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { 294 char *name = g_strdup_printf("mpc-irq-splitter-%d", i); 295 SplitIRQ *splitter = &s->mpc_irq_splitter[i]; 296 297 object_initialize_child(obj, name, splitter, sizeof(*splitter), 298 TYPE_SPLIT_IRQ, &error_abort, NULL); 299 g_free(name); 300 } 301 sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0), 302 TYPE_CMSDK_APB_TIMER); 303 sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1), 304 TYPE_CMSDK_APB_TIMER); 305 sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer), 306 TYPE_CMSDK_APB_TIMER); 307 sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer), 308 TYPE_CMSDK_APB_DUALTIMER); 309 sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog, 310 sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG); 311 sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog, 312 sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG); 313 sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog, 314 sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG); 315 sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl, 316 sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL); 317 sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo, 318 sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO); 319 if (info->has_mhus) { 320 sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]), 321 TYPE_ARMSSE_MHU); 322 sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]), 323 TYPE_ARMSSE_MHU); 324 } 325 if (info->has_ppus) { 326 for (i = 0; i < info->num_cpus; i++) { 327 char *name = g_strdup_printf("CPU%dCORE_PPU", i); 328 int ppuidx = CPU0CORE_PPU + i; 329 330 sysbus_init_child_obj(obj, name, &s->ppu[ppuidx], 331 sizeof(s->ppu[ppuidx]), 332 TYPE_UNIMPLEMENTED_DEVICE); 333 g_free(name); 334 } 335 sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU], 336 sizeof(s->ppu[DBG_PPU]), 337 TYPE_UNIMPLEMENTED_DEVICE); 338 for (i = 0; i < info->sram_banks; i++) { 339 char *name = g_strdup_printf("RAM%d_PPU", i); 340 int ppuidx = RAM0_PPU + i; 341 342 sysbus_init_child_obj(obj, name, &s->ppu[ppuidx], 343 sizeof(s->ppu[ppuidx]), 344 TYPE_UNIMPLEMENTED_DEVICE); 345 g_free(name); 346 } 347 } 348 if (info->has_cachectrl) { 349 for (i = 0; i < info->num_cpus; i++) { 350 char *name = g_strdup_printf("cachectrl%d", i); 351 352 sysbus_init_child_obj(obj, name, &s->cachectrl[i], 353 sizeof(s->cachectrl[i]), 354 TYPE_UNIMPLEMENTED_DEVICE); 355 g_free(name); 356 } 357 } 358 if (info->has_cpusecctrl) { 359 for (i = 0; i < info->num_cpus; i++) { 360 char *name = g_strdup_printf("cpusecctrl%d", i); 361 362 sysbus_init_child_obj(obj, name, &s->cpusecctrl[i], 363 sizeof(s->cpusecctrl[i]), 364 TYPE_UNIMPLEMENTED_DEVICE); 365 g_free(name); 366 } 367 } 368 if (info->has_cpuid) { 369 for (i = 0; i < info->num_cpus; i++) { 370 char *name = g_strdup_printf("cpuid%d", i); 371 372 sysbus_init_child_obj(obj, name, &s->cpuid[i], 373 sizeof(s->cpuid[i]), 374 TYPE_ARMSSE_CPUID); 375 g_free(name); 376 } 377 } 378 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, 379 sizeof(s->nmi_orgate), TYPE_OR_IRQ, 380 &error_abort, NULL); 381 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate, 382 sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ, 383 &error_abort, NULL); 384 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter, 385 sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ, 386 &error_abort, NULL); 387 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { 388 char *name = g_strdup_printf("ppc-irq-splitter-%d", i); 389 SplitIRQ *splitter = &s->ppc_irq_splitter[i]; 390 391 object_initialize_child(obj, name, splitter, sizeof(*splitter), 392 TYPE_SPLIT_IRQ, &error_abort, NULL); 393 g_free(name); 394 } 395 if (info->num_cpus > 1) { 396 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { 397 if (irq_is_common[i]) { 398 char *name = g_strdup_printf("cpu-irq-splitter%d", i); 399 SplitIRQ *splitter = &s->cpu_irq_splitter[i]; 400 401 object_initialize_child(obj, name, splitter, sizeof(*splitter), 402 TYPE_SPLIT_IRQ, &error_abort, NULL); 403 g_free(name); 404 } 405 } 406 } 407 } 408 409 static void armsse_exp_irq(void *opaque, int n, int level) 410 { 411 qemu_irq *irqarray = opaque; 412 413 qemu_set_irq(irqarray[n], level); 414 } 415 416 static void armsse_mpcexp_status(void *opaque, int n, int level) 417 { 418 ARMSSE *s = ARMSSE(opaque); 419 qemu_set_irq(s->mpcexp_status_in[n], level); 420 } 421 422 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno) 423 { 424 /* 425 * Return a qemu_irq which can be used to signal IRQ n to 426 * all CPUs in the SSE. 427 */ 428 ARMSSEClass *asc = ARMSSE_GET_CLASS(s); 429 const ARMSSEInfo *info = asc->info; 430 431 assert(irq_is_common[irqno]); 432 433 if (info->num_cpus == 1) { 434 /* Only one CPU -- just connect directly to it */ 435 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno); 436 } else { 437 /* Connect to the splitter which feeds all CPUs */ 438 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0); 439 } 440 } 441 442 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr) 443 { 444 /* Map a PPU unimplemented device stub */ 445 DeviceState *dev = DEVICE(&s->ppu[ppuidx]); 446 447 qdev_prop_set_string(dev, "name", name); 448 qdev_prop_set_uint64(dev, "size", 0x1000); 449 qdev_init_nofail(dev); 450 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr); 451 } 452 453 static void armsse_realize(DeviceState *dev, Error **errp) 454 { 455 ARMSSE *s = ARMSSE(dev); 456 ARMSSEClass *asc = ARMSSE_GET_CLASS(dev); 457 const ARMSSEInfo *info = asc->info; 458 int i; 459 MemoryRegion *mr; 460 Error *err = NULL; 461 SysBusDevice *sbd_apb_ppc0; 462 SysBusDevice *sbd_secctl; 463 DeviceState *dev_apb_ppc0; 464 DeviceState *dev_apb_ppc1; 465 DeviceState *dev_secctl; 466 DeviceState *dev_splitter; 467 uint32_t addr_width_max; 468 469 if (!s->board_memory) { 470 error_setg(errp, "memory property was not set"); 471 return; 472 } 473 474 if (!s->mainclk_frq) { 475 error_setg(errp, "MAINCLK property was not set"); 476 return; 477 } 478 479 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */ 480 assert(is_power_of_2(info->sram_banks)); 481 addr_width_max = 24 - ctz32(info->sram_banks); 482 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) { 483 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d", 484 addr_width_max); 485 return; 486 } 487 488 /* Handling of which devices should be available only to secure 489 * code is usually done differently for M profile than for A profile. 490 * Instead of putting some devices only into the secure address space, 491 * devices exist in both address spaces but with hard-wired security 492 * permissions that will cause the CPU to fault for non-secure accesses. 493 * 494 * The ARMSSE has an IDAU (Implementation Defined Access Unit), 495 * which specifies hard-wired security permissions for different 496 * areas of the physical address space. For the ARMSSE IDAU, the 497 * top 4 bits of the physical address are the IDAU region ID, and 498 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS 499 * region, otherwise it is an S region. 500 * 501 * The various devices and RAMs are generally all mapped twice, 502 * once into a region that the IDAU defines as secure and once 503 * into a non-secure region. They sit behind either a Memory 504 * Protection Controller (for RAM) or a Peripheral Protection 505 * Controller (for devices), which allow a more fine grained 506 * configuration of whether non-secure accesses are permitted. 507 * 508 * (The other place that guest software can configure security 509 * permissions is in the architected SAU (Security Attribution 510 * Unit), which is entirely inside the CPU. The IDAU can upgrade 511 * the security attributes for a region to more restrictive than 512 * the SAU specifies, but cannot downgrade them.) 513 * 514 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff 515 * 0x20000000..0x2007ffff 32KB FPGA block RAM 516 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff 517 * 0x40000000..0x4000ffff base peripheral region 1 518 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE) 519 * 0x40020000..0x4002ffff system control element peripherals 520 * 0x40080000..0x400fffff base peripheral region 2 521 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff 522 */ 523 524 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2); 525 526 for (i = 0; i < info->num_cpus; i++) { 527 DeviceState *cpudev = DEVICE(&s->armv7m[i]); 528 Object *cpuobj = OBJECT(&s->armv7m[i]); 529 int j; 530 char *gpioname; 531 532 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32); 533 /* 534 * In real hardware the initial Secure VTOR is set from the INITSVTOR* 535 * registers in the IoT Kit System Control Register block. In QEMU 536 * we set the initial value here, and also the reset value of the 537 * sysctl register, from this object's QOM init-svtor property. 538 * If the guest changes the INITSVTOR* registers at runtime then the 539 * code in iotkit-sysctl.c will update the CPU init-svtor property 540 * (which will then take effect on the next CPU warm-reset). 541 * 542 * Note that typically a board using the SSE-200 will have a system 543 * control processor whose boot firmware initializes the INITSVTOR* 544 * registers before powering up the CPUs. QEMU doesn't emulate 545 * the control processor, so instead we behave in the way that the 546 * firmware does: the initial value should be set by the board code 547 * (using the init-svtor property on the ARMSSE object) to match 548 * whatever its firmware does. 549 */ 550 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor); 551 /* 552 * CPUs start powered down if the corresponding bit in the CPUWAIT 553 * register is 1. In real hardware the CPUWAIT register reset value is 554 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and 555 * CPUWAIT1_RST parameters), but since all the boards we care about 556 * start CPU0 and leave CPU1 powered off, we hard-code that in 557 * info->cpuwait_rst for now. We can add QOM properties for this 558 * later if necessary. 559 */ 560 if (extract32(info->cpuwait_rst, i, 1)) { 561 object_property_set_bool(cpuobj, true, "start-powered-off", &err); 562 if (err) { 563 error_propagate(errp, err); 564 return; 565 } 566 } 567 if (!s->cpu_fpu[i]) { 568 object_property_set_bool(cpuobj, false, "vfp", &err); 569 if (err) { 570 error_propagate(errp, err); 571 return; 572 } 573 } 574 if (!s->cpu_dsp[i]) { 575 object_property_set_bool(cpuobj, false, "dsp", &err); 576 if (err) { 577 error_propagate(errp, err); 578 return; 579 } 580 } 581 582 if (i > 0) { 583 memory_region_add_subregion_overlap(&s->cpu_container[i], 0, 584 &s->container_alias[i - 1], -1); 585 } else { 586 memory_region_add_subregion_overlap(&s->cpu_container[i], 0, 587 &s->container, -1); 588 } 589 object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]), 590 "memory", &err); 591 if (err) { 592 error_propagate(errp, err); 593 return; 594 } 595 object_property_set_link(cpuobj, OBJECT(s), "idau", &err); 596 if (err) { 597 error_propagate(errp, err); 598 return; 599 } 600 object_property_set_bool(cpuobj, true, "realized", &err); 601 if (err) { 602 error_propagate(errp, err); 603 return; 604 } 605 /* 606 * The cluster must be realized after the armv7m container, as 607 * the container's CPU object is only created on realize, and the 608 * CPU must exist and have been parented into the cluster before 609 * the cluster is realized. 610 */ 611 object_property_set_bool(OBJECT(&s->cluster[i]), 612 true, "realized", &err); 613 if (err) { 614 error_propagate(errp, err); 615 return; 616 } 617 618 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */ 619 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq); 620 for (j = 0; j < s->exp_numirq; j++) { 621 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32); 622 } 623 if (i == 0) { 624 gpioname = g_strdup("EXP_IRQ"); 625 } else { 626 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i); 627 } 628 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq, 629 s->exp_irqs[i], 630 gpioname, s->exp_numirq); 631 g_free(gpioname); 632 } 633 634 /* Wire up the splitters that connect common IRQs to all CPUs */ 635 if (info->num_cpus > 1) { 636 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { 637 if (irq_is_common[i]) { 638 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]); 639 DeviceState *devs = DEVICE(splitter); 640 int cpunum; 641 642 object_property_set_int(splitter, info->num_cpus, 643 "num-lines", &err); 644 if (err) { 645 error_propagate(errp, err); 646 return; 647 } 648 object_property_set_bool(splitter, true, "realized", &err); 649 if (err) { 650 error_propagate(errp, err); 651 return; 652 } 653 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { 654 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); 655 656 qdev_connect_gpio_out(devs, cpunum, 657 qdev_get_gpio_in(cpudev, i)); 658 } 659 } 660 } 661 } 662 663 /* Set up the big aliases first */ 664 make_alias(s, &s->alias1, &s->container, "alias 1", 665 0x10000000, 0x10000000, 0x00000000); 666 make_alias(s, &s->alias2, &s->container, 667 "alias 2", 0x30000000, 0x10000000, 0x20000000); 668 /* The 0x50000000..0x5fffffff region is not a pure alias: it has 669 * a few extra devices that only appear there (generally the 670 * control interfaces for the protection controllers). 671 * We implement this by mapping those devices over the top of this 672 * alias MR at a higher priority. Some of the devices in this range 673 * are per-CPU, so we must put this alias in the per-cpu containers. 674 */ 675 for (i = 0; i < info->num_cpus; i++) { 676 make_alias(s, &s->alias3[i], &s->cpu_container[i], 677 "alias 3", 0x50000000, 0x10000000, 0x40000000); 678 } 679 680 /* Security controller */ 681 object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err); 682 if (err) { 683 error_propagate(errp, err); 684 return; 685 } 686 sbd_secctl = SYS_BUS_DEVICE(&s->secctl); 687 dev_secctl = DEVICE(&s->secctl); 688 sysbus_mmio_map(sbd_secctl, 0, 0x50080000); 689 sysbus_mmio_map(sbd_secctl, 1, 0x40080000); 690 691 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1); 692 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in); 693 694 /* The sec_resp_cfg output from the security controller must be split into 695 * multiple lines, one for each of the PPCs within the ARMSSE and one 696 * that will be an output from the ARMSSE to the system. 697 */ 698 object_property_set_int(OBJECT(&s->sec_resp_splitter), 3, 699 "num-lines", &err); 700 if (err) { 701 error_propagate(errp, err); 702 return; 703 } 704 object_property_set_bool(OBJECT(&s->sec_resp_splitter), true, 705 "realized", &err); 706 if (err) { 707 error_propagate(errp, err); 708 return; 709 } 710 dev_splitter = DEVICE(&s->sec_resp_splitter); 711 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0, 712 qdev_get_gpio_in(dev_splitter, 0)); 713 714 /* Each SRAM bank lives behind its own Memory Protection Controller */ 715 for (i = 0; i < info->sram_banks; i++) { 716 char *ramname = g_strdup_printf("armsse.sram%d", i); 717 SysBusDevice *sbd_mpc; 718 uint32_t sram_bank_size = 1 << s->sram_addr_width; 719 720 memory_region_init_ram(&s->sram[i], NULL, ramname, 721 sram_bank_size, &err); 722 g_free(ramname); 723 if (err) { 724 error_propagate(errp, err); 725 return; 726 } 727 object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]), 728 "downstream", &err); 729 if (err) { 730 error_propagate(errp, err); 731 return; 732 } 733 object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err); 734 if (err) { 735 error_propagate(errp, err); 736 return; 737 } 738 /* Map the upstream end of the MPC into the right place... */ 739 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]); 740 memory_region_add_subregion(&s->container, 741 0x20000000 + i * sram_bank_size, 742 sysbus_mmio_get_region(sbd_mpc, 1)); 743 /* ...and its register interface */ 744 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000, 745 sysbus_mmio_get_region(sbd_mpc, 0)); 746 } 747 748 /* We must OR together lines from the MPC splitters to go to the NVIC */ 749 object_property_set_int(OBJECT(&s->mpc_irq_orgate), 750 IOTS_NUM_EXP_MPC + info->sram_banks, 751 "num-lines", &err); 752 if (err) { 753 error_propagate(errp, err); 754 return; 755 } 756 object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true, 757 "realized", &err); 758 if (err) { 759 error_propagate(errp, err); 760 return; 761 } 762 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0, 763 armsse_get_common_irq_in(s, 9)); 764 765 /* Devices behind APB PPC0: 766 * 0x40000000: timer0 767 * 0x40001000: timer1 768 * 0x40002000: dual timer 769 * 0x40003000: MHU0 (SSE-200 only) 770 * 0x40004000: MHU1 (SSE-200 only) 771 * We must configure and realize each downstream device and connect 772 * it to the appropriate PPC port; then we can realize the PPC and 773 * map its upstream ends to the right place in the container. 774 */ 775 qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq); 776 object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err); 777 if (err) { 778 error_propagate(errp, err); 779 return; 780 } 781 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0, 782 armsse_get_common_irq_in(s, 3)); 783 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0); 784 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err); 785 if (err) { 786 error_propagate(errp, err); 787 return; 788 } 789 790 qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq); 791 object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err); 792 if (err) { 793 error_propagate(errp, err); 794 return; 795 } 796 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0, 797 armsse_get_common_irq_in(s, 4)); 798 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0); 799 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err); 800 if (err) { 801 error_propagate(errp, err); 802 return; 803 } 804 805 806 qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq); 807 object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err); 808 if (err) { 809 error_propagate(errp, err); 810 return; 811 } 812 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0, 813 armsse_get_common_irq_in(s, 5)); 814 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0); 815 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err); 816 if (err) { 817 error_propagate(errp, err); 818 return; 819 } 820 821 if (info->has_mhus) { 822 /* 823 * An SSE-200 with only one CPU should have only one MHU created, 824 * with the region where the second MHU usually is being RAZ/WI. 825 * We don't implement that SSE-200 config; if we want to support 826 * it then this code needs to be enhanced to handle creating the 827 * RAZ/WI region instead of the second MHU. 828 */ 829 assert(info->num_cpus == ARRAY_SIZE(s->mhu)); 830 831 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) { 832 char *port; 833 int cpunum; 834 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]); 835 836 object_property_set_bool(OBJECT(&s->mhu[i]), true, 837 "realized", &err); 838 if (err) { 839 error_propagate(errp, err); 840 return; 841 } 842 port = g_strdup_printf("port[%d]", i + 3); 843 mr = sysbus_mmio_get_region(mhu_sbd, 0); 844 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), 845 port, &err); 846 g_free(port); 847 if (err) { 848 error_propagate(errp, err); 849 return; 850 } 851 852 /* 853 * Each MHU has an irq line for each CPU: 854 * MHU 0 irq line 0 -> CPU 0 IRQ 6 855 * MHU 0 irq line 1 -> CPU 1 IRQ 6 856 * MHU 1 irq line 0 -> CPU 0 IRQ 7 857 * MHU 1 irq line 1 -> CPU 1 IRQ 7 858 */ 859 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { 860 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); 861 862 sysbus_connect_irq(mhu_sbd, cpunum, 863 qdev_get_gpio_in(cpudev, 6 + i)); 864 } 865 } 866 } 867 868 object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err); 869 if (err) { 870 error_propagate(errp, err); 871 return; 872 } 873 874 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0); 875 dev_apb_ppc0 = DEVICE(&s->apb_ppc0); 876 877 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0); 878 memory_region_add_subregion(&s->container, 0x40000000, mr); 879 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1); 880 memory_region_add_subregion(&s->container, 0x40001000, mr); 881 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2); 882 memory_region_add_subregion(&s->container, 0x40002000, mr); 883 if (info->has_mhus) { 884 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3); 885 memory_region_add_subregion(&s->container, 0x40003000, mr); 886 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4); 887 memory_region_add_subregion(&s->container, 0x40004000, mr); 888 } 889 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) { 890 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i, 891 qdev_get_gpio_in_named(dev_apb_ppc0, 892 "cfg_nonsec", i)); 893 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i, 894 qdev_get_gpio_in_named(dev_apb_ppc0, 895 "cfg_ap", i)); 896 } 897 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0, 898 qdev_get_gpio_in_named(dev_apb_ppc0, 899 "irq_enable", 0)); 900 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0, 901 qdev_get_gpio_in_named(dev_apb_ppc0, 902 "irq_clear", 0)); 903 qdev_connect_gpio_out(dev_splitter, 0, 904 qdev_get_gpio_in_named(dev_apb_ppc0, 905 "cfg_sec_resp", 0)); 906 907 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external 908 * ones) are sent individually to the security controller, and also 909 * ORed together to give a single combined PPC interrupt to the NVIC. 910 */ 911 object_property_set_int(OBJECT(&s->ppc_irq_orgate), 912 NUM_PPCS, "num-lines", &err); 913 if (err) { 914 error_propagate(errp, err); 915 return; 916 } 917 object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true, 918 "realized", &err); 919 if (err) { 920 error_propagate(errp, err); 921 return; 922 } 923 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0, 924 armsse_get_common_irq_in(s, 10)); 925 926 /* 927 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias): 928 * private per-CPU region (all these devices are SSE-200 only): 929 * 0x50010000: L1 icache control registers 930 * 0x50011000: CPUSECCTRL (CPU local security control registers) 931 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block 932 */ 933 if (info->has_cachectrl) { 934 for (i = 0; i < info->num_cpus; i++) { 935 char *name = g_strdup_printf("cachectrl%d", i); 936 MemoryRegion *mr; 937 938 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name); 939 g_free(name); 940 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000); 941 object_property_set_bool(OBJECT(&s->cachectrl[i]), true, 942 "realized", &err); 943 if (err) { 944 error_propagate(errp, err); 945 return; 946 } 947 948 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0); 949 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr); 950 } 951 } 952 if (info->has_cpusecctrl) { 953 for (i = 0; i < info->num_cpus; i++) { 954 char *name = g_strdup_printf("CPUSECCTRL%d", i); 955 MemoryRegion *mr; 956 957 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name); 958 g_free(name); 959 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000); 960 object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true, 961 "realized", &err); 962 if (err) { 963 error_propagate(errp, err); 964 return; 965 } 966 967 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0); 968 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr); 969 } 970 } 971 if (info->has_cpuid) { 972 for (i = 0; i < info->num_cpus; i++) { 973 MemoryRegion *mr; 974 975 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i); 976 object_property_set_bool(OBJECT(&s->cpuid[i]), true, 977 "realized", &err); 978 if (err) { 979 error_propagate(errp, err); 980 return; 981 } 982 983 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0); 984 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr); 985 } 986 } 987 988 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */ 989 /* Devices behind APB PPC1: 990 * 0x4002f000: S32K timer 991 */ 992 qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK); 993 object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err); 994 if (err) { 995 error_propagate(errp, err); 996 return; 997 } 998 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0, 999 armsse_get_common_irq_in(s, 2)); 1000 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0); 1001 object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err); 1002 if (err) { 1003 error_propagate(errp, err); 1004 return; 1005 } 1006 1007 object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err); 1008 if (err) { 1009 error_propagate(errp, err); 1010 return; 1011 } 1012 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0); 1013 memory_region_add_subregion(&s->container, 0x4002f000, mr); 1014 1015 dev_apb_ppc1 = DEVICE(&s->apb_ppc1); 1016 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0, 1017 qdev_get_gpio_in_named(dev_apb_ppc1, 1018 "cfg_nonsec", 0)); 1019 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0, 1020 qdev_get_gpio_in_named(dev_apb_ppc1, 1021 "cfg_ap", 0)); 1022 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0, 1023 qdev_get_gpio_in_named(dev_apb_ppc1, 1024 "irq_enable", 0)); 1025 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0, 1026 qdev_get_gpio_in_named(dev_apb_ppc1, 1027 "irq_clear", 0)); 1028 qdev_connect_gpio_out(dev_splitter, 1, 1029 qdev_get_gpio_in_named(dev_apb_ppc1, 1030 "cfg_sec_resp", 0)); 1031 1032 object_property_set_int(OBJECT(&s->sysinfo), info->sys_version, 1033 "SYS_VERSION", &err); 1034 if (err) { 1035 error_propagate(errp, err); 1036 return; 1037 } 1038 object_property_set_int(OBJECT(&s->sysinfo), 1039 armsse_sys_config_value(s, info), 1040 "SYS_CONFIG", &err); 1041 if (err) { 1042 error_propagate(errp, err); 1043 return; 1044 } 1045 object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err); 1046 if (err) { 1047 error_propagate(errp, err); 1048 return; 1049 } 1050 /* System information registers */ 1051 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000); 1052 /* System control registers */ 1053 object_property_set_int(OBJECT(&s->sysctl), info->sys_version, 1054 "SYS_VERSION", &err); 1055 object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst, 1056 "CPUWAIT_RST", &err); 1057 object_property_set_int(OBJECT(&s->sysctl), s->init_svtor, 1058 "INITSVTOR0_RST", &err); 1059 object_property_set_int(OBJECT(&s->sysctl), s->init_svtor, 1060 "INITSVTOR1_RST", &err); 1061 object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err); 1062 if (err) { 1063 error_propagate(errp, err); 1064 return; 1065 } 1066 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000); 1067 1068 if (info->has_ppus) { 1069 /* CPUnCORE_PPU for each CPU */ 1070 for (i = 0; i < info->num_cpus; i++) { 1071 char *name = g_strdup_printf("CPU%dCORE_PPU", i); 1072 1073 map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000); 1074 /* 1075 * We don't support CPU debug so don't create the 1076 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000. 1077 */ 1078 g_free(name); 1079 } 1080 map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000); 1081 1082 for (i = 0; i < info->sram_banks; i++) { 1083 char *name = g_strdup_printf("RAM%d_PPU", i); 1084 1085 map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000); 1086 g_free(name); 1087 } 1088 } 1089 1090 /* This OR gate wires together outputs from the secure watchdogs to NMI */ 1091 object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err); 1092 if (err) { 1093 error_propagate(errp, err); 1094 return; 1095 } 1096 object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err); 1097 if (err) { 1098 error_propagate(errp, err); 1099 return; 1100 } 1101 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0, 1102 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0)); 1103 1104 qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK); 1105 object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err); 1106 if (err) { 1107 error_propagate(errp, err); 1108 return; 1109 } 1110 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 1111 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0)); 1112 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000); 1113 1114 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */ 1115 1116 qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq); 1117 object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err); 1118 if (err) { 1119 error_propagate(errp, err); 1120 return; 1121 } 1122 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0, 1123 armsse_get_common_irq_in(s, 1)); 1124 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000); 1125 1126 qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq); 1127 object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err); 1128 if (err) { 1129 error_propagate(errp, err); 1130 return; 1131 } 1132 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0, 1133 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1)); 1134 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000); 1135 1136 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { 1137 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]); 1138 1139 object_property_set_int(splitter, 2, "num-lines", &err); 1140 if (err) { 1141 error_propagate(errp, err); 1142 return; 1143 } 1144 object_property_set_bool(splitter, true, "realized", &err); 1145 if (err) { 1146 error_propagate(errp, err); 1147 return; 1148 } 1149 } 1150 1151 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) { 1152 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i); 1153 1154 armsse_forward_ppc(s, ppcname, i); 1155 g_free(ppcname); 1156 } 1157 1158 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) { 1159 char *ppcname = g_strdup_printf("apb_ppcexp%d", i); 1160 1161 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC); 1162 g_free(ppcname); 1163 } 1164 1165 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) { 1166 /* Wire up IRQ splitter for internal PPCs */ 1167 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]); 1168 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status", 1169 i - NUM_EXTERNAL_PPCS); 1170 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1; 1171 1172 qdev_connect_gpio_out(devs, 0, 1173 qdev_get_gpio_in_named(dev_secctl, gpioname, 0)); 1174 qdev_connect_gpio_out(devs, 1, 1175 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i)); 1176 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0, 1177 qdev_get_gpio_in(devs, 0)); 1178 g_free(gpioname); 1179 } 1180 1181 /* Wire up the splitters for the MPC IRQs */ 1182 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { 1183 SplitIRQ *splitter = &s->mpc_irq_splitter[i]; 1184 DeviceState *dev_splitter = DEVICE(splitter); 1185 1186 object_property_set_int(OBJECT(splitter), 2, "num-lines", &err); 1187 if (err) { 1188 error_propagate(errp, err); 1189 return; 1190 } 1191 object_property_set_bool(OBJECT(splitter), true, "realized", &err); 1192 if (err) { 1193 error_propagate(errp, err); 1194 return; 1195 } 1196 1197 if (i < IOTS_NUM_EXP_MPC) { 1198 /* Splitter input is from GPIO input line */ 1199 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0); 1200 qdev_connect_gpio_out(dev_splitter, 0, 1201 qdev_get_gpio_in_named(dev_secctl, 1202 "mpcexp_status", i)); 1203 } else { 1204 /* Splitter input is from our own MPC */ 1205 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]), 1206 "irq", 0, 1207 qdev_get_gpio_in(dev_splitter, 0)); 1208 qdev_connect_gpio_out(dev_splitter, 0, 1209 qdev_get_gpio_in_named(dev_secctl, 1210 "mpc_status", 0)); 1211 } 1212 1213 qdev_connect_gpio_out(dev_splitter, 1, 1214 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i)); 1215 } 1216 /* Create GPIO inputs which will pass the line state for our 1217 * mpcexp_irq inputs to the correct splitter devices. 1218 */ 1219 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status", 1220 IOTS_NUM_EXP_MPC); 1221 1222 armsse_forward_sec_resp_cfg(s); 1223 1224 /* Forward the MSC related signals */ 1225 qdev_pass_gpios(dev_secctl, dev, "mscexp_status"); 1226 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear"); 1227 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns"); 1228 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0, 1229 armsse_get_common_irq_in(s, 11)); 1230 1231 /* 1232 * Expose our container region to the board model; this corresponds 1233 * to the AHB Slave Expansion ports which allow bus master devices 1234 * (eg DMA controllers) in the board model to make transactions into 1235 * devices in the ARMSSE. 1236 */ 1237 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container); 1238 1239 system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq; 1240 } 1241 1242 static void armsse_idau_check(IDAUInterface *ii, uint32_t address, 1243 int *iregion, bool *exempt, bool *ns, bool *nsc) 1244 { 1245 /* 1246 * For ARMSSE systems the IDAU responses are simple logical functions 1247 * of the address bits. The NSC attribute is guest-adjustable via the 1248 * NSCCFG register in the security controller. 1249 */ 1250 ARMSSE *s = ARMSSE(ii); 1251 int region = extract32(address, 28, 4); 1252 1253 *ns = !(region & 1); 1254 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2)); 1255 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ 1256 *exempt = (address & 0xeff00000) == 0xe0000000; 1257 *iregion = region; 1258 } 1259 1260 static const VMStateDescription armsse_vmstate = { 1261 .name = "iotkit", 1262 .version_id = 1, 1263 .minimum_version_id = 1, 1264 .fields = (VMStateField[]) { 1265 VMSTATE_UINT32(nsccfg, ARMSSE), 1266 VMSTATE_END_OF_LIST() 1267 } 1268 }; 1269 1270 static void armsse_reset(DeviceState *dev) 1271 { 1272 ARMSSE *s = ARMSSE(dev); 1273 1274 s->nsccfg = 0; 1275 } 1276 1277 static void armsse_class_init(ObjectClass *klass, void *data) 1278 { 1279 DeviceClass *dc = DEVICE_CLASS(klass); 1280 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass); 1281 ARMSSEClass *asc = ARMSSE_CLASS(klass); 1282 const ARMSSEInfo *info = data; 1283 1284 dc->realize = armsse_realize; 1285 dc->vmsd = &armsse_vmstate; 1286 dc->props = info->props; 1287 dc->reset = armsse_reset; 1288 iic->check = armsse_idau_check; 1289 asc->info = info; 1290 } 1291 1292 static const TypeInfo armsse_info = { 1293 .name = TYPE_ARMSSE, 1294 .parent = TYPE_SYS_BUS_DEVICE, 1295 .instance_size = sizeof(ARMSSE), 1296 .instance_init = armsse_init, 1297 .abstract = true, 1298 .interfaces = (InterfaceInfo[]) { 1299 { TYPE_IDAU_INTERFACE }, 1300 { } 1301 } 1302 }; 1303 1304 static void armsse_register_types(void) 1305 { 1306 int i; 1307 1308 type_register_static(&armsse_info); 1309 1310 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) { 1311 TypeInfo ti = { 1312 .name = armsse_variants[i].name, 1313 .parent = TYPE_ARMSSE, 1314 .class_init = armsse_class_init, 1315 .class_data = (void *)&armsse_variants[i], 1316 }; 1317 type_register(&ti); 1318 } 1319 } 1320 1321 type_init(armsse_register_types); 1322