xref: /openbmc/qemu/hw/arm/armsse.c (revision ee86213a)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/armsse-version.h"
23 #include "hw/arm/boot.h"
24 #include "hw/irq.h"
25 #include "hw/qdev-clock.h"
26 
27 /*
28  * The SSE-300 puts some devices in different places to the
29  * SSE-200 (and original IoTKit). We use an array of these structs
30  * to define how each variant lays out these devices. (Parts of the
31  * SoC that are the same for all variants aren't handled via these
32  * data structures.)
33  */
34 
35 #define NO_IRQ -1
36 #define NO_PPC -1
37 /*
38  * Special values for ARMSSEDeviceInfo::irq to indicate that this
39  * device uses one of the inputs to the OR gate that feeds into the
40  * CPU NMI input.
41  */
42 #define NMI_0 10000
43 #define NMI_1 10001
44 
45 typedef struct ARMSSEDeviceInfo {
46     const char *name; /* name to use for the QOM object; NULL terminates list */
47     const char *type; /* QOM type name */
48     unsigned int index; /* Which of the N devices of this type is this ? */
49     hwaddr addr;
50     hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
51     int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */
52     int ppc_port; /* Port number of this device on the PPC */
53     int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
54     bool slowclk; /* true if device uses the slow 32KHz clock */
55 } ARMSSEDeviceInfo;
56 
57 struct ARMSSEInfo {
58     const char *name;
59     const char *cpu_type;
60     uint32_t sse_version;
61     int sram_banks;
62     int num_cpus;
63     uint32_t sys_version;
64     uint32_t iidr;
65     uint32_t cpuwait_rst;
66     bool has_mhus;
67     bool has_cachectrl;
68     bool has_cpusecctrl;
69     bool has_cpuid;
70     bool has_cpu_pwrctrl;
71     bool has_sse_counter;
72     Property *props;
73     const ARMSSEDeviceInfo *devinfo;
74     const bool *irq_is_common;
75 };
76 
77 static Property iotkit_properties[] = {
78     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
79                      MemoryRegion *),
80     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
81     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
82     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
83     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
84     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
85     DEFINE_PROP_END_OF_LIST()
86 };
87 
88 static Property sse200_properties[] = {
89     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
90                      MemoryRegion *),
91     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
92     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
93     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
94     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
95     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
96     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
97     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
98     DEFINE_PROP_END_OF_LIST()
99 };
100 
101 static Property sse300_properties[] = {
102     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
103                      MemoryRegion *),
104     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
105     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
106     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
107     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
108     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
109     DEFINE_PROP_END_OF_LIST()
110 };
111 
112 static const ARMSSEDeviceInfo iotkit_devices[] = {
113     {
114         .name = "timer0",
115         .type = TYPE_CMSDK_APB_TIMER,
116         .index = 0,
117         .addr = 0x40000000,
118         .ppc = 0,
119         .ppc_port = 0,
120         .irq = 3,
121     },
122     {
123         .name = "timer1",
124         .type = TYPE_CMSDK_APB_TIMER,
125         .index = 1,
126         .addr = 0x40001000,
127         .ppc = 0,
128         .ppc_port = 1,
129         .irq = 4,
130     },
131     {
132         .name = "s32ktimer",
133         .type = TYPE_CMSDK_APB_TIMER,
134         .index = 2,
135         .addr = 0x4002f000,
136         .ppc = 1,
137         .ppc_port = 0,
138         .irq = 2,
139         .slowclk = true,
140     },
141     {
142         .name = "dualtimer",
143         .type = TYPE_CMSDK_APB_DUALTIMER,
144         .index = 0,
145         .addr = 0x40002000,
146         .ppc = 0,
147         .ppc_port = 2,
148         .irq = 5,
149     },
150     {
151         .name = "s32kwatchdog",
152         .type = TYPE_CMSDK_APB_WATCHDOG,
153         .index = 0,
154         .addr = 0x5002e000,
155         .ppc = NO_PPC,
156         .irq = NMI_0,
157         .slowclk = true,
158     },
159     {
160         .name = "nswatchdog",
161         .type = TYPE_CMSDK_APB_WATCHDOG,
162         .index = 1,
163         .addr = 0x40081000,
164         .ppc = NO_PPC,
165         .irq = 1,
166     },
167     {
168         .name = "swatchdog",
169         .type = TYPE_CMSDK_APB_WATCHDOG,
170         .index = 2,
171         .addr = 0x50081000,
172         .ppc = NO_PPC,
173         .irq = NMI_1,
174     },
175     {
176         .name = "armsse-sysinfo",
177         .type = TYPE_IOTKIT_SYSINFO,
178         .index = 0,
179         .addr = 0x40020000,
180         .ppc = NO_PPC,
181         .irq = NO_IRQ,
182     },
183     {
184         .name = "armsse-sysctl",
185         .type = TYPE_IOTKIT_SYSCTL,
186         .index = 0,
187         .addr = 0x50021000,
188         .ppc = NO_PPC,
189         .irq = NO_IRQ,
190     },
191     {
192         .name = NULL,
193     }
194 };
195 
196 static const ARMSSEDeviceInfo sse200_devices[] = {
197     {
198         .name = "timer0",
199         .type = TYPE_CMSDK_APB_TIMER,
200         .index = 0,
201         .addr = 0x40000000,
202         .ppc = 0,
203         .ppc_port = 0,
204         .irq = 3,
205     },
206     {
207         .name = "timer1",
208         .type = TYPE_CMSDK_APB_TIMER,
209         .index = 1,
210         .addr = 0x40001000,
211         .ppc = 0,
212         .ppc_port = 1,
213         .irq = 4,
214     },
215     {
216         .name = "s32ktimer",
217         .type = TYPE_CMSDK_APB_TIMER,
218         .index = 2,
219         .addr = 0x4002f000,
220         .ppc = 1,
221         .ppc_port = 0,
222         .irq = 2,
223         .slowclk = true,
224     },
225     {
226         .name = "dualtimer",
227         .type = TYPE_CMSDK_APB_DUALTIMER,
228         .index = 0,
229         .addr = 0x40002000,
230         .ppc = 0,
231         .ppc_port = 2,
232         .irq = 5,
233     },
234     {
235         .name = "s32kwatchdog",
236         .type = TYPE_CMSDK_APB_WATCHDOG,
237         .index = 0,
238         .addr = 0x5002e000,
239         .ppc = NO_PPC,
240         .irq = NMI_0,
241         .slowclk = true,
242     },
243     {
244         .name = "nswatchdog",
245         .type = TYPE_CMSDK_APB_WATCHDOG,
246         .index = 1,
247         .addr = 0x40081000,
248         .ppc = NO_PPC,
249         .irq = 1,
250     },
251     {
252         .name = "swatchdog",
253         .type = TYPE_CMSDK_APB_WATCHDOG,
254         .index = 2,
255         .addr = 0x50081000,
256         .ppc = NO_PPC,
257         .irq = NMI_1,
258     },
259     {
260         .name = "armsse-sysinfo",
261         .type = TYPE_IOTKIT_SYSINFO,
262         .index = 0,
263         .addr = 0x40020000,
264         .ppc = NO_PPC,
265         .irq = NO_IRQ,
266     },
267     {
268         .name = "armsse-sysctl",
269         .type = TYPE_IOTKIT_SYSCTL,
270         .index = 0,
271         .addr = 0x50021000,
272         .ppc = NO_PPC,
273         .irq = NO_IRQ,
274     },
275     {
276         .name = "CPU0CORE_PPU",
277         .type = TYPE_UNIMPLEMENTED_DEVICE,
278         .index = 0,
279         .addr = 0x50023000,
280         .size = 0x1000,
281         .ppc = NO_PPC,
282         .irq = NO_IRQ,
283     },
284     {
285         .name = "CPU1CORE_PPU",
286         .type = TYPE_UNIMPLEMENTED_DEVICE,
287         .index = 1,
288         .addr = 0x50025000,
289         .size = 0x1000,
290         .ppc = NO_PPC,
291         .irq = NO_IRQ,
292     },
293     {
294         .name = "DBG_PPU",
295         .type = TYPE_UNIMPLEMENTED_DEVICE,
296         .index = 2,
297         .addr = 0x50029000,
298         .size = 0x1000,
299         .ppc = NO_PPC,
300         .irq = NO_IRQ,
301     },
302     {
303         .name = "RAM0_PPU",
304         .type = TYPE_UNIMPLEMENTED_DEVICE,
305         .index = 3,
306         .addr = 0x5002a000,
307         .size = 0x1000,
308         .ppc = NO_PPC,
309         .irq = NO_IRQ,
310     },
311     {
312         .name = "RAM1_PPU",
313         .type = TYPE_UNIMPLEMENTED_DEVICE,
314         .index = 4,
315         .addr = 0x5002b000,
316         .size = 0x1000,
317         .ppc = NO_PPC,
318         .irq = NO_IRQ,
319     },
320     {
321         .name = "RAM2_PPU",
322         .type = TYPE_UNIMPLEMENTED_DEVICE,
323         .index = 5,
324         .addr = 0x5002c000,
325         .size = 0x1000,
326         .ppc = NO_PPC,
327         .irq = NO_IRQ,
328     },
329     {
330         .name = "RAM3_PPU",
331         .type = TYPE_UNIMPLEMENTED_DEVICE,
332         .index = 6,
333         .addr = 0x5002d000,
334         .size = 0x1000,
335         .ppc = NO_PPC,
336         .irq = NO_IRQ,
337     },
338     {
339         .name = "SYS_PPU",
340         .type = TYPE_UNIMPLEMENTED_DEVICE,
341         .index = 7,
342         .addr = 0x50022000,
343         .size = 0x1000,
344         .ppc = NO_PPC,
345         .irq = NO_IRQ,
346     },
347     {
348         .name = NULL,
349     }
350 };
351 
352 static const ARMSSEDeviceInfo sse300_devices[] = {
353     {
354         .name = "timer0",
355         .type = TYPE_SSE_TIMER,
356         .index = 0,
357         .addr = 0x48000000,
358         .ppc = 0,
359         .ppc_port = 0,
360         .irq = 3,
361     },
362     {
363         .name = "timer1",
364         .type = TYPE_SSE_TIMER,
365         .index = 1,
366         .addr = 0x48001000,
367         .ppc = 0,
368         .ppc_port = 1,
369         .irq = 4,
370     },
371     {
372         .name = "timer2",
373         .type = TYPE_SSE_TIMER,
374         .index = 2,
375         .addr = 0x48002000,
376         .ppc = 0,
377         .ppc_port = 2,
378         .irq = 5,
379     },
380     {
381         .name = "timer3",
382         .type = TYPE_SSE_TIMER,
383         .index = 3,
384         .addr = 0x48003000,
385         .ppc = 0,
386         .ppc_port = 5,
387         .irq = 27,
388     },
389     {
390         .name = "s32ktimer",
391         .type = TYPE_CMSDK_APB_TIMER,
392         .index = 0,
393         .addr = 0x4802f000,
394         .ppc = 1,
395         .ppc_port = 0,
396         .irq = 2,
397         .slowclk = true,
398     },
399     {
400         .name = "s32kwatchdog",
401         .type = TYPE_CMSDK_APB_WATCHDOG,
402         .index = 0,
403         .addr = 0x4802e000,
404         .ppc = NO_PPC,
405         .irq = NMI_0,
406         .slowclk = true,
407     },
408     {
409         .name = "watchdog",
410         .type = TYPE_UNIMPLEMENTED_DEVICE,
411         .index = 0,
412         .addr = 0x48040000,
413         .size = 0x2000,
414         .ppc = NO_PPC,
415         .irq = NO_IRQ,
416     },
417     {
418         .name = "armsse-sysinfo",
419         .type = TYPE_IOTKIT_SYSINFO,
420         .index = 0,
421         .addr = 0x48020000,
422         .ppc = NO_PPC,
423         .irq = NO_IRQ,
424     },
425     {
426         .name = "armsse-sysctl",
427         .type = TYPE_IOTKIT_SYSCTL,
428         .index = 0,
429         .addr = 0x58021000,
430         .ppc = NO_PPC,
431         .irq = NO_IRQ,
432     },
433     {
434         .name = "SYS_PPU",
435         .type = TYPE_UNIMPLEMENTED_DEVICE,
436         .index = 1,
437         .addr = 0x58022000,
438         .size = 0x1000,
439         .ppc = NO_PPC,
440         .irq = NO_IRQ,
441     },
442     {
443         .name = "CPU0CORE_PPU",
444         .type = TYPE_UNIMPLEMENTED_DEVICE,
445         .index = 2,
446         .addr = 0x50023000,
447         .size = 0x1000,
448         .ppc = NO_PPC,
449         .irq = NO_IRQ,
450     },
451     {
452         .name = "MGMT_PPU",
453         .type = TYPE_UNIMPLEMENTED_DEVICE,
454         .index = 3,
455         .addr = 0x50028000,
456         .size = 0x1000,
457         .ppc = NO_PPC,
458         .irq = NO_IRQ,
459     },
460     {
461         .name = "DEBUG_PPU",
462         .type = TYPE_UNIMPLEMENTED_DEVICE,
463         .index = 4,
464         .addr = 0x50029000,
465         .size = 0x1000,
466         .ppc = NO_PPC,
467         .irq = NO_IRQ,
468     },
469     {
470         .name = NULL,
471     }
472 };
473 
474 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
475 static const bool sse200_irq_is_common[32] = {
476     [0 ... 5] = true,
477     /* 6, 7: per-CPU MHU interrupts */
478     [8 ... 12] = true,
479     /* 13: per-CPU icache interrupt */
480     /* 14: reserved */
481     [15 ... 20] = true,
482     /* 21: reserved */
483     [22 ... 26] = true,
484     /* 27: reserved */
485     /* 28, 29: per-CPU CTI interrupts */
486     /* 30, 31: reserved */
487 };
488 
489 static const bool sse300_irq_is_common[32] = {
490     [0 ... 5] = true,
491     /* 6, 7: per-CPU MHU interrupts */
492     [8 ... 12] = true,
493     /* 13: reserved */
494     [14 ... 16] = true,
495     /* 17-25: reserved */
496     [26 ... 27] = true,
497     /* 28, 29: per-CPU CTI interrupts */
498     /* 30, 31: reserved */
499 };
500 
501 static const ARMSSEInfo armsse_variants[] = {
502     {
503         .name = TYPE_IOTKIT,
504         .sse_version = ARMSSE_IOTKIT,
505         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
506         .sram_banks = 1,
507         .num_cpus = 1,
508         .sys_version = 0x41743,
509         .iidr = 0,
510         .cpuwait_rst = 0,
511         .has_mhus = false,
512         .has_cachectrl = false,
513         .has_cpusecctrl = false,
514         .has_cpuid = false,
515         .has_cpu_pwrctrl = false,
516         .has_sse_counter = false,
517         .props = iotkit_properties,
518         .devinfo = iotkit_devices,
519         .irq_is_common = sse200_irq_is_common,
520     },
521     {
522         .name = TYPE_SSE200,
523         .sse_version = ARMSSE_SSE200,
524         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
525         .sram_banks = 4,
526         .num_cpus = 2,
527         .sys_version = 0x22041743,
528         .iidr = 0,
529         .cpuwait_rst = 2,
530         .has_mhus = true,
531         .has_cachectrl = true,
532         .has_cpusecctrl = true,
533         .has_cpuid = true,
534         .has_cpu_pwrctrl = false,
535         .has_sse_counter = false,
536         .props = sse200_properties,
537         .devinfo = sse200_devices,
538         .irq_is_common = sse200_irq_is_common,
539     },
540     {
541         .name = TYPE_SSE300,
542         .sse_version = ARMSSE_SSE300,
543         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m55"),
544         .sram_banks = 2,
545         .num_cpus = 1,
546         .sys_version = 0x7e00043b,
547         .iidr = 0x74a0043b,
548         .cpuwait_rst = 0,
549         .has_mhus = false,
550         .has_cachectrl = false,
551         .has_cpusecctrl = true,
552         .has_cpuid = true,
553         .has_cpu_pwrctrl = true,
554         .has_sse_counter = true,
555         .props = sse300_properties,
556         .devinfo = sse300_devices,
557         .irq_is_common = sse300_irq_is_common,
558     },
559 };
560 
561 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
562 {
563     /* Return the SYS_CONFIG value for this SSE */
564     uint32_t sys_config;
565 
566     switch (info->sse_version) {
567     case ARMSSE_IOTKIT:
568         sys_config = 0;
569         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
570         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
571         break;
572     case ARMSSE_SSE200:
573         sys_config = 0;
574         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
575         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
576         sys_config = deposit32(sys_config, 24, 4, 2);
577         if (info->num_cpus > 1) {
578             sys_config = deposit32(sys_config, 10, 1, 1);
579             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
580             sys_config = deposit32(sys_config, 28, 4, 2);
581         }
582         break;
583     case ARMSSE_SSE300:
584         sys_config = 0;
585         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
586         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
587         sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */
588         break;
589     default:
590         g_assert_not_reached();
591     }
592     return sys_config;
593 }
594 
595 /* Clock frequency in HZ of the 32KHz "slow clock" */
596 #define S32KCLK (32 * 1000)
597 
598 /*
599  * Create an alias region in @container of @size bytes starting at @base
600  * which mirrors the memory starting at @orig.
601  */
602 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
603                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
604 {
605     memory_region_init_alias(mr, NULL, name, container, orig, size);
606     /* The alias is even lower priority than unimplemented_device regions */
607     memory_region_add_subregion_overlap(container, base, mr, -1500);
608 }
609 
610 static void irq_status_forwarder(void *opaque, int n, int level)
611 {
612     qemu_irq destirq = opaque;
613 
614     qemu_set_irq(destirq, level);
615 }
616 
617 static void nsccfg_handler(void *opaque, int n, int level)
618 {
619     ARMSSE *s = ARM_SSE(opaque);
620 
621     s->nsccfg = level;
622 }
623 
624 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
625 {
626     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
627      * system using the ARMSSE has a collection of control lines which
628      * are provided by the security controller and which we want to
629      * expose as control lines on the ARMSSE device itself, so the
630      * code using the ARMSSE can wire them up to the PPCs.
631      */
632     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
633     DeviceState *armssedev = DEVICE(s);
634     DeviceState *dev_secctl = DEVICE(&s->secctl);
635     DeviceState *dev_splitter = DEVICE(splitter);
636     char *name;
637 
638     name = g_strdup_printf("%s_nonsec", ppcname);
639     qdev_pass_gpios(dev_secctl, armssedev, name);
640     g_free(name);
641     name = g_strdup_printf("%s_ap", ppcname);
642     qdev_pass_gpios(dev_secctl, armssedev, name);
643     g_free(name);
644     name = g_strdup_printf("%s_irq_enable", ppcname);
645     qdev_pass_gpios(dev_secctl, armssedev, name);
646     g_free(name);
647     name = g_strdup_printf("%s_irq_clear", ppcname);
648     qdev_pass_gpios(dev_secctl, armssedev, name);
649     g_free(name);
650 
651     /* irq_status is a little more tricky, because we need to
652      * split it so we can send it both to the security controller
653      * and to our OR gate for the NVIC interrupt line.
654      * Connect up the splitter's outputs, and create a GPIO input
655      * which will pass the line state to the input splitter.
656      */
657     name = g_strdup_printf("%s_irq_status", ppcname);
658     qdev_connect_gpio_out(dev_splitter, 0,
659                           qdev_get_gpio_in_named(dev_secctl,
660                                                  name, 0));
661     qdev_connect_gpio_out(dev_splitter, 1,
662                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
663     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
664     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
665                                         s->irq_status_in[ppcnum], name, 1);
666     g_free(name);
667 }
668 
669 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
670 {
671     /* Forward the 3rd output from the splitter device as a
672      * named GPIO output of the armsse object.
673      */
674     DeviceState *dev = DEVICE(s);
675     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
676 
677     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
678     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
679                                            s->sec_resp_cfg, 1);
680     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
681 }
682 
683 static void armsse_mainclk_update(void *opaque, ClockEvent event)
684 {
685     ARMSSE *s = ARM_SSE(opaque);
686 
687     /*
688      * Set system_clock_scale from our Clock input; this is what
689      * controls the tick rate of the CPU SysTick timer.
690      */
691     system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
692 }
693 
694 static void armsse_init(Object *obj)
695 {
696     ARMSSE *s = ARM_SSE(obj);
697     ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
698     const ARMSSEInfo *info = asc->info;
699     const ARMSSEDeviceInfo *devinfo;
700     int i;
701 
702     assert(info->sram_banks <= MAX_SRAM_BANKS);
703     assert(info->num_cpus <= SSE_MAX_CPUS);
704 
705     s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
706                                     armsse_mainclk_update, s, ClockUpdate);
707     s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
708 
709     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
710 
711     for (i = 0; i < info->num_cpus; i++) {
712         /*
713          * We put each CPU in its own cluster as they are logically
714          * distinct and may be configured differently.
715          */
716         char *name;
717 
718         name = g_strdup_printf("cluster%d", i);
719         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
720         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
721         g_free(name);
722 
723         name = g_strdup_printf("armv7m%d", i);
724         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
725                                 TYPE_ARMV7M);
726         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", info->cpu_type);
727         g_free(name);
728         name = g_strdup_printf("arm-sse-cpu-container%d", i);
729         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
730         g_free(name);
731         if (i > 0) {
732             name = g_strdup_printf("arm-sse-container-alias%d", i);
733             memory_region_init_alias(&s->container_alias[i - 1], obj,
734                                      name, &s->container, 0, UINT64_MAX);
735             g_free(name);
736         }
737     }
738 
739     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
740         assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc));
741         if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
742             assert(devinfo->index < ARRAY_SIZE(s->timer));
743             object_initialize_child(obj, devinfo->name,
744                                     &s->timer[devinfo->index],
745                                     TYPE_CMSDK_APB_TIMER);
746         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
747             assert(devinfo->index == 0);
748             object_initialize_child(obj, devinfo->name, &s->dualtimer,
749                                     TYPE_CMSDK_APB_DUALTIMER);
750         } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
751             assert(devinfo->index < ARRAY_SIZE(s->sse_timer));
752             object_initialize_child(obj, devinfo->name,
753                                     &s->sse_timer[devinfo->index],
754                                     TYPE_SSE_TIMER);
755         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
756             assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog));
757             object_initialize_child(obj, devinfo->name,
758                                     &s->cmsdk_watchdog[devinfo->index],
759                                     TYPE_CMSDK_APB_WATCHDOG);
760         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
761             assert(devinfo->index == 0);
762             object_initialize_child(obj, devinfo->name, &s->sysinfo,
763                                     TYPE_IOTKIT_SYSINFO);
764         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
765             assert(devinfo->index == 0);
766             object_initialize_child(obj, devinfo->name, &s->sysctl,
767                                     TYPE_IOTKIT_SYSCTL);
768         } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
769             assert(devinfo->index < ARRAY_SIZE(s->unimp));
770             object_initialize_child(obj, devinfo->name,
771                                     &s->unimp[devinfo->index],
772                                     TYPE_UNIMPLEMENTED_DEVICE);
773         } else {
774             g_assert_not_reached();
775         }
776     }
777 
778     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
779 
780     for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) {
781         g_autofree char *name = g_strdup_printf("apb-ppc%d", i);
782         object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC);
783     }
784 
785     for (i = 0; i < info->sram_banks; i++) {
786         char *name = g_strdup_printf("mpc%d", i);
787         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
788         g_free(name);
789     }
790     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
791                             TYPE_OR_IRQ);
792 
793     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
794         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
795         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
796 
797         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
798         g_free(name);
799     }
800 
801     if (info->has_mhus) {
802         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
803         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
804     }
805     if (info->has_cachectrl) {
806         for (i = 0; i < info->num_cpus; i++) {
807             char *name = g_strdup_printf("cachectrl%d", i);
808 
809             object_initialize_child(obj, name, &s->cachectrl[i],
810                                     TYPE_UNIMPLEMENTED_DEVICE);
811             g_free(name);
812         }
813     }
814     if (info->has_cpusecctrl) {
815         for (i = 0; i < info->num_cpus; i++) {
816             char *name = g_strdup_printf("cpusecctrl%d", i);
817 
818             object_initialize_child(obj, name, &s->cpusecctrl[i],
819                                     TYPE_UNIMPLEMENTED_DEVICE);
820             g_free(name);
821         }
822     }
823     if (info->has_cpuid) {
824         for (i = 0; i < info->num_cpus; i++) {
825             char *name = g_strdup_printf("cpuid%d", i);
826 
827             object_initialize_child(obj, name, &s->cpuid[i],
828                                     TYPE_ARMSSE_CPUID);
829             g_free(name);
830         }
831     }
832     if (info->has_cpu_pwrctrl) {
833         for (i = 0; i < info->num_cpus; i++) {
834             char *name = g_strdup_printf("cpu_pwrctrl%d", i);
835 
836             object_initialize_child(obj, name, &s->cpu_pwrctrl[i],
837                                     TYPE_ARMSSE_CPU_PWRCTRL);
838             g_free(name);
839         }
840     }
841     if (info->has_sse_counter) {
842         object_initialize_child(obj, "sse-counter", &s->sse_counter,
843                                 TYPE_SSE_COUNTER);
844     }
845 
846     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
847     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
848                             TYPE_OR_IRQ);
849     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
850                             TYPE_SPLIT_IRQ);
851     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
852         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
853         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
854 
855         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
856         g_free(name);
857     }
858     if (info->num_cpus > 1) {
859         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
860             if (info->irq_is_common[i]) {
861                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
862                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
863 
864                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
865                 g_free(name);
866             }
867         }
868     }
869 }
870 
871 static void armsse_exp_irq(void *opaque, int n, int level)
872 {
873     qemu_irq *irqarray = opaque;
874 
875     qemu_set_irq(irqarray[n], level);
876 }
877 
878 static void armsse_mpcexp_status(void *opaque, int n, int level)
879 {
880     ARMSSE *s = ARM_SSE(opaque);
881     qemu_set_irq(s->mpcexp_status_in[n], level);
882 }
883 
884 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
885 {
886     /*
887      * Return a qemu_irq which can be used to signal IRQ n to
888      * all CPUs in the SSE.
889      */
890     ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
891     const ARMSSEInfo *info = asc->info;
892 
893     assert(info->irq_is_common[irqno]);
894 
895     if (info->num_cpus == 1) {
896         /* Only one CPU -- just connect directly to it */
897         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
898     } else {
899         /* Connect to the splitter which feeds all CPUs */
900         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
901     }
902 }
903 
904 static void armsse_realize(DeviceState *dev, Error **errp)
905 {
906     ARMSSE *s = ARM_SSE(dev);
907     ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
908     const ARMSSEInfo *info = asc->info;
909     const ARMSSEDeviceInfo *devinfo;
910     int i;
911     MemoryRegion *mr;
912     Error *err = NULL;
913     SysBusDevice *sbd_apb_ppc0;
914     SysBusDevice *sbd_secctl;
915     DeviceState *dev_apb_ppc0;
916     DeviceState *dev_apb_ppc1;
917     DeviceState *dev_secctl;
918     DeviceState *dev_splitter;
919     uint32_t addr_width_max;
920 
921     if (!s->board_memory) {
922         error_setg(errp, "memory property was not set");
923         return;
924     }
925 
926     if (!clock_has_source(s->mainclk)) {
927         error_setg(errp, "MAINCLK clock was not connected");
928     }
929     if (!clock_has_source(s->s32kclk)) {
930         error_setg(errp, "S32KCLK clock was not connected");
931     }
932 
933     assert(info->num_cpus <= SSE_MAX_CPUS);
934 
935     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
936     assert(is_power_of_2(info->sram_banks));
937     addr_width_max = 24 - ctz32(info->sram_banks);
938     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
939         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
940                    addr_width_max);
941         return;
942     }
943 
944     /* Handling of which devices should be available only to secure
945      * code is usually done differently for M profile than for A profile.
946      * Instead of putting some devices only into the secure address space,
947      * devices exist in both address spaces but with hard-wired security
948      * permissions that will cause the CPU to fault for non-secure accesses.
949      *
950      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
951      * which specifies hard-wired security permissions for different
952      * areas of the physical address space. For the ARMSSE IDAU, the
953      * top 4 bits of the physical address are the IDAU region ID, and
954      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
955      * region, otherwise it is an S region.
956      *
957      * The various devices and RAMs are generally all mapped twice,
958      * once into a region that the IDAU defines as secure and once
959      * into a non-secure region. They sit behind either a Memory
960      * Protection Controller (for RAM) or a Peripheral Protection
961      * Controller (for devices), which allow a more fine grained
962      * configuration of whether non-secure accesses are permitted.
963      *
964      * (The other place that guest software can configure security
965      * permissions is in the architected SAU (Security Attribution
966      * Unit), which is entirely inside the CPU. The IDAU can upgrade
967      * the security attributes for a region to more restrictive than
968      * the SAU specifies, but cannot downgrade them.)
969      *
970      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
971      * 0x20000000..0x2007ffff  32KB FPGA block RAM
972      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
973      * 0x40000000..0x4000ffff  base peripheral region 1
974      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
975      * 0x40020000..0x4002ffff  system control element peripherals
976      * 0x40080000..0x400fffff  base peripheral region 2
977      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
978      */
979 
980     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
981 
982     for (i = 0; i < info->num_cpus; i++) {
983         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
984         Object *cpuobj = OBJECT(&s->armv7m[i]);
985         int j;
986         char *gpioname;
987 
988         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
989         /*
990          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
991          * registers in the IoT Kit System Control Register block. In QEMU
992          * we set the initial value here, and also the reset value of the
993          * sysctl register, from this object's QOM init-svtor property.
994          * If the guest changes the INITSVTOR* registers at runtime then the
995          * code in iotkit-sysctl.c will update the CPU init-svtor property
996          * (which will then take effect on the next CPU warm-reset).
997          *
998          * Note that typically a board using the SSE-200 will have a system
999          * control processor whose boot firmware initializes the INITSVTOR*
1000          * registers before powering up the CPUs. QEMU doesn't emulate
1001          * the control processor, so instead we behave in the way that the
1002          * firmware does: the initial value should be set by the board code
1003          * (using the init-svtor property on the ARMSSE object) to match
1004          * whatever its firmware does.
1005          */
1006         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
1007         /*
1008          * CPUs start powered down if the corresponding bit in the CPUWAIT
1009          * register is 1. In real hardware the CPUWAIT register reset value is
1010          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
1011          * CPUWAIT1_RST parameters), but since all the boards we care about
1012          * start CPU0 and leave CPU1 powered off, we hard-code that in
1013          * info->cpuwait_rst for now. We can add QOM properties for this
1014          * later if necessary.
1015          */
1016         if (extract32(info->cpuwait_rst, i, 1)) {
1017             if (!object_property_set_bool(cpuobj, "start-powered-off", true,
1018                                           errp)) {
1019                 return;
1020             }
1021         }
1022         if (!s->cpu_fpu[i]) {
1023             if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
1024                 return;
1025             }
1026         }
1027         if (!s->cpu_dsp[i]) {
1028             if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
1029                 return;
1030             }
1031         }
1032 
1033         if (i > 0) {
1034             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1035                                                 &s->container_alias[i - 1], -1);
1036         } else {
1037             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1038                                                 &s->container, -1);
1039         }
1040         object_property_set_link(cpuobj, "memory",
1041                                  OBJECT(&s->cpu_container[i]), &error_abort);
1042         object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
1043         if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
1044             return;
1045         }
1046         /*
1047          * The cluster must be realized after the armv7m container, as
1048          * the container's CPU object is only created on realize, and the
1049          * CPU must exist and have been parented into the cluster before
1050          * the cluster is realized.
1051          */
1052         if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
1053             return;
1054         }
1055 
1056         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1057         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
1058         for (j = 0; j < s->exp_numirq; j++) {
1059             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS);
1060         }
1061         if (i == 0) {
1062             gpioname = g_strdup("EXP_IRQ");
1063         } else {
1064             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
1065         }
1066         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
1067                                             s->exp_irqs[i],
1068                                             gpioname, s->exp_numirq);
1069         g_free(gpioname);
1070     }
1071 
1072     /* Wire up the splitters that connect common IRQs to all CPUs */
1073     if (info->num_cpus > 1) {
1074         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
1075             if (info->irq_is_common[i]) {
1076                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
1077                 DeviceState *devs = DEVICE(splitter);
1078                 int cpunum;
1079 
1080                 if (!object_property_set_int(splitter, "num-lines",
1081                                              info->num_cpus, errp)) {
1082                     return;
1083                 }
1084                 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1085                     return;
1086                 }
1087                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1088                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1089 
1090                     qdev_connect_gpio_out(devs, cpunum,
1091                                           qdev_get_gpio_in(cpudev, i));
1092                 }
1093             }
1094         }
1095     }
1096 
1097     /* Set up the big aliases first */
1098     make_alias(s, &s->alias1, &s->container, "alias 1",
1099                0x10000000, 0x10000000, 0x00000000);
1100     make_alias(s, &s->alias2, &s->container,
1101                "alias 2", 0x30000000, 0x10000000, 0x20000000);
1102     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1103      * a few extra devices that only appear there (generally the
1104      * control interfaces for the protection controllers).
1105      * We implement this by mapping those devices over the top of this
1106      * alias MR at a higher priority. Some of the devices in this range
1107      * are per-CPU, so we must put this alias in the per-cpu containers.
1108      */
1109     for (i = 0; i < info->num_cpus; i++) {
1110         make_alias(s, &s->alias3[i], &s->cpu_container[i],
1111                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
1112     }
1113 
1114     /* Security controller */
1115     object_property_set_int(OBJECT(&s->secctl), "sse-version",
1116                             info->sse_version, &error_abort);
1117     if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
1118         return;
1119     }
1120     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
1121     dev_secctl = DEVICE(&s->secctl);
1122     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
1123     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
1124 
1125     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
1126     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
1127 
1128     /* The sec_resp_cfg output from the security controller must be split into
1129      * multiple lines, one for each of the PPCs within the ARMSSE and one
1130      * that will be an output from the ARMSSE to the system.
1131      */
1132     if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
1133                                  "num-lines", 3, errp)) {
1134         return;
1135     }
1136     if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
1137         return;
1138     }
1139     dev_splitter = DEVICE(&s->sec_resp_splitter);
1140     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
1141                                 qdev_get_gpio_in(dev_splitter, 0));
1142 
1143     /* Each SRAM bank lives behind its own Memory Protection Controller */
1144     for (i = 0; i < info->sram_banks; i++) {
1145         char *ramname = g_strdup_printf("armsse.sram%d", i);
1146         SysBusDevice *sbd_mpc;
1147         uint32_t sram_bank_size = 1 << s->sram_addr_width;
1148 
1149         memory_region_init_ram(&s->sram[i], NULL, ramname,
1150                                sram_bank_size, &err);
1151         g_free(ramname);
1152         if (err) {
1153             error_propagate(errp, err);
1154             return;
1155         }
1156         object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
1157                                  OBJECT(&s->sram[i]), &error_abort);
1158         if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
1159             return;
1160         }
1161         /* Map the upstream end of the MPC into the right place... */
1162         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
1163         memory_region_add_subregion(&s->container,
1164                                     0x20000000 + i * sram_bank_size,
1165                                     sysbus_mmio_get_region(sbd_mpc, 1));
1166         /* ...and its register interface */
1167         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
1168                                     sysbus_mmio_get_region(sbd_mpc, 0));
1169     }
1170 
1171     /* We must OR together lines from the MPC splitters to go to the NVIC */
1172     if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
1173                                  IOTS_NUM_EXP_MPC + info->sram_banks,
1174                                  errp)) {
1175         return;
1176     }
1177     if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
1178         return;
1179     }
1180     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
1181                           armsse_get_common_irq_in(s, 9));
1182 
1183     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1184     if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
1185                                  errp)) {
1186         return;
1187     }
1188     if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
1189         return;
1190     }
1191     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1192                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1193 
1194     /* The SSE-300 has a System Counter / System Timestamp Generator */
1195     if (info->has_sse_counter) {
1196         SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter);
1197 
1198         qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk);
1199         if (!sysbus_realize(sbd, errp)) {
1200             return;
1201         }
1202         /*
1203          * The control frame is only in the Secure region;
1204          * the status frame is in the NS region (and visible in the
1205          * S region via the alias mapping).
1206          */
1207         memory_region_add_subregion(&s->container, 0x58100000,
1208                                     sysbus_mmio_get_region(sbd, 0));
1209         memory_region_add_subregion(&s->container, 0x48101000,
1210                                     sysbus_mmio_get_region(sbd, 1));
1211     }
1212 
1213     /* Devices behind APB PPC0:
1214      *   0x40000000: timer0
1215      *   0x40001000: timer1
1216      *   0x40002000: dual timer
1217      *   0x40003000: MHU0 (SSE-200 only)
1218      *   0x40004000: MHU1 (SSE-200 only)
1219      * We must configure and realize each downstream device and connect
1220      * it to the appropriate PPC port; then we can realize the PPC and
1221      * map its upstream ends to the right place in the container.
1222      */
1223     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1224         SysBusDevice *sbd;
1225         qemu_irq irq;
1226 
1227         if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
1228             sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]);
1229 
1230             qdev_connect_clock_in(DEVICE(sbd), "pclk",
1231                                   devinfo->slowclk ? s->s32kclk : s->mainclk);
1232             if (!sysbus_realize(sbd, errp)) {
1233                 return;
1234             }
1235             mr = sysbus_mmio_get_region(sbd, 0);
1236         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
1237             sbd = SYS_BUS_DEVICE(&s->dualtimer);
1238 
1239             qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk);
1240             if (!sysbus_realize(sbd, errp)) {
1241                 return;
1242             }
1243             mr = sysbus_mmio_get_region(sbd, 0);
1244         } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
1245             sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]);
1246 
1247             assert(info->has_sse_counter);
1248             object_property_set_link(OBJECT(sbd), "counter",
1249                                      OBJECT(&s->sse_counter), &error_abort);
1250             if (!sysbus_realize(sbd, errp)) {
1251                 return;
1252             }
1253             mr = sysbus_mmio_get_region(sbd, 0);
1254         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
1255             sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]);
1256 
1257             qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK",
1258                                   devinfo->slowclk ? s->s32kclk : s->mainclk);
1259             if (!sysbus_realize(sbd, errp)) {
1260                 return;
1261             }
1262             mr = sysbus_mmio_get_region(sbd, 0);
1263         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
1264             sbd = SYS_BUS_DEVICE(&s->sysinfo);
1265 
1266             object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
1267                                     info->sys_version, &error_abort);
1268             object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
1269                                     armsse_sys_config_value(s, info),
1270                                     &error_abort);
1271             object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
1272                                     info->sse_version, &error_abort);
1273             object_property_set_int(OBJECT(&s->sysinfo), "IIDR",
1274                                     info->iidr, &error_abort);
1275             if (!sysbus_realize(sbd, errp)) {
1276                 return;
1277             }
1278             mr = sysbus_mmio_get_region(sbd, 0);
1279         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
1280             /* System control registers */
1281             sbd = SYS_BUS_DEVICE(&s->sysctl);
1282 
1283             object_property_set_int(OBJECT(&s->sysctl), "sse-version",
1284                                     info->sse_version, &error_abort);
1285             object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
1286                                     info->cpuwait_rst, &error_abort);
1287             object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
1288                                     s->init_svtor, &error_abort);
1289             object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
1290                                     s->init_svtor, &error_abort);
1291             if (!sysbus_realize(sbd, errp)) {
1292                 return;
1293             }
1294             mr = sysbus_mmio_get_region(sbd, 0);
1295         } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
1296             sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]);
1297 
1298             qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name);
1299             qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size);
1300             if (!sysbus_realize(sbd, errp)) {
1301                 return;
1302             }
1303             mr = sysbus_mmio_get_region(sbd, 0);
1304         } else {
1305             g_assert_not_reached();
1306         }
1307 
1308         switch (devinfo->irq) {
1309         case NO_IRQ:
1310             irq = NULL;
1311             break;
1312         case 0 ... NUM_SSE_IRQS - 1:
1313             irq = armsse_get_common_irq_in(s, devinfo->irq);
1314             break;
1315         case NMI_0:
1316         case NMI_1:
1317             irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate),
1318                                    devinfo->irq - NMI_0);
1319             break;
1320         default:
1321             g_assert_not_reached();
1322         }
1323 
1324         if (irq) {
1325             sysbus_connect_irq(sbd, 0, irq);
1326         }
1327 
1328         /*
1329          * Devices connected to a PPC are connected to the port here;
1330          * we will map the upstream end of that port to the right address
1331          * in the container later after the PPC has been realized.
1332          * Devices not connected to a PPC can be mapped immediately.
1333          */
1334         if (devinfo->ppc != NO_PPC) {
1335             TZPPC *ppc = &s->apb_ppc[devinfo->ppc];
1336             g_autofree char *portname = g_strdup_printf("port[%d]",
1337                                                         devinfo->ppc_port);
1338             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1339                                      &error_abort);
1340         } else {
1341             memory_region_add_subregion(&s->container, devinfo->addr, mr);
1342         }
1343     }
1344 
1345     if (info->has_mhus) {
1346         /*
1347          * An SSE-200 with only one CPU should have only one MHU created,
1348          * with the region where the second MHU usually is being RAZ/WI.
1349          * We don't implement that SSE-200 config; if we want to support
1350          * it then this code needs to be enhanced to handle creating the
1351          * RAZ/WI region instead of the second MHU.
1352          */
1353         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
1354 
1355         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
1356             char *port;
1357             int cpunum;
1358             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
1359 
1360             if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
1361                 return;
1362             }
1363             port = g_strdup_printf("port[%d]", i + 3);
1364             mr = sysbus_mmio_get_region(mhu_sbd, 0);
1365             object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr),
1366                                      &error_abort);
1367             g_free(port);
1368 
1369             /*
1370              * Each MHU has an irq line for each CPU:
1371              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
1372              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
1373              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
1374              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
1375              */
1376             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1377                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1378 
1379                 sysbus_connect_irq(mhu_sbd, cpunum,
1380                                    qdev_get_gpio_in(cpudev, 6 + i));
1381             }
1382         }
1383     }
1384 
1385     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) {
1386         return;
1387     }
1388 
1389     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]);
1390     dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]);
1391 
1392     if (info->has_mhus) {
1393         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
1394         memory_region_add_subregion(&s->container, 0x40003000, mr);
1395         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
1396         memory_region_add_subregion(&s->container, 0x40004000, mr);
1397     }
1398     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
1399         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
1400                                     qdev_get_gpio_in_named(dev_apb_ppc0,
1401                                                            "cfg_nonsec", i));
1402         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
1403                                     qdev_get_gpio_in_named(dev_apb_ppc0,
1404                                                            "cfg_ap", i));
1405     }
1406     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
1407                                 qdev_get_gpio_in_named(dev_apb_ppc0,
1408                                                        "irq_enable", 0));
1409     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
1410                                 qdev_get_gpio_in_named(dev_apb_ppc0,
1411                                                        "irq_clear", 0));
1412     qdev_connect_gpio_out(dev_splitter, 0,
1413                           qdev_get_gpio_in_named(dev_apb_ppc0,
1414                                                  "cfg_sec_resp", 0));
1415 
1416     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1417      * ones) are sent individually to the security controller, and also
1418      * ORed together to give a single combined PPC interrupt to the NVIC.
1419      */
1420     if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
1421                                  "num-lines", NUM_PPCS, errp)) {
1422         return;
1423     }
1424     if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
1425         return;
1426     }
1427     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
1428                           armsse_get_common_irq_in(s, 10));
1429 
1430     /*
1431      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1432      * private per-CPU region (all these devices are SSE-200 only):
1433      *  0x50010000: L1 icache control registers
1434      *  0x50011000: CPUSECCTRL (CPU local security control registers)
1435      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1436      * The SSE-300 has an extra:
1437      *  0x40012000 and 0x50012000: CPU_PWRCTRL register block
1438      */
1439     if (info->has_cachectrl) {
1440         for (i = 0; i < info->num_cpus; i++) {
1441             char *name = g_strdup_printf("cachectrl%d", i);
1442             MemoryRegion *mr;
1443 
1444             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
1445             g_free(name);
1446             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
1447             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
1448                 return;
1449             }
1450 
1451             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
1452             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
1453         }
1454     }
1455     if (info->has_cpusecctrl) {
1456         for (i = 0; i < info->num_cpus; i++) {
1457             char *name = g_strdup_printf("CPUSECCTRL%d", i);
1458             MemoryRegion *mr;
1459 
1460             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
1461             g_free(name);
1462             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
1463             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
1464                 return;
1465             }
1466 
1467             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
1468             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
1469         }
1470     }
1471     if (info->has_cpuid) {
1472         for (i = 0; i < info->num_cpus; i++) {
1473             MemoryRegion *mr;
1474 
1475             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
1476             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
1477                 return;
1478             }
1479 
1480             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
1481             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
1482         }
1483     }
1484     if (info->has_cpu_pwrctrl) {
1485         for (i = 0; i < info->num_cpus; i++) {
1486             MemoryRegion *mr;
1487 
1488             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) {
1489                 return;
1490             }
1491 
1492             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0);
1493             memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr);
1494         }
1495     }
1496 
1497     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) {
1498         return;
1499     }
1500 
1501     dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]);
1502     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1503                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1504                                                        "cfg_nonsec", 0));
1505     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1506                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1507                                                        "cfg_ap", 0));
1508     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1509                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1510                                                        "irq_enable", 0));
1511     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1512                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1513                                                        "irq_clear", 0));
1514     qdev_connect_gpio_out(dev_splitter, 1,
1515                           qdev_get_gpio_in_named(dev_apb_ppc1,
1516                                                  "cfg_sec_resp", 0));
1517 
1518     /*
1519      * Now both PPCs are realized we can map the upstream ends of
1520      * ports which correspond to entries in the devinfo array.
1521      * The ports which are connected to non-devinfo devices have
1522      * already been mapped.
1523      */
1524     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1525         SysBusDevice *ppc_sbd;
1526 
1527         if (devinfo->ppc == NO_PPC) {
1528             continue;
1529         }
1530         ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]);
1531         mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port);
1532         memory_region_add_subregion(&s->container, devinfo->addr, mr);
1533     }
1534 
1535     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1536         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1537 
1538         if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1539             return;
1540         }
1541         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1542             return;
1543         }
1544     }
1545 
1546     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1547         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1548 
1549         armsse_forward_ppc(s, ppcname, i);
1550         g_free(ppcname);
1551     }
1552 
1553     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1554         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1555 
1556         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1557         g_free(ppcname);
1558     }
1559 
1560     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1561         /* Wire up IRQ splitter for internal PPCs */
1562         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1563         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1564                                          i - NUM_EXTERNAL_PPCS);
1565         TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS];
1566 
1567         qdev_connect_gpio_out(devs, 0,
1568                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1569         qdev_connect_gpio_out(devs, 1,
1570                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1571         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1572                                     qdev_get_gpio_in(devs, 0));
1573         g_free(gpioname);
1574     }
1575 
1576     /* Wire up the splitters for the MPC IRQs */
1577     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1578         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1579         DeviceState *dev_splitter = DEVICE(splitter);
1580 
1581         if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1582                                      errp)) {
1583             return;
1584         }
1585         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1586             return;
1587         }
1588 
1589         if (i < IOTS_NUM_EXP_MPC) {
1590             /* Splitter input is from GPIO input line */
1591             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1592             qdev_connect_gpio_out(dev_splitter, 0,
1593                                   qdev_get_gpio_in_named(dev_secctl,
1594                                                          "mpcexp_status", i));
1595         } else {
1596             /* Splitter input is from our own MPC */
1597             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1598                                         "irq", 0,
1599                                         qdev_get_gpio_in(dev_splitter, 0));
1600             qdev_connect_gpio_out(dev_splitter, 0,
1601                                   qdev_get_gpio_in_named(dev_secctl,
1602                                                          "mpc_status",
1603                                                          i - IOTS_NUM_EXP_MPC));
1604         }
1605 
1606         qdev_connect_gpio_out(dev_splitter, 1,
1607                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1608     }
1609     /* Create GPIO inputs which will pass the line state for our
1610      * mpcexp_irq inputs to the correct splitter devices.
1611      */
1612     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1613                             IOTS_NUM_EXP_MPC);
1614 
1615     armsse_forward_sec_resp_cfg(s);
1616 
1617     /* Forward the MSC related signals */
1618     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1619     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1620     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1621     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1622                                 armsse_get_common_irq_in(s, 11));
1623 
1624     /*
1625      * Expose our container region to the board model; this corresponds
1626      * to the AHB Slave Expansion ports which allow bus master devices
1627      * (eg DMA controllers) in the board model to make transactions into
1628      * devices in the ARMSSE.
1629      */
1630     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1631 
1632     /* Set initial system_clock_scale from MAINCLK */
1633     armsse_mainclk_update(s, ClockUpdate);
1634 }
1635 
1636 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1637                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1638 {
1639     /*
1640      * For ARMSSE systems the IDAU responses are simple logical functions
1641      * of the address bits. The NSC attribute is guest-adjustable via the
1642      * NSCCFG register in the security controller.
1643      */
1644     ARMSSE *s = ARM_SSE(ii);
1645     int region = extract32(address, 28, 4);
1646 
1647     *ns = !(region & 1);
1648     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1649     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1650     *exempt = (address & 0xeff00000) == 0xe0000000;
1651     *iregion = region;
1652 }
1653 
1654 static const VMStateDescription armsse_vmstate = {
1655     .name = "iotkit",
1656     .version_id = 2,
1657     .minimum_version_id = 2,
1658     .fields = (VMStateField[]) {
1659         VMSTATE_CLOCK(mainclk, ARMSSE),
1660         VMSTATE_CLOCK(s32kclk, ARMSSE),
1661         VMSTATE_UINT32(nsccfg, ARMSSE),
1662         VMSTATE_END_OF_LIST()
1663     }
1664 };
1665 
1666 static void armsse_reset(DeviceState *dev)
1667 {
1668     ARMSSE *s = ARM_SSE(dev);
1669 
1670     s->nsccfg = 0;
1671 }
1672 
1673 static void armsse_class_init(ObjectClass *klass, void *data)
1674 {
1675     DeviceClass *dc = DEVICE_CLASS(klass);
1676     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1677     ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1678     const ARMSSEInfo *info = data;
1679 
1680     dc->realize = armsse_realize;
1681     dc->vmsd = &armsse_vmstate;
1682     device_class_set_props(dc, info->props);
1683     dc->reset = armsse_reset;
1684     iic->check = armsse_idau_check;
1685     asc->info = info;
1686 }
1687 
1688 static const TypeInfo armsse_info = {
1689     .name = TYPE_ARM_SSE,
1690     .parent = TYPE_SYS_BUS_DEVICE,
1691     .instance_size = sizeof(ARMSSE),
1692     .class_size = sizeof(ARMSSEClass),
1693     .instance_init = armsse_init,
1694     .abstract = true,
1695     .interfaces = (InterfaceInfo[]) {
1696         { TYPE_IDAU_INTERFACE },
1697         { }
1698     }
1699 };
1700 
1701 static void armsse_register_types(void)
1702 {
1703     int i;
1704 
1705     type_register_static(&armsse_info);
1706 
1707     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1708         TypeInfo ti = {
1709             .name = armsse_variants[i].name,
1710             .parent = TYPE_ARM_SSE,
1711             .class_init = armsse_class_init,
1712             .class_data = (void *)&armsse_variants[i],
1713         };
1714         type_register(&ti);
1715     }
1716 }
1717 
1718 type_init(armsse_register_types);
1719