xref: /openbmc/qemu/hw/arm/armsse.c (revision d6bafaf4)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/armsse-version.h"
23 #include "hw/arm/boot.h"
24 #include "hw/irq.h"
25 #include "hw/qdev-clock.h"
26 
27 /*
28  * The SSE-300 puts some devices in different places to the
29  * SSE-200 (and original IoTKit). We use an array of these structs
30  * to define how each variant lays out these devices. (Parts of the
31  * SoC that are the same for all variants aren't handled via these
32  * data structures.)
33  */
34 
35 #define NO_IRQ -1
36 #define NO_PPC -1
37 /*
38  * Special values for ARMSSEDeviceInfo::irq to indicate that this
39  * device uses one of the inputs to the OR gate that feeds into the
40  * CPU NMI input.
41  */
42 #define NMI_0 10000
43 #define NMI_1 10001
44 
45 typedef struct ARMSSEDeviceInfo {
46     const char *name; /* name to use for the QOM object; NULL terminates list */
47     const char *type; /* QOM type name */
48     unsigned int index; /* Which of the N devices of this type is this ? */
49     hwaddr addr;
50     hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
51     int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */
52     int ppc_port; /* Port number of this device on the PPC */
53     int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
54     bool slowclk; /* true if device uses the slow 32KHz clock */
55 } ARMSSEDeviceInfo;
56 
57 struct ARMSSEInfo {
58     const char *name;
59     uint32_t sse_version;
60     int sram_banks;
61     int num_cpus;
62     uint32_t sys_version;
63     uint32_t iidr;
64     uint32_t cpuwait_rst;
65     bool has_mhus;
66     bool has_cachectrl;
67     bool has_cpusecctrl;
68     bool has_cpuid;
69     bool has_cpu_pwrctrl;
70     bool has_sse_counter;
71     Property *props;
72     const ARMSSEDeviceInfo *devinfo;
73     const bool *irq_is_common;
74 };
75 
76 static Property iotkit_properties[] = {
77     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
78                      MemoryRegion *),
79     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
80     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
81     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
82     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
83     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
84     DEFINE_PROP_END_OF_LIST()
85 };
86 
87 static Property armsse_properties[] = {
88     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
89                      MemoryRegion *),
90     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
91     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
92     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
93     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
94     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
95     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
96     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
97     DEFINE_PROP_END_OF_LIST()
98 };
99 
100 static const ARMSSEDeviceInfo iotkit_devices[] = {
101     {
102         .name = "timer0",
103         .type = TYPE_CMSDK_APB_TIMER,
104         .index = 0,
105         .addr = 0x40000000,
106         .ppc = 0,
107         .ppc_port = 0,
108         .irq = 3,
109     },
110     {
111         .name = "timer1",
112         .type = TYPE_CMSDK_APB_TIMER,
113         .index = 1,
114         .addr = 0x40001000,
115         .ppc = 0,
116         .ppc_port = 1,
117         .irq = 4,
118     },
119     {
120         .name = "s32ktimer",
121         .type = TYPE_CMSDK_APB_TIMER,
122         .index = 2,
123         .addr = 0x4002f000,
124         .ppc = 1,
125         .ppc_port = 0,
126         .irq = 2,
127         .slowclk = true,
128     },
129     {
130         .name = "dualtimer",
131         .type = TYPE_CMSDK_APB_DUALTIMER,
132         .index = 0,
133         .addr = 0x40002000,
134         .ppc = 0,
135         .ppc_port = 2,
136         .irq = 5,
137     },
138     {
139         .name = "s32kwatchdog",
140         .type = TYPE_CMSDK_APB_WATCHDOG,
141         .index = 0,
142         .addr = 0x5002e000,
143         .ppc = NO_PPC,
144         .irq = NMI_0,
145         .slowclk = true,
146     },
147     {
148         .name = "nswatchdog",
149         .type = TYPE_CMSDK_APB_WATCHDOG,
150         .index = 1,
151         .addr = 0x40081000,
152         .ppc = NO_PPC,
153         .irq = 1,
154     },
155     {
156         .name = "swatchdog",
157         .type = TYPE_CMSDK_APB_WATCHDOG,
158         .index = 2,
159         .addr = 0x50081000,
160         .ppc = NO_PPC,
161         .irq = NMI_1,
162     },
163     {
164         .name = "armsse-sysinfo",
165         .type = TYPE_IOTKIT_SYSINFO,
166         .index = 0,
167         .addr = 0x40020000,
168         .ppc = NO_PPC,
169         .irq = NO_IRQ,
170     },
171     {
172         .name = "armsse-sysctl",
173         .type = TYPE_IOTKIT_SYSCTL,
174         .index = 0,
175         .addr = 0x50021000,
176         .ppc = NO_PPC,
177         .irq = NO_IRQ,
178     },
179     {
180         .name = NULL,
181     }
182 };
183 
184 static const ARMSSEDeviceInfo sse200_devices[] = {
185     {
186         .name = "timer0",
187         .type = TYPE_CMSDK_APB_TIMER,
188         .index = 0,
189         .addr = 0x40000000,
190         .ppc = 0,
191         .ppc_port = 0,
192         .irq = 3,
193     },
194     {
195         .name = "timer1",
196         .type = TYPE_CMSDK_APB_TIMER,
197         .index = 1,
198         .addr = 0x40001000,
199         .ppc = 0,
200         .ppc_port = 1,
201         .irq = 4,
202     },
203     {
204         .name = "s32ktimer",
205         .type = TYPE_CMSDK_APB_TIMER,
206         .index = 2,
207         .addr = 0x4002f000,
208         .ppc = 1,
209         .ppc_port = 0,
210         .irq = 2,
211         .slowclk = true,
212     },
213     {
214         .name = "dualtimer",
215         .type = TYPE_CMSDK_APB_DUALTIMER,
216         .index = 0,
217         .addr = 0x40002000,
218         .ppc = 0,
219         .ppc_port = 2,
220         .irq = 5,
221     },
222     {
223         .name = "s32kwatchdog",
224         .type = TYPE_CMSDK_APB_WATCHDOG,
225         .index = 0,
226         .addr = 0x5002e000,
227         .ppc = NO_PPC,
228         .irq = NMI_0,
229         .slowclk = true,
230     },
231     {
232         .name = "nswatchdog",
233         .type = TYPE_CMSDK_APB_WATCHDOG,
234         .index = 1,
235         .addr = 0x40081000,
236         .ppc = NO_PPC,
237         .irq = 1,
238     },
239     {
240         .name = "swatchdog",
241         .type = TYPE_CMSDK_APB_WATCHDOG,
242         .index = 2,
243         .addr = 0x50081000,
244         .ppc = NO_PPC,
245         .irq = NMI_1,
246     },
247     {
248         .name = "armsse-sysinfo",
249         .type = TYPE_IOTKIT_SYSINFO,
250         .index = 0,
251         .addr = 0x40020000,
252         .ppc = NO_PPC,
253         .irq = NO_IRQ,
254     },
255     {
256         .name = "armsse-sysctl",
257         .type = TYPE_IOTKIT_SYSCTL,
258         .index = 0,
259         .addr = 0x50021000,
260         .ppc = NO_PPC,
261         .irq = NO_IRQ,
262     },
263     {
264         .name = "CPU0CORE_PPU",
265         .type = TYPE_UNIMPLEMENTED_DEVICE,
266         .index = 0,
267         .addr = 0x50023000,
268         .size = 0x1000,
269         .ppc = NO_PPC,
270         .irq = NO_IRQ,
271     },
272     {
273         .name = "CPU1CORE_PPU",
274         .type = TYPE_UNIMPLEMENTED_DEVICE,
275         .index = 1,
276         .addr = 0x50025000,
277         .size = 0x1000,
278         .ppc = NO_PPC,
279         .irq = NO_IRQ,
280     },
281     {
282         .name = "DBG_PPU",
283         .type = TYPE_UNIMPLEMENTED_DEVICE,
284         .index = 2,
285         .addr = 0x50029000,
286         .size = 0x1000,
287         .ppc = NO_PPC,
288         .irq = NO_IRQ,
289     },
290     {
291         .name = "RAM0_PPU",
292         .type = TYPE_UNIMPLEMENTED_DEVICE,
293         .index = 3,
294         .addr = 0x5002a000,
295         .size = 0x1000,
296         .ppc = NO_PPC,
297         .irq = NO_IRQ,
298     },
299     {
300         .name = "RAM1_PPU",
301         .type = TYPE_UNIMPLEMENTED_DEVICE,
302         .index = 4,
303         .addr = 0x5002b000,
304         .size = 0x1000,
305         .ppc = NO_PPC,
306         .irq = NO_IRQ,
307     },
308     {
309         .name = "RAM2_PPU",
310         .type = TYPE_UNIMPLEMENTED_DEVICE,
311         .index = 5,
312         .addr = 0x5002c000,
313         .size = 0x1000,
314         .ppc = NO_PPC,
315         .irq = NO_IRQ,
316     },
317     {
318         .name = "RAM3_PPU",
319         .type = TYPE_UNIMPLEMENTED_DEVICE,
320         .index = 6,
321         .addr = 0x5002d000,
322         .size = 0x1000,
323         .ppc = NO_PPC,
324         .irq = NO_IRQ,
325     },
326     {
327         .name = "SYS_PPU",
328         .type = TYPE_UNIMPLEMENTED_DEVICE,
329         .index = 7,
330         .addr = 0x50022000,
331         .size = 0x1000,
332         .ppc = NO_PPC,
333         .irq = NO_IRQ,
334     },
335     {
336         .name = NULL,
337     }
338 };
339 
340 static const ARMSSEDeviceInfo sse300_devices[] = {
341     {
342         .name = "timer0",
343         .type = TYPE_SSE_TIMER,
344         .index = 0,
345         .addr = 0x48000000,
346         .ppc = 0,
347         .ppc_port = 0,
348         .irq = 3,
349     },
350     {
351         .name = "timer1",
352         .type = TYPE_SSE_TIMER,
353         .index = 1,
354         .addr = 0x48001000,
355         .ppc = 0,
356         .ppc_port = 1,
357         .irq = 4,
358     },
359     {
360         .name = "timer2",
361         .type = TYPE_SSE_TIMER,
362         .index = 2,
363         .addr = 0x48002000,
364         .ppc = 0,
365         .ppc_port = 2,
366         .irq = 5,
367     },
368     {
369         .name = "timer3",
370         .type = TYPE_SSE_TIMER,
371         .index = 3,
372         .addr = 0x48003000,
373         .ppc = 0,
374         .ppc_port = 5,
375         .irq = 27,
376     },
377     {
378         .name = "s32ktimer",
379         .type = TYPE_CMSDK_APB_TIMER,
380         .index = 0,
381         .addr = 0x4802f000,
382         .ppc = 1,
383         .ppc_port = 0,
384         .irq = 2,
385         .slowclk = true,
386     },
387     {
388         .name = "s32kwatchdog",
389         .type = TYPE_CMSDK_APB_WATCHDOG,
390         .index = 0,
391         .addr = 0x4802e000,
392         .ppc = NO_PPC,
393         .irq = NMI_0,
394         .slowclk = true,
395     },
396     {
397         .name = "watchdog",
398         .type = TYPE_UNIMPLEMENTED_DEVICE,
399         .index = 0,
400         .addr = 0x48040000,
401         .size = 0x2000,
402         .ppc = NO_PPC,
403         .irq = NO_IRQ,
404     },
405     {
406         .name = "armsse-sysinfo",
407         .type = TYPE_IOTKIT_SYSINFO,
408         .index = 0,
409         .addr = 0x48020000,
410         .ppc = NO_PPC,
411         .irq = NO_IRQ,
412     },
413     {
414         .name = "armsse-sysctl",
415         .type = TYPE_IOTKIT_SYSCTL,
416         .index = 0,
417         .addr = 0x58021000,
418         .ppc = NO_PPC,
419         .irq = NO_IRQ,
420     },
421     {
422         .name = "SYS_PPU",
423         .type = TYPE_UNIMPLEMENTED_DEVICE,
424         .index = 1,
425         .addr = 0x58022000,
426         .size = 0x1000,
427         .ppc = NO_PPC,
428         .irq = NO_IRQ,
429     },
430     {
431         .name = "CPU0CORE_PPU",
432         .type = TYPE_UNIMPLEMENTED_DEVICE,
433         .index = 2,
434         .addr = 0x50023000,
435         .size = 0x1000,
436         .ppc = NO_PPC,
437         .irq = NO_IRQ,
438     },
439     {
440         .name = "MGMT_PPU",
441         .type = TYPE_UNIMPLEMENTED_DEVICE,
442         .index = 3,
443         .addr = 0x50028000,
444         .size = 0x1000,
445         .ppc = NO_PPC,
446         .irq = NO_IRQ,
447     },
448     {
449         .name = "DEBUG_PPU",
450         .type = TYPE_UNIMPLEMENTED_DEVICE,
451         .index = 4,
452         .addr = 0x50029000,
453         .size = 0x1000,
454         .ppc = NO_PPC,
455         .irq = NO_IRQ,
456     },
457     {
458         .name = NULL,
459     }
460 };
461 
462 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
463 static const bool sse200_irq_is_common[32] = {
464     [0 ... 5] = true,
465     /* 6, 7: per-CPU MHU interrupts */
466     [8 ... 12] = true,
467     /* 13: per-CPU icache interrupt */
468     /* 14: reserved */
469     [15 ... 20] = true,
470     /* 21: reserved */
471     [22 ... 26] = true,
472     /* 27: reserved */
473     /* 28, 29: per-CPU CTI interrupts */
474     /* 30, 31: reserved */
475 };
476 
477 static const bool sse300_irq_is_common[32] = {
478     [0 ... 5] = true,
479     /* 6, 7: per-CPU MHU interrupts */
480     [8 ... 12] = true,
481     /* 13: reserved */
482     [14 ... 16] = true,
483     /* 17-25: reserved */
484     [26 ... 27] = true,
485     /* 28, 29: per-CPU CTI interrupts */
486     /* 30, 31: reserved */
487 };
488 
489 static const ARMSSEInfo armsse_variants[] = {
490     {
491         .name = TYPE_IOTKIT,
492         .sse_version = ARMSSE_IOTKIT,
493         .sram_banks = 1,
494         .num_cpus = 1,
495         .sys_version = 0x41743,
496         .iidr = 0,
497         .cpuwait_rst = 0,
498         .has_mhus = false,
499         .has_cachectrl = false,
500         .has_cpusecctrl = false,
501         .has_cpuid = false,
502         .has_cpu_pwrctrl = false,
503         .has_sse_counter = false,
504         .props = iotkit_properties,
505         .devinfo = iotkit_devices,
506         .irq_is_common = sse200_irq_is_common,
507     },
508     {
509         .name = TYPE_SSE200,
510         .sse_version = ARMSSE_SSE200,
511         .sram_banks = 4,
512         .num_cpus = 2,
513         .sys_version = 0x22041743,
514         .iidr = 0,
515         .cpuwait_rst = 2,
516         .has_mhus = true,
517         .has_cachectrl = true,
518         .has_cpusecctrl = true,
519         .has_cpuid = true,
520         .has_cpu_pwrctrl = false,
521         .has_sse_counter = false,
522         .props = armsse_properties,
523         .devinfo = sse200_devices,
524         .irq_is_common = sse200_irq_is_common,
525     },
526     {
527         .name = TYPE_SSE300,
528         .sse_version = ARMSSE_SSE300,
529         .sram_banks = 2,
530         .num_cpus = 1,
531         .sys_version = 0x7e00043b,
532         .iidr = 0x74a0043b,
533         .cpuwait_rst = 0,
534         .has_mhus = false,
535         .has_cachectrl = false,
536         .has_cpusecctrl = true,
537         .has_cpuid = true,
538         .has_cpu_pwrctrl = true,
539         .has_sse_counter = true,
540         .props = armsse_properties,
541         .devinfo = sse300_devices,
542         .irq_is_common = sse300_irq_is_common,
543     },
544 };
545 
546 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
547 {
548     /* Return the SYS_CONFIG value for this SSE */
549     uint32_t sys_config;
550 
551     switch (info->sse_version) {
552     case ARMSSE_IOTKIT:
553         sys_config = 0;
554         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
555         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
556         break;
557     case ARMSSE_SSE200:
558         sys_config = 0;
559         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
560         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
561         sys_config = deposit32(sys_config, 24, 4, 2);
562         if (info->num_cpus > 1) {
563             sys_config = deposit32(sys_config, 10, 1, 1);
564             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
565             sys_config = deposit32(sys_config, 28, 4, 2);
566         }
567         break;
568     case ARMSSE_SSE300:
569         sys_config = 0;
570         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
571         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
572         sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */
573         break;
574     default:
575         g_assert_not_reached();
576     }
577     return sys_config;
578 }
579 
580 /* Clock frequency in HZ of the 32KHz "slow clock" */
581 #define S32KCLK (32 * 1000)
582 
583 /*
584  * Create an alias region in @container of @size bytes starting at @base
585  * which mirrors the memory starting at @orig.
586  */
587 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
588                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
589 {
590     memory_region_init_alias(mr, NULL, name, container, orig, size);
591     /* The alias is even lower priority than unimplemented_device regions */
592     memory_region_add_subregion_overlap(container, base, mr, -1500);
593 }
594 
595 static void irq_status_forwarder(void *opaque, int n, int level)
596 {
597     qemu_irq destirq = opaque;
598 
599     qemu_set_irq(destirq, level);
600 }
601 
602 static void nsccfg_handler(void *opaque, int n, int level)
603 {
604     ARMSSE *s = ARM_SSE(opaque);
605 
606     s->nsccfg = level;
607 }
608 
609 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
610 {
611     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
612      * system using the ARMSSE has a collection of control lines which
613      * are provided by the security controller and which we want to
614      * expose as control lines on the ARMSSE device itself, so the
615      * code using the ARMSSE can wire them up to the PPCs.
616      */
617     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
618     DeviceState *armssedev = DEVICE(s);
619     DeviceState *dev_secctl = DEVICE(&s->secctl);
620     DeviceState *dev_splitter = DEVICE(splitter);
621     char *name;
622 
623     name = g_strdup_printf("%s_nonsec", ppcname);
624     qdev_pass_gpios(dev_secctl, armssedev, name);
625     g_free(name);
626     name = g_strdup_printf("%s_ap", ppcname);
627     qdev_pass_gpios(dev_secctl, armssedev, name);
628     g_free(name);
629     name = g_strdup_printf("%s_irq_enable", ppcname);
630     qdev_pass_gpios(dev_secctl, armssedev, name);
631     g_free(name);
632     name = g_strdup_printf("%s_irq_clear", ppcname);
633     qdev_pass_gpios(dev_secctl, armssedev, name);
634     g_free(name);
635 
636     /* irq_status is a little more tricky, because we need to
637      * split it so we can send it both to the security controller
638      * and to our OR gate for the NVIC interrupt line.
639      * Connect up the splitter's outputs, and create a GPIO input
640      * which will pass the line state to the input splitter.
641      */
642     name = g_strdup_printf("%s_irq_status", ppcname);
643     qdev_connect_gpio_out(dev_splitter, 0,
644                           qdev_get_gpio_in_named(dev_secctl,
645                                                  name, 0));
646     qdev_connect_gpio_out(dev_splitter, 1,
647                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
648     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
649     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
650                                         s->irq_status_in[ppcnum], name, 1);
651     g_free(name);
652 }
653 
654 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
655 {
656     /* Forward the 3rd output from the splitter device as a
657      * named GPIO output of the armsse object.
658      */
659     DeviceState *dev = DEVICE(s);
660     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
661 
662     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
663     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
664                                            s->sec_resp_cfg, 1);
665     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
666 }
667 
668 static void armsse_mainclk_update(void *opaque, ClockEvent event)
669 {
670     ARMSSE *s = ARM_SSE(opaque);
671 
672     /*
673      * Set system_clock_scale from our Clock input; this is what
674      * controls the tick rate of the CPU SysTick timer.
675      */
676     system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
677 }
678 
679 static void armsse_init(Object *obj)
680 {
681     ARMSSE *s = ARM_SSE(obj);
682     ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
683     const ARMSSEInfo *info = asc->info;
684     const ARMSSEDeviceInfo *devinfo;
685     int i;
686 
687     assert(info->sram_banks <= MAX_SRAM_BANKS);
688     assert(info->num_cpus <= SSE_MAX_CPUS);
689 
690     s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
691                                     armsse_mainclk_update, s, ClockUpdate);
692     s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
693 
694     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
695 
696     for (i = 0; i < info->num_cpus; i++) {
697         /*
698          * We put each CPU in its own cluster as they are logically
699          * distinct and may be configured differently.
700          */
701         char *name;
702 
703         name = g_strdup_printf("cluster%d", i);
704         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
705         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
706         g_free(name);
707 
708         name = g_strdup_printf("armv7m%d", i);
709         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
710                                 TYPE_ARMV7M);
711         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
712                              ARM_CPU_TYPE_NAME("cortex-m33"));
713         g_free(name);
714         name = g_strdup_printf("arm-sse-cpu-container%d", i);
715         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
716         g_free(name);
717         if (i > 0) {
718             name = g_strdup_printf("arm-sse-container-alias%d", i);
719             memory_region_init_alias(&s->container_alias[i - 1], obj,
720                                      name, &s->container, 0, UINT64_MAX);
721             g_free(name);
722         }
723     }
724 
725     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
726         assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc));
727         if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
728             assert(devinfo->index < ARRAY_SIZE(s->timer));
729             object_initialize_child(obj, devinfo->name,
730                                     &s->timer[devinfo->index],
731                                     TYPE_CMSDK_APB_TIMER);
732         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
733             assert(devinfo->index == 0);
734             object_initialize_child(obj, devinfo->name, &s->dualtimer,
735                                     TYPE_CMSDK_APB_DUALTIMER);
736         } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
737             assert(devinfo->index < ARRAY_SIZE(s->sse_timer));
738             object_initialize_child(obj, devinfo->name,
739                                     &s->sse_timer[devinfo->index],
740                                     TYPE_SSE_TIMER);
741         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
742             assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog));
743             object_initialize_child(obj, devinfo->name,
744                                     &s->cmsdk_watchdog[devinfo->index],
745                                     TYPE_CMSDK_APB_WATCHDOG);
746         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
747             assert(devinfo->index == 0);
748             object_initialize_child(obj, devinfo->name, &s->sysinfo,
749                                     TYPE_IOTKIT_SYSINFO);
750         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
751             assert(devinfo->index == 0);
752             object_initialize_child(obj, devinfo->name, &s->sysctl,
753                                     TYPE_IOTKIT_SYSCTL);
754         } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
755             assert(devinfo->index < ARRAY_SIZE(s->unimp));
756             object_initialize_child(obj, devinfo->name,
757                                     &s->unimp[devinfo->index],
758                                     TYPE_UNIMPLEMENTED_DEVICE);
759         } else {
760             g_assert_not_reached();
761         }
762     }
763 
764     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
765 
766     for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) {
767         g_autofree char *name = g_strdup_printf("apb-ppc%d", i);
768         object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC);
769     }
770 
771     for (i = 0; i < info->sram_banks; i++) {
772         char *name = g_strdup_printf("mpc%d", i);
773         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
774         g_free(name);
775     }
776     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
777                             TYPE_OR_IRQ);
778 
779     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
780         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
781         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
782 
783         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
784         g_free(name);
785     }
786 
787     if (info->has_mhus) {
788         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
789         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
790     }
791     if (info->has_cachectrl) {
792         for (i = 0; i < info->num_cpus; i++) {
793             char *name = g_strdup_printf("cachectrl%d", i);
794 
795             object_initialize_child(obj, name, &s->cachectrl[i],
796                                     TYPE_UNIMPLEMENTED_DEVICE);
797             g_free(name);
798         }
799     }
800     if (info->has_cpusecctrl) {
801         for (i = 0; i < info->num_cpus; i++) {
802             char *name = g_strdup_printf("cpusecctrl%d", i);
803 
804             object_initialize_child(obj, name, &s->cpusecctrl[i],
805                                     TYPE_UNIMPLEMENTED_DEVICE);
806             g_free(name);
807         }
808     }
809     if (info->has_cpuid) {
810         for (i = 0; i < info->num_cpus; i++) {
811             char *name = g_strdup_printf("cpuid%d", i);
812 
813             object_initialize_child(obj, name, &s->cpuid[i],
814                                     TYPE_ARMSSE_CPUID);
815             g_free(name);
816         }
817     }
818     if (info->has_cpu_pwrctrl) {
819         for (i = 0; i < info->num_cpus; i++) {
820             char *name = g_strdup_printf("cpu_pwrctrl%d", i);
821 
822             object_initialize_child(obj, name, &s->cpu_pwrctrl[i],
823                                     TYPE_ARMSSE_CPU_PWRCTRL);
824             g_free(name);
825         }
826     }
827     if (info->has_sse_counter) {
828         object_initialize_child(obj, "sse-counter", &s->sse_counter,
829                                 TYPE_SSE_COUNTER);
830     }
831 
832     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
833     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
834                             TYPE_OR_IRQ);
835     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
836                             TYPE_SPLIT_IRQ);
837     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
838         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
839         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
840 
841         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
842         g_free(name);
843     }
844     if (info->num_cpus > 1) {
845         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
846             if (info->irq_is_common[i]) {
847                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
848                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
849 
850                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
851                 g_free(name);
852             }
853         }
854     }
855 }
856 
857 static void armsse_exp_irq(void *opaque, int n, int level)
858 {
859     qemu_irq *irqarray = opaque;
860 
861     qemu_set_irq(irqarray[n], level);
862 }
863 
864 static void armsse_mpcexp_status(void *opaque, int n, int level)
865 {
866     ARMSSE *s = ARM_SSE(opaque);
867     qemu_set_irq(s->mpcexp_status_in[n], level);
868 }
869 
870 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
871 {
872     /*
873      * Return a qemu_irq which can be used to signal IRQ n to
874      * all CPUs in the SSE.
875      */
876     ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
877     const ARMSSEInfo *info = asc->info;
878 
879     assert(info->irq_is_common[irqno]);
880 
881     if (info->num_cpus == 1) {
882         /* Only one CPU -- just connect directly to it */
883         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
884     } else {
885         /* Connect to the splitter which feeds all CPUs */
886         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
887     }
888 }
889 
890 static void armsse_realize(DeviceState *dev, Error **errp)
891 {
892     ARMSSE *s = ARM_SSE(dev);
893     ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
894     const ARMSSEInfo *info = asc->info;
895     const ARMSSEDeviceInfo *devinfo;
896     int i;
897     MemoryRegion *mr;
898     Error *err = NULL;
899     SysBusDevice *sbd_apb_ppc0;
900     SysBusDevice *sbd_secctl;
901     DeviceState *dev_apb_ppc0;
902     DeviceState *dev_apb_ppc1;
903     DeviceState *dev_secctl;
904     DeviceState *dev_splitter;
905     uint32_t addr_width_max;
906 
907     if (!s->board_memory) {
908         error_setg(errp, "memory property was not set");
909         return;
910     }
911 
912     if (!clock_has_source(s->mainclk)) {
913         error_setg(errp, "MAINCLK clock was not connected");
914     }
915     if (!clock_has_source(s->s32kclk)) {
916         error_setg(errp, "S32KCLK clock was not connected");
917     }
918 
919     assert(info->num_cpus <= SSE_MAX_CPUS);
920 
921     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
922     assert(is_power_of_2(info->sram_banks));
923     addr_width_max = 24 - ctz32(info->sram_banks);
924     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
925         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
926                    addr_width_max);
927         return;
928     }
929 
930     /* Handling of which devices should be available only to secure
931      * code is usually done differently for M profile than for A profile.
932      * Instead of putting some devices only into the secure address space,
933      * devices exist in both address spaces but with hard-wired security
934      * permissions that will cause the CPU to fault for non-secure accesses.
935      *
936      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
937      * which specifies hard-wired security permissions for different
938      * areas of the physical address space. For the ARMSSE IDAU, the
939      * top 4 bits of the physical address are the IDAU region ID, and
940      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
941      * region, otherwise it is an S region.
942      *
943      * The various devices and RAMs are generally all mapped twice,
944      * once into a region that the IDAU defines as secure and once
945      * into a non-secure region. They sit behind either a Memory
946      * Protection Controller (for RAM) or a Peripheral Protection
947      * Controller (for devices), which allow a more fine grained
948      * configuration of whether non-secure accesses are permitted.
949      *
950      * (The other place that guest software can configure security
951      * permissions is in the architected SAU (Security Attribution
952      * Unit), which is entirely inside the CPU. The IDAU can upgrade
953      * the security attributes for a region to more restrictive than
954      * the SAU specifies, but cannot downgrade them.)
955      *
956      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
957      * 0x20000000..0x2007ffff  32KB FPGA block RAM
958      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
959      * 0x40000000..0x4000ffff  base peripheral region 1
960      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
961      * 0x40020000..0x4002ffff  system control element peripherals
962      * 0x40080000..0x400fffff  base peripheral region 2
963      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
964      */
965 
966     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
967 
968     for (i = 0; i < info->num_cpus; i++) {
969         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
970         Object *cpuobj = OBJECT(&s->armv7m[i]);
971         int j;
972         char *gpioname;
973 
974         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
975         /*
976          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
977          * registers in the IoT Kit System Control Register block. In QEMU
978          * we set the initial value here, and also the reset value of the
979          * sysctl register, from this object's QOM init-svtor property.
980          * If the guest changes the INITSVTOR* registers at runtime then the
981          * code in iotkit-sysctl.c will update the CPU init-svtor property
982          * (which will then take effect on the next CPU warm-reset).
983          *
984          * Note that typically a board using the SSE-200 will have a system
985          * control processor whose boot firmware initializes the INITSVTOR*
986          * registers before powering up the CPUs. QEMU doesn't emulate
987          * the control processor, so instead we behave in the way that the
988          * firmware does: the initial value should be set by the board code
989          * (using the init-svtor property on the ARMSSE object) to match
990          * whatever its firmware does.
991          */
992         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
993         /*
994          * CPUs start powered down if the corresponding bit in the CPUWAIT
995          * register is 1. In real hardware the CPUWAIT register reset value is
996          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
997          * CPUWAIT1_RST parameters), but since all the boards we care about
998          * start CPU0 and leave CPU1 powered off, we hard-code that in
999          * info->cpuwait_rst for now. We can add QOM properties for this
1000          * later if necessary.
1001          */
1002         if (extract32(info->cpuwait_rst, i, 1)) {
1003             if (!object_property_set_bool(cpuobj, "start-powered-off", true,
1004                                           errp)) {
1005                 return;
1006             }
1007         }
1008         if (!s->cpu_fpu[i]) {
1009             if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
1010                 return;
1011             }
1012         }
1013         if (!s->cpu_dsp[i]) {
1014             if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
1015                 return;
1016             }
1017         }
1018 
1019         if (i > 0) {
1020             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1021                                                 &s->container_alias[i - 1], -1);
1022         } else {
1023             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1024                                                 &s->container, -1);
1025         }
1026         object_property_set_link(cpuobj, "memory",
1027                                  OBJECT(&s->cpu_container[i]), &error_abort);
1028         object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
1029         if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
1030             return;
1031         }
1032         /*
1033          * The cluster must be realized after the armv7m container, as
1034          * the container's CPU object is only created on realize, and the
1035          * CPU must exist and have been parented into the cluster before
1036          * the cluster is realized.
1037          */
1038         if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
1039             return;
1040         }
1041 
1042         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1043         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
1044         for (j = 0; j < s->exp_numirq; j++) {
1045             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS);
1046         }
1047         if (i == 0) {
1048             gpioname = g_strdup("EXP_IRQ");
1049         } else {
1050             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
1051         }
1052         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
1053                                             s->exp_irqs[i],
1054                                             gpioname, s->exp_numirq);
1055         g_free(gpioname);
1056     }
1057 
1058     /* Wire up the splitters that connect common IRQs to all CPUs */
1059     if (info->num_cpus > 1) {
1060         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
1061             if (info->irq_is_common[i]) {
1062                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
1063                 DeviceState *devs = DEVICE(splitter);
1064                 int cpunum;
1065 
1066                 if (!object_property_set_int(splitter, "num-lines",
1067                                              info->num_cpus, errp)) {
1068                     return;
1069                 }
1070                 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1071                     return;
1072                 }
1073                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1074                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1075 
1076                     qdev_connect_gpio_out(devs, cpunum,
1077                                           qdev_get_gpio_in(cpudev, i));
1078                 }
1079             }
1080         }
1081     }
1082 
1083     /* Set up the big aliases first */
1084     make_alias(s, &s->alias1, &s->container, "alias 1",
1085                0x10000000, 0x10000000, 0x00000000);
1086     make_alias(s, &s->alias2, &s->container,
1087                "alias 2", 0x30000000, 0x10000000, 0x20000000);
1088     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1089      * a few extra devices that only appear there (generally the
1090      * control interfaces for the protection controllers).
1091      * We implement this by mapping those devices over the top of this
1092      * alias MR at a higher priority. Some of the devices in this range
1093      * are per-CPU, so we must put this alias in the per-cpu containers.
1094      */
1095     for (i = 0; i < info->num_cpus; i++) {
1096         make_alias(s, &s->alias3[i], &s->cpu_container[i],
1097                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
1098     }
1099 
1100     /* Security controller */
1101     object_property_set_int(OBJECT(&s->secctl), "sse-version",
1102                             info->sse_version, &error_abort);
1103     if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
1104         return;
1105     }
1106     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
1107     dev_secctl = DEVICE(&s->secctl);
1108     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
1109     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
1110 
1111     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
1112     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
1113 
1114     /* The sec_resp_cfg output from the security controller must be split into
1115      * multiple lines, one for each of the PPCs within the ARMSSE and one
1116      * that will be an output from the ARMSSE to the system.
1117      */
1118     if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
1119                                  "num-lines", 3, errp)) {
1120         return;
1121     }
1122     if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
1123         return;
1124     }
1125     dev_splitter = DEVICE(&s->sec_resp_splitter);
1126     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
1127                                 qdev_get_gpio_in(dev_splitter, 0));
1128 
1129     /* Each SRAM bank lives behind its own Memory Protection Controller */
1130     for (i = 0; i < info->sram_banks; i++) {
1131         char *ramname = g_strdup_printf("armsse.sram%d", i);
1132         SysBusDevice *sbd_mpc;
1133         uint32_t sram_bank_size = 1 << s->sram_addr_width;
1134 
1135         memory_region_init_ram(&s->sram[i], NULL, ramname,
1136                                sram_bank_size, &err);
1137         g_free(ramname);
1138         if (err) {
1139             error_propagate(errp, err);
1140             return;
1141         }
1142         object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
1143                                  OBJECT(&s->sram[i]), &error_abort);
1144         if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
1145             return;
1146         }
1147         /* Map the upstream end of the MPC into the right place... */
1148         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
1149         memory_region_add_subregion(&s->container,
1150                                     0x20000000 + i * sram_bank_size,
1151                                     sysbus_mmio_get_region(sbd_mpc, 1));
1152         /* ...and its register interface */
1153         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
1154                                     sysbus_mmio_get_region(sbd_mpc, 0));
1155     }
1156 
1157     /* We must OR together lines from the MPC splitters to go to the NVIC */
1158     if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
1159                                  IOTS_NUM_EXP_MPC + info->sram_banks,
1160                                  errp)) {
1161         return;
1162     }
1163     if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
1164         return;
1165     }
1166     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
1167                           armsse_get_common_irq_in(s, 9));
1168 
1169     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1170     if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
1171                                  errp)) {
1172         return;
1173     }
1174     if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
1175         return;
1176     }
1177     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1178                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1179 
1180     /* The SSE-300 has a System Counter / System Timestamp Generator */
1181     if (info->has_sse_counter) {
1182         SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter);
1183 
1184         qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk);
1185         if (!sysbus_realize(sbd, errp)) {
1186             return;
1187         }
1188         /*
1189          * The control frame is only in the Secure region;
1190          * the status frame is in the NS region (and visible in the
1191          * S region via the alias mapping).
1192          */
1193         memory_region_add_subregion(&s->container, 0x58100000,
1194                                     sysbus_mmio_get_region(sbd, 0));
1195         memory_region_add_subregion(&s->container, 0x48101000,
1196                                     sysbus_mmio_get_region(sbd, 1));
1197     }
1198 
1199     /* Devices behind APB PPC0:
1200      *   0x40000000: timer0
1201      *   0x40001000: timer1
1202      *   0x40002000: dual timer
1203      *   0x40003000: MHU0 (SSE-200 only)
1204      *   0x40004000: MHU1 (SSE-200 only)
1205      * We must configure and realize each downstream device and connect
1206      * it to the appropriate PPC port; then we can realize the PPC and
1207      * map its upstream ends to the right place in the container.
1208      */
1209     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1210         SysBusDevice *sbd;
1211         qemu_irq irq;
1212 
1213         if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
1214             sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]);
1215 
1216             qdev_connect_clock_in(DEVICE(sbd), "pclk",
1217                                   devinfo->slowclk ? s->s32kclk : s->mainclk);
1218             if (!sysbus_realize(sbd, errp)) {
1219                 return;
1220             }
1221             mr = sysbus_mmio_get_region(sbd, 0);
1222         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
1223             sbd = SYS_BUS_DEVICE(&s->dualtimer);
1224 
1225             qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk);
1226             if (!sysbus_realize(sbd, errp)) {
1227                 return;
1228             }
1229             mr = sysbus_mmio_get_region(sbd, 0);
1230         } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
1231             sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]);
1232 
1233             assert(info->has_sse_counter);
1234             object_property_set_link(OBJECT(sbd), "counter",
1235                                      OBJECT(&s->sse_counter), &error_abort);
1236             if (!sysbus_realize(sbd, errp)) {
1237                 return;
1238             }
1239             mr = sysbus_mmio_get_region(sbd, 0);
1240         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
1241             sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]);
1242 
1243             qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK",
1244                                   devinfo->slowclk ? s->s32kclk : s->mainclk);
1245             if (!sysbus_realize(sbd, errp)) {
1246                 return;
1247             }
1248             mr = sysbus_mmio_get_region(sbd, 0);
1249         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
1250             sbd = SYS_BUS_DEVICE(&s->sysinfo);
1251 
1252             object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
1253                                     info->sys_version, &error_abort);
1254             object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
1255                                     armsse_sys_config_value(s, info),
1256                                     &error_abort);
1257             object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
1258                                     info->sse_version, &error_abort);
1259             object_property_set_int(OBJECT(&s->sysinfo), "IIDR",
1260                                     info->iidr, &error_abort);
1261             if (!sysbus_realize(sbd, errp)) {
1262                 return;
1263             }
1264             mr = sysbus_mmio_get_region(sbd, 0);
1265         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
1266             /* System control registers */
1267             sbd = SYS_BUS_DEVICE(&s->sysctl);
1268 
1269             object_property_set_int(OBJECT(&s->sysctl), "sse-version",
1270                                     info->sse_version, &error_abort);
1271             object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
1272                                     info->cpuwait_rst, &error_abort);
1273             object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
1274                                     s->init_svtor, &error_abort);
1275             object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
1276                                     s->init_svtor, &error_abort);
1277             if (!sysbus_realize(sbd, errp)) {
1278                 return;
1279             }
1280             mr = sysbus_mmio_get_region(sbd, 0);
1281         } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
1282             sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]);
1283 
1284             qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name);
1285             qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size);
1286             if (!sysbus_realize(sbd, errp)) {
1287                 return;
1288             }
1289             mr = sysbus_mmio_get_region(sbd, 0);
1290         } else {
1291             g_assert_not_reached();
1292         }
1293 
1294         switch (devinfo->irq) {
1295         case NO_IRQ:
1296             irq = NULL;
1297             break;
1298         case 0 ... NUM_SSE_IRQS - 1:
1299             irq = armsse_get_common_irq_in(s, devinfo->irq);
1300             break;
1301         case NMI_0:
1302         case NMI_1:
1303             irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate),
1304                                    devinfo->irq - NMI_0);
1305             break;
1306         default:
1307             g_assert_not_reached();
1308         }
1309 
1310         if (irq) {
1311             sysbus_connect_irq(sbd, 0, irq);
1312         }
1313 
1314         /*
1315          * Devices connected to a PPC are connected to the port here;
1316          * we will map the upstream end of that port to the right address
1317          * in the container later after the PPC has been realized.
1318          * Devices not connected to a PPC can be mapped immediately.
1319          */
1320         if (devinfo->ppc != NO_PPC) {
1321             TZPPC *ppc = &s->apb_ppc[devinfo->ppc];
1322             g_autofree char *portname = g_strdup_printf("port[%d]",
1323                                                         devinfo->ppc_port);
1324             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1325                                      &error_abort);
1326         } else {
1327             memory_region_add_subregion(&s->container, devinfo->addr, mr);
1328         }
1329     }
1330 
1331     if (info->has_mhus) {
1332         /*
1333          * An SSE-200 with only one CPU should have only one MHU created,
1334          * with the region where the second MHU usually is being RAZ/WI.
1335          * We don't implement that SSE-200 config; if we want to support
1336          * it then this code needs to be enhanced to handle creating the
1337          * RAZ/WI region instead of the second MHU.
1338          */
1339         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
1340 
1341         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
1342             char *port;
1343             int cpunum;
1344             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
1345 
1346             if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
1347                 return;
1348             }
1349             port = g_strdup_printf("port[%d]", i + 3);
1350             mr = sysbus_mmio_get_region(mhu_sbd, 0);
1351             object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr),
1352                                      &error_abort);
1353             g_free(port);
1354 
1355             /*
1356              * Each MHU has an irq line for each CPU:
1357              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
1358              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
1359              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
1360              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
1361              */
1362             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1363                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1364 
1365                 sysbus_connect_irq(mhu_sbd, cpunum,
1366                                    qdev_get_gpio_in(cpudev, 6 + i));
1367             }
1368         }
1369     }
1370 
1371     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) {
1372         return;
1373     }
1374 
1375     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]);
1376     dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]);
1377 
1378     if (info->has_mhus) {
1379         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
1380         memory_region_add_subregion(&s->container, 0x40003000, mr);
1381         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
1382         memory_region_add_subregion(&s->container, 0x40004000, mr);
1383     }
1384     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
1385         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
1386                                     qdev_get_gpio_in_named(dev_apb_ppc0,
1387                                                            "cfg_nonsec", i));
1388         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
1389                                     qdev_get_gpio_in_named(dev_apb_ppc0,
1390                                                            "cfg_ap", i));
1391     }
1392     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
1393                                 qdev_get_gpio_in_named(dev_apb_ppc0,
1394                                                        "irq_enable", 0));
1395     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
1396                                 qdev_get_gpio_in_named(dev_apb_ppc0,
1397                                                        "irq_clear", 0));
1398     qdev_connect_gpio_out(dev_splitter, 0,
1399                           qdev_get_gpio_in_named(dev_apb_ppc0,
1400                                                  "cfg_sec_resp", 0));
1401 
1402     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1403      * ones) are sent individually to the security controller, and also
1404      * ORed together to give a single combined PPC interrupt to the NVIC.
1405      */
1406     if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
1407                                  "num-lines", NUM_PPCS, errp)) {
1408         return;
1409     }
1410     if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
1411         return;
1412     }
1413     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
1414                           armsse_get_common_irq_in(s, 10));
1415 
1416     /*
1417      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1418      * private per-CPU region (all these devices are SSE-200 only):
1419      *  0x50010000: L1 icache control registers
1420      *  0x50011000: CPUSECCTRL (CPU local security control registers)
1421      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1422      * The SSE-300 has an extra:
1423      *  0x40012000 and 0x50012000: CPU_PWRCTRL register block
1424      */
1425     if (info->has_cachectrl) {
1426         for (i = 0; i < info->num_cpus; i++) {
1427             char *name = g_strdup_printf("cachectrl%d", i);
1428             MemoryRegion *mr;
1429 
1430             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
1431             g_free(name);
1432             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
1433             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
1434                 return;
1435             }
1436 
1437             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
1438             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
1439         }
1440     }
1441     if (info->has_cpusecctrl) {
1442         for (i = 0; i < info->num_cpus; i++) {
1443             char *name = g_strdup_printf("CPUSECCTRL%d", i);
1444             MemoryRegion *mr;
1445 
1446             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
1447             g_free(name);
1448             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
1449             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
1450                 return;
1451             }
1452 
1453             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
1454             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
1455         }
1456     }
1457     if (info->has_cpuid) {
1458         for (i = 0; i < info->num_cpus; i++) {
1459             MemoryRegion *mr;
1460 
1461             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
1462             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
1463                 return;
1464             }
1465 
1466             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
1467             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
1468         }
1469     }
1470     if (info->has_cpu_pwrctrl) {
1471         for (i = 0; i < info->num_cpus; i++) {
1472             MemoryRegion *mr;
1473 
1474             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) {
1475                 return;
1476             }
1477 
1478             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0);
1479             memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr);
1480         }
1481     }
1482 
1483     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) {
1484         return;
1485     }
1486 
1487     dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]);
1488     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1489                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1490                                                        "cfg_nonsec", 0));
1491     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1492                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1493                                                        "cfg_ap", 0));
1494     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1495                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1496                                                        "irq_enable", 0));
1497     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1498                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1499                                                        "irq_clear", 0));
1500     qdev_connect_gpio_out(dev_splitter, 1,
1501                           qdev_get_gpio_in_named(dev_apb_ppc1,
1502                                                  "cfg_sec_resp", 0));
1503 
1504     /*
1505      * Now both PPCs are realized we can map the upstream ends of
1506      * ports which correspond to entries in the devinfo array.
1507      * The ports which are connected to non-devinfo devices have
1508      * already been mapped.
1509      */
1510     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1511         SysBusDevice *ppc_sbd;
1512 
1513         if (devinfo->ppc == NO_PPC) {
1514             continue;
1515         }
1516         ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]);
1517         mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port);
1518         memory_region_add_subregion(&s->container, devinfo->addr, mr);
1519     }
1520 
1521     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1522         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1523 
1524         if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1525             return;
1526         }
1527         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1528             return;
1529         }
1530     }
1531 
1532     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1533         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1534 
1535         armsse_forward_ppc(s, ppcname, i);
1536         g_free(ppcname);
1537     }
1538 
1539     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1540         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1541 
1542         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1543         g_free(ppcname);
1544     }
1545 
1546     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1547         /* Wire up IRQ splitter for internal PPCs */
1548         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1549         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1550                                          i - NUM_EXTERNAL_PPCS);
1551         TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS];
1552 
1553         qdev_connect_gpio_out(devs, 0,
1554                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1555         qdev_connect_gpio_out(devs, 1,
1556                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1557         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1558                                     qdev_get_gpio_in(devs, 0));
1559         g_free(gpioname);
1560     }
1561 
1562     /* Wire up the splitters for the MPC IRQs */
1563     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1564         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1565         DeviceState *dev_splitter = DEVICE(splitter);
1566 
1567         if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1568                                      errp)) {
1569             return;
1570         }
1571         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1572             return;
1573         }
1574 
1575         if (i < IOTS_NUM_EXP_MPC) {
1576             /* Splitter input is from GPIO input line */
1577             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1578             qdev_connect_gpio_out(dev_splitter, 0,
1579                                   qdev_get_gpio_in_named(dev_secctl,
1580                                                          "mpcexp_status", i));
1581         } else {
1582             /* Splitter input is from our own MPC */
1583             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1584                                         "irq", 0,
1585                                         qdev_get_gpio_in(dev_splitter, 0));
1586             qdev_connect_gpio_out(dev_splitter, 0,
1587                                   qdev_get_gpio_in_named(dev_secctl,
1588                                                          "mpc_status",
1589                                                          i - IOTS_NUM_EXP_MPC));
1590         }
1591 
1592         qdev_connect_gpio_out(dev_splitter, 1,
1593                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1594     }
1595     /* Create GPIO inputs which will pass the line state for our
1596      * mpcexp_irq inputs to the correct splitter devices.
1597      */
1598     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1599                             IOTS_NUM_EXP_MPC);
1600 
1601     armsse_forward_sec_resp_cfg(s);
1602 
1603     /* Forward the MSC related signals */
1604     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1605     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1606     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1607     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1608                                 armsse_get_common_irq_in(s, 11));
1609 
1610     /*
1611      * Expose our container region to the board model; this corresponds
1612      * to the AHB Slave Expansion ports which allow bus master devices
1613      * (eg DMA controllers) in the board model to make transactions into
1614      * devices in the ARMSSE.
1615      */
1616     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1617 
1618     /* Set initial system_clock_scale from MAINCLK */
1619     armsse_mainclk_update(s, ClockUpdate);
1620 }
1621 
1622 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1623                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1624 {
1625     /*
1626      * For ARMSSE systems the IDAU responses are simple logical functions
1627      * of the address bits. The NSC attribute is guest-adjustable via the
1628      * NSCCFG register in the security controller.
1629      */
1630     ARMSSE *s = ARM_SSE(ii);
1631     int region = extract32(address, 28, 4);
1632 
1633     *ns = !(region & 1);
1634     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1635     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1636     *exempt = (address & 0xeff00000) == 0xe0000000;
1637     *iregion = region;
1638 }
1639 
1640 static const VMStateDescription armsse_vmstate = {
1641     .name = "iotkit",
1642     .version_id = 2,
1643     .minimum_version_id = 2,
1644     .fields = (VMStateField[]) {
1645         VMSTATE_CLOCK(mainclk, ARMSSE),
1646         VMSTATE_CLOCK(s32kclk, ARMSSE),
1647         VMSTATE_UINT32(nsccfg, ARMSSE),
1648         VMSTATE_END_OF_LIST()
1649     }
1650 };
1651 
1652 static void armsse_reset(DeviceState *dev)
1653 {
1654     ARMSSE *s = ARM_SSE(dev);
1655 
1656     s->nsccfg = 0;
1657 }
1658 
1659 static void armsse_class_init(ObjectClass *klass, void *data)
1660 {
1661     DeviceClass *dc = DEVICE_CLASS(klass);
1662     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1663     ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1664     const ARMSSEInfo *info = data;
1665 
1666     dc->realize = armsse_realize;
1667     dc->vmsd = &armsse_vmstate;
1668     device_class_set_props(dc, info->props);
1669     dc->reset = armsse_reset;
1670     iic->check = armsse_idau_check;
1671     asc->info = info;
1672 }
1673 
1674 static const TypeInfo armsse_info = {
1675     .name = TYPE_ARM_SSE,
1676     .parent = TYPE_SYS_BUS_DEVICE,
1677     .instance_size = sizeof(ARMSSE),
1678     .class_size = sizeof(ARMSSEClass),
1679     .instance_init = armsse_init,
1680     .abstract = true,
1681     .interfaces = (InterfaceInfo[]) {
1682         { TYPE_IDAU_INTERFACE },
1683         { }
1684     }
1685 };
1686 
1687 static void armsse_register_types(void)
1688 {
1689     int i;
1690 
1691     type_register_static(&armsse_info);
1692 
1693     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1694         TypeInfo ti = {
1695             .name = armsse_variants[i].name,
1696             .parent = TYPE_ARM_SSE,
1697             .class_init = armsse_class_init,
1698             .class_data = (void *)&armsse_variants[i],
1699         };
1700         type_register(&ti);
1701     }
1702 }
1703 
1704 type_init(armsse_register_types);
1705