xref: /openbmc/qemu/hw/arm/armsse.c (revision e7cff9c6)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat {
27     IoTKitFormat,
28     SSE200Format,
29 } SysConfigFormat;
30 
31 struct ARMSSEInfo {
32     const char *name;
33     int sram_banks;
34     int num_cpus;
35     uint32_t sys_version;
36     uint32_t cpuwait_rst;
37     SysConfigFormat sys_config_format;
38     bool has_mhus;
39     bool has_ppus;
40     bool has_cachectrl;
41     bool has_cpusecctrl;
42     bool has_cpuid;
43     Property *props;
44 };
45 
46 static Property iotkit_properties[] = {
47     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
48                      MemoryRegion *),
49     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
50     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
51     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55     DEFINE_PROP_END_OF_LIST()
56 };
57 
58 static Property armsse_properties[] = {
59     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60                      MemoryRegion *),
61     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
63     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
64     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
65     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
66     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
67     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
68     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
69     DEFINE_PROP_END_OF_LIST()
70 };
71 
72 static const ARMSSEInfo armsse_variants[] = {
73     {
74         .name = TYPE_IOTKIT,
75         .sram_banks = 1,
76         .num_cpus = 1,
77         .sys_version = 0x41743,
78         .cpuwait_rst = 0,
79         .sys_config_format = IoTKitFormat,
80         .has_mhus = false,
81         .has_ppus = false,
82         .has_cachectrl = false,
83         .has_cpusecctrl = false,
84         .has_cpuid = false,
85         .props = iotkit_properties,
86     },
87     {
88         .name = TYPE_SSE200,
89         .sram_banks = 4,
90         .num_cpus = 2,
91         .sys_version = 0x22041743,
92         .cpuwait_rst = 2,
93         .sys_config_format = SSE200Format,
94         .has_mhus = true,
95         .has_ppus = true,
96         .has_cachectrl = true,
97         .has_cpusecctrl = true,
98         .has_cpuid = true,
99         .props = armsse_properties,
100     },
101 };
102 
103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
104 {
105     /* Return the SYS_CONFIG value for this SSE */
106     uint32_t sys_config;
107 
108     switch (info->sys_config_format) {
109     case IoTKitFormat:
110         sys_config = 0;
111         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
112         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
113         break;
114     case SSE200Format:
115         sys_config = 0;
116         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
117         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
118         sys_config = deposit32(sys_config, 24, 4, 2);
119         if (info->num_cpus > 1) {
120             sys_config = deposit32(sys_config, 10, 1, 1);
121             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
122             sys_config = deposit32(sys_config, 28, 4, 2);
123         }
124         break;
125     default:
126         g_assert_not_reached();
127     }
128     return sys_config;
129 }
130 
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
133 
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common[32] = {
136     [0 ... 5] = true,
137     /* 6, 7: per-CPU MHU interrupts */
138     [8 ... 12] = true,
139     /* 13: per-CPU icache interrupt */
140     /* 14: reserved */
141     [15 ... 20] = true,
142     /* 21: reserved */
143     [22 ... 26] = true,
144     /* 27: reserved */
145     /* 28, 29: per-CPU CTI interrupts */
146     /* 30, 31: reserved */
147 };
148 
149 /*
150  * Create an alias region in @container of @size bytes starting at @base
151  * which mirrors the memory starting at @orig.
152  */
153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
154                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
155 {
156     memory_region_init_alias(mr, NULL, name, container, orig, size);
157     /* The alias is even lower priority than unimplemented_device regions */
158     memory_region_add_subregion_overlap(container, base, mr, -1500);
159 }
160 
161 static void irq_status_forwarder(void *opaque, int n, int level)
162 {
163     qemu_irq destirq = opaque;
164 
165     qemu_set_irq(destirq, level);
166 }
167 
168 static void nsccfg_handler(void *opaque, int n, int level)
169 {
170     ARMSSE *s = ARM_SSE(opaque);
171 
172     s->nsccfg = level;
173 }
174 
175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
176 {
177     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178      * system using the ARMSSE has a collection of control lines which
179      * are provided by the security controller and which we want to
180      * expose as control lines on the ARMSSE device itself, so the
181      * code using the ARMSSE can wire them up to the PPCs.
182      */
183     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
184     DeviceState *armssedev = DEVICE(s);
185     DeviceState *dev_secctl = DEVICE(&s->secctl);
186     DeviceState *dev_splitter = DEVICE(splitter);
187     char *name;
188 
189     name = g_strdup_printf("%s_nonsec", ppcname);
190     qdev_pass_gpios(dev_secctl, armssedev, name);
191     g_free(name);
192     name = g_strdup_printf("%s_ap", ppcname);
193     qdev_pass_gpios(dev_secctl, armssedev, name);
194     g_free(name);
195     name = g_strdup_printf("%s_irq_enable", ppcname);
196     qdev_pass_gpios(dev_secctl, armssedev, name);
197     g_free(name);
198     name = g_strdup_printf("%s_irq_clear", ppcname);
199     qdev_pass_gpios(dev_secctl, armssedev, name);
200     g_free(name);
201 
202     /* irq_status is a little more tricky, because we need to
203      * split it so we can send it both to the security controller
204      * and to our OR gate for the NVIC interrupt line.
205      * Connect up the splitter's outputs, and create a GPIO input
206      * which will pass the line state to the input splitter.
207      */
208     name = g_strdup_printf("%s_irq_status", ppcname);
209     qdev_connect_gpio_out(dev_splitter, 0,
210                           qdev_get_gpio_in_named(dev_secctl,
211                                                  name, 0));
212     qdev_connect_gpio_out(dev_splitter, 1,
213                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
214     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
215     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
216                                         s->irq_status_in[ppcnum], name, 1);
217     g_free(name);
218 }
219 
220 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
221 {
222     /* Forward the 3rd output from the splitter device as a
223      * named GPIO output of the armsse object.
224      */
225     DeviceState *dev = DEVICE(s);
226     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
227 
228     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
229     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
230                                            s->sec_resp_cfg, 1);
231     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
232 }
233 
234 static void armsse_init(Object *obj)
235 {
236     ARMSSE *s = ARM_SSE(obj);
237     ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
238     const ARMSSEInfo *info = asc->info;
239     int i;
240 
241     assert(info->sram_banks <= MAX_SRAM_BANKS);
242     assert(info->num_cpus <= SSE_MAX_CPUS);
243 
244     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
245 
246     for (i = 0; i < info->num_cpus; i++) {
247         /*
248          * We put each CPU in its own cluster as they are logically
249          * distinct and may be configured differently.
250          */
251         char *name;
252 
253         name = g_strdup_printf("cluster%d", i);
254         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
255         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
256         g_free(name);
257 
258         name = g_strdup_printf("armv7m%d", i);
259         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
260                                 TYPE_ARMV7M);
261         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
262                              ARM_CPU_TYPE_NAME("cortex-m33"));
263         g_free(name);
264         name = g_strdup_printf("arm-sse-cpu-container%d", i);
265         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
266         g_free(name);
267         if (i > 0) {
268             name = g_strdup_printf("arm-sse-container-alias%d", i);
269             memory_region_init_alias(&s->container_alias[i - 1], obj,
270                                      name, &s->container, 0, UINT64_MAX);
271             g_free(name);
272         }
273     }
274 
275     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
276     object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
277     object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
278     for (i = 0; i < info->sram_banks; i++) {
279         char *name = g_strdup_printf("mpc%d", i);
280         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
281         g_free(name);
282     }
283     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
284                             TYPE_OR_IRQ);
285 
286     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
287         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
288         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
289 
290         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
291         g_free(name);
292     }
293     object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
294     object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
295     object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
296                             TYPE_CMSDK_APB_TIMER);
297     object_initialize_child(obj, "dualtimer", &s->dualtimer,
298                             TYPE_CMSDK_APB_DUALTIMER);
299     object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
300                             TYPE_CMSDK_APB_WATCHDOG);
301     object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
302                             TYPE_CMSDK_APB_WATCHDOG);
303     object_initialize_child(obj, "swatchdog", &s->swatchdog,
304                             TYPE_CMSDK_APB_WATCHDOG);
305     object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
306                             TYPE_IOTKIT_SYSCTL);
307     object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
308                             TYPE_IOTKIT_SYSINFO);
309     if (info->has_mhus) {
310         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
311         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
312     }
313     if (info->has_ppus) {
314         for (i = 0; i < info->num_cpus; i++) {
315             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
316             int ppuidx = CPU0CORE_PPU + i;
317 
318             object_initialize_child(obj, name, &s->ppu[ppuidx],
319                                     TYPE_UNIMPLEMENTED_DEVICE);
320             g_free(name);
321         }
322         object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
323                                 TYPE_UNIMPLEMENTED_DEVICE);
324         for (i = 0; i < info->sram_banks; i++) {
325             char *name = g_strdup_printf("RAM%d_PPU", i);
326             int ppuidx = RAM0_PPU + i;
327 
328             object_initialize_child(obj, name, &s->ppu[ppuidx],
329                                     TYPE_UNIMPLEMENTED_DEVICE);
330             g_free(name);
331         }
332     }
333     if (info->has_cachectrl) {
334         for (i = 0; i < info->num_cpus; i++) {
335             char *name = g_strdup_printf("cachectrl%d", i);
336 
337             object_initialize_child(obj, name, &s->cachectrl[i],
338                                     TYPE_UNIMPLEMENTED_DEVICE);
339             g_free(name);
340         }
341     }
342     if (info->has_cpusecctrl) {
343         for (i = 0; i < info->num_cpus; i++) {
344             char *name = g_strdup_printf("cpusecctrl%d", i);
345 
346             object_initialize_child(obj, name, &s->cpusecctrl[i],
347                                     TYPE_UNIMPLEMENTED_DEVICE);
348             g_free(name);
349         }
350     }
351     if (info->has_cpuid) {
352         for (i = 0; i < info->num_cpus; i++) {
353             char *name = g_strdup_printf("cpuid%d", i);
354 
355             object_initialize_child(obj, name, &s->cpuid[i],
356                                     TYPE_ARMSSE_CPUID);
357             g_free(name);
358         }
359     }
360     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
361     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
362                             TYPE_OR_IRQ);
363     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
364                             TYPE_SPLIT_IRQ);
365     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
366         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
367         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
368 
369         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
370         g_free(name);
371     }
372     if (info->num_cpus > 1) {
373         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
374             if (irq_is_common[i]) {
375                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
376                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
377 
378                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
379                 g_free(name);
380             }
381         }
382     }
383 }
384 
385 static void armsse_exp_irq(void *opaque, int n, int level)
386 {
387     qemu_irq *irqarray = opaque;
388 
389     qemu_set_irq(irqarray[n], level);
390 }
391 
392 static void armsse_mpcexp_status(void *opaque, int n, int level)
393 {
394     ARMSSE *s = ARM_SSE(opaque);
395     qemu_set_irq(s->mpcexp_status_in[n], level);
396 }
397 
398 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
399 {
400     /*
401      * Return a qemu_irq which can be used to signal IRQ n to
402      * all CPUs in the SSE.
403      */
404     ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
405     const ARMSSEInfo *info = asc->info;
406 
407     assert(irq_is_common[irqno]);
408 
409     if (info->num_cpus == 1) {
410         /* Only one CPU -- just connect directly to it */
411         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
412     } else {
413         /* Connect to the splitter which feeds all CPUs */
414         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
415     }
416 }
417 
418 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
419 {
420     /* Map a PPU unimplemented device stub */
421     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
422 
423     qdev_prop_set_string(dev, "name", name);
424     qdev_prop_set_uint64(dev, "size", 0x1000);
425     sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
426     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
427 }
428 
429 static void armsse_realize(DeviceState *dev, Error **errp)
430 {
431     ARMSSE *s = ARM_SSE(dev);
432     ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
433     const ARMSSEInfo *info = asc->info;
434     int i;
435     MemoryRegion *mr;
436     Error *err = NULL;
437     SysBusDevice *sbd_apb_ppc0;
438     SysBusDevice *sbd_secctl;
439     DeviceState *dev_apb_ppc0;
440     DeviceState *dev_apb_ppc1;
441     DeviceState *dev_secctl;
442     DeviceState *dev_splitter;
443     uint32_t addr_width_max;
444 
445     if (!s->board_memory) {
446         error_setg(errp, "memory property was not set");
447         return;
448     }
449 
450     if (!s->mainclk_frq) {
451         error_setg(errp, "MAINCLK property was not set");
452         return;
453     }
454 
455     assert(info->num_cpus <= SSE_MAX_CPUS);
456 
457     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
458     assert(is_power_of_2(info->sram_banks));
459     addr_width_max = 24 - ctz32(info->sram_banks);
460     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
461         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
462                    addr_width_max);
463         return;
464     }
465 
466     /* Handling of which devices should be available only to secure
467      * code is usually done differently for M profile than for A profile.
468      * Instead of putting some devices only into the secure address space,
469      * devices exist in both address spaces but with hard-wired security
470      * permissions that will cause the CPU to fault for non-secure accesses.
471      *
472      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
473      * which specifies hard-wired security permissions for different
474      * areas of the physical address space. For the ARMSSE IDAU, the
475      * top 4 bits of the physical address are the IDAU region ID, and
476      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
477      * region, otherwise it is an S region.
478      *
479      * The various devices and RAMs are generally all mapped twice,
480      * once into a region that the IDAU defines as secure and once
481      * into a non-secure region. They sit behind either a Memory
482      * Protection Controller (for RAM) or a Peripheral Protection
483      * Controller (for devices), which allow a more fine grained
484      * configuration of whether non-secure accesses are permitted.
485      *
486      * (The other place that guest software can configure security
487      * permissions is in the architected SAU (Security Attribution
488      * Unit), which is entirely inside the CPU. The IDAU can upgrade
489      * the security attributes for a region to more restrictive than
490      * the SAU specifies, but cannot downgrade them.)
491      *
492      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
493      * 0x20000000..0x2007ffff  32KB FPGA block RAM
494      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
495      * 0x40000000..0x4000ffff  base peripheral region 1
496      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
497      * 0x40020000..0x4002ffff  system control element peripherals
498      * 0x40080000..0x400fffff  base peripheral region 2
499      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
500      */
501 
502     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
503 
504     for (i = 0; i < info->num_cpus; i++) {
505         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
506         Object *cpuobj = OBJECT(&s->armv7m[i]);
507         int j;
508         char *gpioname;
509 
510         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
511         /*
512          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
513          * registers in the IoT Kit System Control Register block. In QEMU
514          * we set the initial value here, and also the reset value of the
515          * sysctl register, from this object's QOM init-svtor property.
516          * If the guest changes the INITSVTOR* registers at runtime then the
517          * code in iotkit-sysctl.c will update the CPU init-svtor property
518          * (which will then take effect on the next CPU warm-reset).
519          *
520          * Note that typically a board using the SSE-200 will have a system
521          * control processor whose boot firmware initializes the INITSVTOR*
522          * registers before powering up the CPUs. QEMU doesn't emulate
523          * the control processor, so instead we behave in the way that the
524          * firmware does: the initial value should be set by the board code
525          * (using the init-svtor property on the ARMSSE object) to match
526          * whatever its firmware does.
527          */
528         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
529         /*
530          * CPUs start powered down if the corresponding bit in the CPUWAIT
531          * register is 1. In real hardware the CPUWAIT register reset value is
532          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
533          * CPUWAIT1_RST parameters), but since all the boards we care about
534          * start CPU0 and leave CPU1 powered off, we hard-code that in
535          * info->cpuwait_rst for now. We can add QOM properties for this
536          * later if necessary.
537          */
538         if (extract32(info->cpuwait_rst, i, 1)) {
539             if (!object_property_set_bool(cpuobj, "start-powered-off", true,
540                                           errp)) {
541                 return;
542             }
543         }
544         if (!s->cpu_fpu[i]) {
545             if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
546                 return;
547             }
548         }
549         if (!s->cpu_dsp[i]) {
550             if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
551                 return;
552             }
553         }
554 
555         if (i > 0) {
556             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
557                                                 &s->container_alias[i - 1], -1);
558         } else {
559             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
560                                                 &s->container, -1);
561         }
562         object_property_set_link(cpuobj, "memory",
563                                  OBJECT(&s->cpu_container[i]), &error_abort);
564         object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
565         if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
566             return;
567         }
568         /*
569          * The cluster must be realized after the armv7m container, as
570          * the container's CPU object is only created on realize, and the
571          * CPU must exist and have been parented into the cluster before
572          * the cluster is realized.
573          */
574         if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
575             return;
576         }
577 
578         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
579         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
580         for (j = 0; j < s->exp_numirq; j++) {
581             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
582         }
583         if (i == 0) {
584             gpioname = g_strdup("EXP_IRQ");
585         } else {
586             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
587         }
588         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
589                                             s->exp_irqs[i],
590                                             gpioname, s->exp_numirq);
591         g_free(gpioname);
592     }
593 
594     /* Wire up the splitters that connect common IRQs to all CPUs */
595     if (info->num_cpus > 1) {
596         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
597             if (irq_is_common[i]) {
598                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
599                 DeviceState *devs = DEVICE(splitter);
600                 int cpunum;
601 
602                 if (!object_property_set_int(splitter, "num-lines",
603                                              info->num_cpus, errp)) {
604                     return;
605                 }
606                 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
607                     return;
608                 }
609                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
610                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
611 
612                     qdev_connect_gpio_out(devs, cpunum,
613                                           qdev_get_gpio_in(cpudev, i));
614                 }
615             }
616         }
617     }
618 
619     /* Set up the big aliases first */
620     make_alias(s, &s->alias1, &s->container, "alias 1",
621                0x10000000, 0x10000000, 0x00000000);
622     make_alias(s, &s->alias2, &s->container,
623                "alias 2", 0x30000000, 0x10000000, 0x20000000);
624     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
625      * a few extra devices that only appear there (generally the
626      * control interfaces for the protection controllers).
627      * We implement this by mapping those devices over the top of this
628      * alias MR at a higher priority. Some of the devices in this range
629      * are per-CPU, so we must put this alias in the per-cpu containers.
630      */
631     for (i = 0; i < info->num_cpus; i++) {
632         make_alias(s, &s->alias3[i], &s->cpu_container[i],
633                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
634     }
635 
636     /* Security controller */
637     if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
638         return;
639     }
640     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
641     dev_secctl = DEVICE(&s->secctl);
642     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
643     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
644 
645     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
646     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
647 
648     /* The sec_resp_cfg output from the security controller must be split into
649      * multiple lines, one for each of the PPCs within the ARMSSE and one
650      * that will be an output from the ARMSSE to the system.
651      */
652     if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
653                                  "num-lines", 3, errp)) {
654         return;
655     }
656     if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
657         return;
658     }
659     dev_splitter = DEVICE(&s->sec_resp_splitter);
660     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
661                                 qdev_get_gpio_in(dev_splitter, 0));
662 
663     /* Each SRAM bank lives behind its own Memory Protection Controller */
664     for (i = 0; i < info->sram_banks; i++) {
665         char *ramname = g_strdup_printf("armsse.sram%d", i);
666         SysBusDevice *sbd_mpc;
667         uint32_t sram_bank_size = 1 << s->sram_addr_width;
668 
669         memory_region_init_ram(&s->sram[i], NULL, ramname,
670                                sram_bank_size, &err);
671         g_free(ramname);
672         if (err) {
673             error_propagate(errp, err);
674             return;
675         }
676         object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
677                                  OBJECT(&s->sram[i]), &error_abort);
678         if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
679             return;
680         }
681         /* Map the upstream end of the MPC into the right place... */
682         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
683         memory_region_add_subregion(&s->container,
684                                     0x20000000 + i * sram_bank_size,
685                                     sysbus_mmio_get_region(sbd_mpc, 1));
686         /* ...and its register interface */
687         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
688                                     sysbus_mmio_get_region(sbd_mpc, 0));
689     }
690 
691     /* We must OR together lines from the MPC splitters to go to the NVIC */
692     if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
693                                  IOTS_NUM_EXP_MPC + info->sram_banks,
694                                  errp)) {
695         return;
696     }
697     if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
698         return;
699     }
700     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
701                           armsse_get_common_irq_in(s, 9));
702 
703     /* Devices behind APB PPC0:
704      *   0x40000000: timer0
705      *   0x40001000: timer1
706      *   0x40002000: dual timer
707      *   0x40003000: MHU0 (SSE-200 only)
708      *   0x40004000: MHU1 (SSE-200 only)
709      * We must configure and realize each downstream device and connect
710      * it to the appropriate PPC port; then we can realize the PPC and
711      * map its upstream ends to the right place in the container.
712      */
713     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
714     if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer0), errp)) {
715         return;
716     }
717     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
718                        armsse_get_common_irq_in(s, 3));
719     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
720     object_property_set_link(OBJECT(&s->apb_ppc0), "port[0]", OBJECT(mr),
721                              &error_abort);
722 
723     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
724     if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer1), errp)) {
725         return;
726     }
727     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
728                        armsse_get_common_irq_in(s, 4));
729     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
730     object_property_set_link(OBJECT(&s->apb_ppc0), "port[1]", OBJECT(mr),
731                              &error_abort);
732 
733     qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
734     if (!sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), errp)) {
735         return;
736     }
737     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
738                        armsse_get_common_irq_in(s, 5));
739     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
740     object_property_set_link(OBJECT(&s->apb_ppc0), "port[2]", OBJECT(mr),
741                              &error_abort);
742 
743     if (info->has_mhus) {
744         /*
745          * An SSE-200 with only one CPU should have only one MHU created,
746          * with the region where the second MHU usually is being RAZ/WI.
747          * We don't implement that SSE-200 config; if we want to support
748          * it then this code needs to be enhanced to handle creating the
749          * RAZ/WI region instead of the second MHU.
750          */
751         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
752 
753         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
754             char *port;
755             int cpunum;
756             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
757 
758             if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
759                 return;
760             }
761             port = g_strdup_printf("port[%d]", i + 3);
762             mr = sysbus_mmio_get_region(mhu_sbd, 0);
763             object_property_set_link(OBJECT(&s->apb_ppc0), port, OBJECT(mr),
764                                      &error_abort);
765             g_free(port);
766 
767             /*
768              * Each MHU has an irq line for each CPU:
769              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
770              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
771              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
772              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
773              */
774             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
775                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
776 
777                 sysbus_connect_irq(mhu_sbd, cpunum,
778                                    qdev_get_gpio_in(cpudev, 6 + i));
779             }
780         }
781     }
782 
783     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), errp)) {
784         return;
785     }
786 
787     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
788     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
789 
790     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
791     memory_region_add_subregion(&s->container, 0x40000000, mr);
792     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
793     memory_region_add_subregion(&s->container, 0x40001000, mr);
794     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
795     memory_region_add_subregion(&s->container, 0x40002000, mr);
796     if (info->has_mhus) {
797         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
798         memory_region_add_subregion(&s->container, 0x40003000, mr);
799         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
800         memory_region_add_subregion(&s->container, 0x40004000, mr);
801     }
802     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
803         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
804                                     qdev_get_gpio_in_named(dev_apb_ppc0,
805                                                            "cfg_nonsec", i));
806         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
807                                     qdev_get_gpio_in_named(dev_apb_ppc0,
808                                                            "cfg_ap", i));
809     }
810     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
811                                 qdev_get_gpio_in_named(dev_apb_ppc0,
812                                                        "irq_enable", 0));
813     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
814                                 qdev_get_gpio_in_named(dev_apb_ppc0,
815                                                        "irq_clear", 0));
816     qdev_connect_gpio_out(dev_splitter, 0,
817                           qdev_get_gpio_in_named(dev_apb_ppc0,
818                                                  "cfg_sec_resp", 0));
819 
820     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
821      * ones) are sent individually to the security controller, and also
822      * ORed together to give a single combined PPC interrupt to the NVIC.
823      */
824     if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
825                                  "num-lines", NUM_PPCS, errp)) {
826         return;
827     }
828     if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
829         return;
830     }
831     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
832                           armsse_get_common_irq_in(s, 10));
833 
834     /*
835      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
836      * private per-CPU region (all these devices are SSE-200 only):
837      *  0x50010000: L1 icache control registers
838      *  0x50011000: CPUSECCTRL (CPU local security control registers)
839      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
840      */
841     if (info->has_cachectrl) {
842         for (i = 0; i < info->num_cpus; i++) {
843             char *name = g_strdup_printf("cachectrl%d", i);
844             MemoryRegion *mr;
845 
846             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
847             g_free(name);
848             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
849             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
850                 return;
851             }
852 
853             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
854             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
855         }
856     }
857     if (info->has_cpusecctrl) {
858         for (i = 0; i < info->num_cpus; i++) {
859             char *name = g_strdup_printf("CPUSECCTRL%d", i);
860             MemoryRegion *mr;
861 
862             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
863             g_free(name);
864             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
865             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
866                 return;
867             }
868 
869             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
870             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
871         }
872     }
873     if (info->has_cpuid) {
874         for (i = 0; i < info->num_cpus; i++) {
875             MemoryRegion *mr;
876 
877             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
878             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
879                 return;
880             }
881 
882             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
883             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
884         }
885     }
886 
887     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
888     /* Devices behind APB PPC1:
889      *   0x4002f000: S32K timer
890      */
891     qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
892     if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), errp)) {
893         return;
894     }
895     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
896                        armsse_get_common_irq_in(s, 2));
897     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
898     object_property_set_link(OBJECT(&s->apb_ppc1), "port[0]", OBJECT(mr),
899                              &error_abort);
900 
901     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), errp)) {
902         return;
903     }
904     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
905     memory_region_add_subregion(&s->container, 0x4002f000, mr);
906 
907     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
908     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
909                                 qdev_get_gpio_in_named(dev_apb_ppc1,
910                                                        "cfg_nonsec", 0));
911     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
912                                 qdev_get_gpio_in_named(dev_apb_ppc1,
913                                                        "cfg_ap", 0));
914     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
915                                 qdev_get_gpio_in_named(dev_apb_ppc1,
916                                                        "irq_enable", 0));
917     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
918                                 qdev_get_gpio_in_named(dev_apb_ppc1,
919                                                        "irq_clear", 0));
920     qdev_connect_gpio_out(dev_splitter, 1,
921                           qdev_get_gpio_in_named(dev_apb_ppc1,
922                                                  "cfg_sec_resp", 0));
923 
924     if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
925                                  info->sys_version, errp)) {
926         return;
927     }
928     if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
929                                  armsse_sys_config_value(s, info), errp)) {
930         return;
931     }
932     if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), errp)) {
933         return;
934     }
935     /* System information registers */
936     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
937     /* System control registers */
938     object_property_set_int(OBJECT(&s->sysctl), "SYS_VERSION",
939                             info->sys_version, &error_abort);
940     object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
941                             info->cpuwait_rst, &error_abort);
942     object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
943                             s->init_svtor, &error_abort);
944     object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
945                             s->init_svtor, &error_abort);
946     if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), errp)) {
947         return;
948     }
949     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
950 
951     if (info->has_ppus) {
952         /* CPUnCORE_PPU for each CPU */
953         for (i = 0; i < info->num_cpus; i++) {
954             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
955 
956             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
957             /*
958              * We don't support CPU debug so don't create the
959              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
960              */
961             g_free(name);
962         }
963         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
964 
965         for (i = 0; i < info->sram_banks; i++) {
966             char *name = g_strdup_printf("RAM%d_PPU", i);
967 
968             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
969             g_free(name);
970         }
971     }
972 
973     /* This OR gate wires together outputs from the secure watchdogs to NMI */
974     if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
975                                  errp)) {
976         return;
977     }
978     if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
979         return;
980     }
981     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
982                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
983 
984     qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
985     if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), errp)) {
986         return;
987     }
988     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
989                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
990     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
991 
992     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
993 
994     qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
995     if (!sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), errp)) {
996         return;
997     }
998     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
999                        armsse_get_common_irq_in(s, 1));
1000     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1001 
1002     qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1003     if (!sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), errp)) {
1004         return;
1005     }
1006     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1007                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1008     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1009 
1010     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1011         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1012 
1013         if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1014             return;
1015         }
1016         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1017             return;
1018         }
1019     }
1020 
1021     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1022         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1023 
1024         armsse_forward_ppc(s, ppcname, i);
1025         g_free(ppcname);
1026     }
1027 
1028     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1029         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1030 
1031         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1032         g_free(ppcname);
1033     }
1034 
1035     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1036         /* Wire up IRQ splitter for internal PPCs */
1037         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1038         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1039                                          i - NUM_EXTERNAL_PPCS);
1040         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1041 
1042         qdev_connect_gpio_out(devs, 0,
1043                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1044         qdev_connect_gpio_out(devs, 1,
1045                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1046         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1047                                     qdev_get_gpio_in(devs, 0));
1048         g_free(gpioname);
1049     }
1050 
1051     /* Wire up the splitters for the MPC IRQs */
1052     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1053         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1054         DeviceState *dev_splitter = DEVICE(splitter);
1055 
1056         if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1057                                      errp)) {
1058             return;
1059         }
1060         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1061             return;
1062         }
1063 
1064         if (i < IOTS_NUM_EXP_MPC) {
1065             /* Splitter input is from GPIO input line */
1066             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1067             qdev_connect_gpio_out(dev_splitter, 0,
1068                                   qdev_get_gpio_in_named(dev_secctl,
1069                                                          "mpcexp_status", i));
1070         } else {
1071             /* Splitter input is from our own MPC */
1072             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1073                                         "irq", 0,
1074                                         qdev_get_gpio_in(dev_splitter, 0));
1075             qdev_connect_gpio_out(dev_splitter, 0,
1076                                   qdev_get_gpio_in_named(dev_secctl,
1077                                                          "mpc_status",
1078                                                          i - IOTS_NUM_EXP_MPC));
1079         }
1080 
1081         qdev_connect_gpio_out(dev_splitter, 1,
1082                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1083     }
1084     /* Create GPIO inputs which will pass the line state for our
1085      * mpcexp_irq inputs to the correct splitter devices.
1086      */
1087     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1088                             IOTS_NUM_EXP_MPC);
1089 
1090     armsse_forward_sec_resp_cfg(s);
1091 
1092     /* Forward the MSC related signals */
1093     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1094     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1095     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1096     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1097                                 armsse_get_common_irq_in(s, 11));
1098 
1099     /*
1100      * Expose our container region to the board model; this corresponds
1101      * to the AHB Slave Expansion ports which allow bus master devices
1102      * (eg DMA controllers) in the board model to make transactions into
1103      * devices in the ARMSSE.
1104      */
1105     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1106 
1107     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1108 }
1109 
1110 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1111                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1112 {
1113     /*
1114      * For ARMSSE systems the IDAU responses are simple logical functions
1115      * of the address bits. The NSC attribute is guest-adjustable via the
1116      * NSCCFG register in the security controller.
1117      */
1118     ARMSSE *s = ARM_SSE(ii);
1119     int region = extract32(address, 28, 4);
1120 
1121     *ns = !(region & 1);
1122     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1123     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1124     *exempt = (address & 0xeff00000) == 0xe0000000;
1125     *iregion = region;
1126 }
1127 
1128 static const VMStateDescription armsse_vmstate = {
1129     .name = "iotkit",
1130     .version_id = 1,
1131     .minimum_version_id = 1,
1132     .fields = (VMStateField[]) {
1133         VMSTATE_UINT32(nsccfg, ARMSSE),
1134         VMSTATE_END_OF_LIST()
1135     }
1136 };
1137 
1138 static void armsse_reset(DeviceState *dev)
1139 {
1140     ARMSSE *s = ARM_SSE(dev);
1141 
1142     s->nsccfg = 0;
1143 }
1144 
1145 static void armsse_class_init(ObjectClass *klass, void *data)
1146 {
1147     DeviceClass *dc = DEVICE_CLASS(klass);
1148     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1149     ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1150     const ARMSSEInfo *info = data;
1151 
1152     dc->realize = armsse_realize;
1153     dc->vmsd = &armsse_vmstate;
1154     device_class_set_props(dc, info->props);
1155     dc->reset = armsse_reset;
1156     iic->check = armsse_idau_check;
1157     asc->info = info;
1158 }
1159 
1160 static const TypeInfo armsse_info = {
1161     .name = TYPE_ARM_SSE,
1162     .parent = TYPE_SYS_BUS_DEVICE,
1163     .instance_size = sizeof(ARMSSE),
1164     .class_size = sizeof(ARMSSEClass),
1165     .instance_init = armsse_init,
1166     .abstract = true,
1167     .interfaces = (InterfaceInfo[]) {
1168         { TYPE_IDAU_INTERFACE },
1169         { }
1170     }
1171 };
1172 
1173 static void armsse_register_types(void)
1174 {
1175     int i;
1176 
1177     type_register_static(&armsse_info);
1178 
1179     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1180         TypeInfo ti = {
1181             .name = armsse_variants[i].name,
1182             .parent = TYPE_ARM_SSE,
1183             .class_init = armsse_class_init,
1184             .class_data = (void *)&armsse_variants[i],
1185         };
1186         type_register(&ti);
1187     }
1188 }
1189 
1190 type_init(armsse_register_types);
1191