xref: /openbmc/qemu/hw/arm/armsse.c (revision ad9e5aa2)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat {
27     IoTKitFormat,
28     SSE200Format,
29 } SysConfigFormat;
30 
31 struct ARMSSEInfo {
32     const char *name;
33     int sram_banks;
34     int num_cpus;
35     uint32_t sys_version;
36     uint32_t cpuwait_rst;
37     SysConfigFormat sys_config_format;
38     bool has_mhus;
39     bool has_ppus;
40     bool has_cachectrl;
41     bool has_cpusecctrl;
42     bool has_cpuid;
43     Property *props;
44 };
45 
46 static Property iotkit_properties[] = {
47     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
48                      MemoryRegion *),
49     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
50     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
51     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55     DEFINE_PROP_END_OF_LIST()
56 };
57 
58 static Property armsse_properties[] = {
59     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60                      MemoryRegion *),
61     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
63     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
64     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
65     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
66     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
67     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
68     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
69     DEFINE_PROP_END_OF_LIST()
70 };
71 
72 static const ARMSSEInfo armsse_variants[] = {
73     {
74         .name = TYPE_IOTKIT,
75         .sram_banks = 1,
76         .num_cpus = 1,
77         .sys_version = 0x41743,
78         .cpuwait_rst = 0,
79         .sys_config_format = IoTKitFormat,
80         .has_mhus = false,
81         .has_ppus = false,
82         .has_cachectrl = false,
83         .has_cpusecctrl = false,
84         .has_cpuid = false,
85         .props = iotkit_properties,
86     },
87     {
88         .name = TYPE_SSE200,
89         .sram_banks = 4,
90         .num_cpus = 2,
91         .sys_version = 0x22041743,
92         .cpuwait_rst = 2,
93         .sys_config_format = SSE200Format,
94         .has_mhus = true,
95         .has_ppus = true,
96         .has_cachectrl = true,
97         .has_cpusecctrl = true,
98         .has_cpuid = true,
99         .props = armsse_properties,
100     },
101 };
102 
103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
104 {
105     /* Return the SYS_CONFIG value for this SSE */
106     uint32_t sys_config;
107 
108     switch (info->sys_config_format) {
109     case IoTKitFormat:
110         sys_config = 0;
111         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
112         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
113         break;
114     case SSE200Format:
115         sys_config = 0;
116         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
117         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
118         sys_config = deposit32(sys_config, 24, 4, 2);
119         if (info->num_cpus > 1) {
120             sys_config = deposit32(sys_config, 10, 1, 1);
121             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
122             sys_config = deposit32(sys_config, 28, 4, 2);
123         }
124         break;
125     default:
126         g_assert_not_reached();
127     }
128     return sys_config;
129 }
130 
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
133 
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common[32] = {
136     [0 ... 5] = true,
137     /* 6, 7: per-CPU MHU interrupts */
138     [8 ... 12] = true,
139     /* 13: per-CPU icache interrupt */
140     /* 14: reserved */
141     [15 ... 20] = true,
142     /* 21: reserved */
143     [22 ... 26] = true,
144     /* 27: reserved */
145     /* 28, 29: per-CPU CTI interrupts */
146     /* 30, 31: reserved */
147 };
148 
149 /*
150  * Create an alias region in @container of @size bytes starting at @base
151  * which mirrors the memory starting at @orig.
152  */
153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
154                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
155 {
156     memory_region_init_alias(mr, NULL, name, container, orig, size);
157     /* The alias is even lower priority than unimplemented_device regions */
158     memory_region_add_subregion_overlap(container, base, mr, -1500);
159 }
160 
161 static void irq_status_forwarder(void *opaque, int n, int level)
162 {
163     qemu_irq destirq = opaque;
164 
165     qemu_set_irq(destirq, level);
166 }
167 
168 static void nsccfg_handler(void *opaque, int n, int level)
169 {
170     ARMSSE *s = ARMSSE(opaque);
171 
172     s->nsccfg = level;
173 }
174 
175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
176 {
177     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178      * system using the ARMSSE has a collection of control lines which
179      * are provided by the security controller and which we want to
180      * expose as control lines on the ARMSSE device itself, so the
181      * code using the ARMSSE can wire them up to the PPCs.
182      */
183     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
184     DeviceState *armssedev = DEVICE(s);
185     DeviceState *dev_secctl = DEVICE(&s->secctl);
186     DeviceState *dev_splitter = DEVICE(splitter);
187     char *name;
188 
189     name = g_strdup_printf("%s_nonsec", ppcname);
190     qdev_pass_gpios(dev_secctl, armssedev, name);
191     g_free(name);
192     name = g_strdup_printf("%s_ap", ppcname);
193     qdev_pass_gpios(dev_secctl, armssedev, name);
194     g_free(name);
195     name = g_strdup_printf("%s_irq_enable", ppcname);
196     qdev_pass_gpios(dev_secctl, armssedev, name);
197     g_free(name);
198     name = g_strdup_printf("%s_irq_clear", ppcname);
199     qdev_pass_gpios(dev_secctl, armssedev, name);
200     g_free(name);
201 
202     /* irq_status is a little more tricky, because we need to
203      * split it so we can send it both to the security controller
204      * and to our OR gate for the NVIC interrupt line.
205      * Connect up the splitter's outputs, and create a GPIO input
206      * which will pass the line state to the input splitter.
207      */
208     name = g_strdup_printf("%s_irq_status", ppcname);
209     qdev_connect_gpio_out(dev_splitter, 0,
210                           qdev_get_gpio_in_named(dev_secctl,
211                                                  name, 0));
212     qdev_connect_gpio_out(dev_splitter, 1,
213                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
214     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
215     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
216                                         s->irq_status_in[ppcnum], name, 1);
217     g_free(name);
218 }
219 
220 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
221 {
222     /* Forward the 3rd output from the splitter device as a
223      * named GPIO output of the armsse object.
224      */
225     DeviceState *dev = DEVICE(s);
226     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
227 
228     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
229     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
230                                            s->sec_resp_cfg, 1);
231     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
232 }
233 
234 static void armsse_init(Object *obj)
235 {
236     ARMSSE *s = ARMSSE(obj);
237     ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
238     const ARMSSEInfo *info = asc->info;
239     int i;
240 
241     assert(info->sram_banks <= MAX_SRAM_BANKS);
242     assert(info->num_cpus <= SSE_MAX_CPUS);
243 
244     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
245 
246     for (i = 0; i < info->num_cpus; i++) {
247         /*
248          * We put each CPU in its own cluster as they are logically
249          * distinct and may be configured differently.
250          */
251         char *name;
252 
253         name = g_strdup_printf("cluster%d", i);
254         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
255         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
256         g_free(name);
257 
258         name = g_strdup_printf("armv7m%d", i);
259         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
260                                 TYPE_ARMV7M);
261         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
262                              ARM_CPU_TYPE_NAME("cortex-m33"));
263         g_free(name);
264         name = g_strdup_printf("arm-sse-cpu-container%d", i);
265         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
266         g_free(name);
267         if (i > 0) {
268             name = g_strdup_printf("arm-sse-container-alias%d", i);
269             memory_region_init_alias(&s->container_alias[i - 1], obj,
270                                      name, &s->container, 0, UINT64_MAX);
271             g_free(name);
272         }
273     }
274 
275     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
276     object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
277     object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
278     for (i = 0; i < info->sram_banks; i++) {
279         char *name = g_strdup_printf("mpc%d", i);
280         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
281         g_free(name);
282     }
283     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
284                             TYPE_OR_IRQ);
285 
286     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
287         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
288         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
289 
290         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
291         g_free(name);
292     }
293     object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
294     object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
295     object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
296                             TYPE_CMSDK_APB_TIMER);
297     object_initialize_child(obj, "dualtimer", &s->dualtimer,
298                             TYPE_CMSDK_APB_DUALTIMER);
299     object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
300                             TYPE_CMSDK_APB_WATCHDOG);
301     object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
302                             TYPE_CMSDK_APB_WATCHDOG);
303     object_initialize_child(obj, "swatchdog", &s->swatchdog,
304                             TYPE_CMSDK_APB_WATCHDOG);
305     object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
306                             TYPE_IOTKIT_SYSCTL);
307     object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
308                             TYPE_IOTKIT_SYSINFO);
309     if (info->has_mhus) {
310         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
311         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
312     }
313     if (info->has_ppus) {
314         for (i = 0; i < info->num_cpus; i++) {
315             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
316             int ppuidx = CPU0CORE_PPU + i;
317 
318             object_initialize_child(obj, name, &s->ppu[ppuidx],
319                                     TYPE_UNIMPLEMENTED_DEVICE);
320             g_free(name);
321         }
322         object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
323                                 TYPE_UNIMPLEMENTED_DEVICE);
324         for (i = 0; i < info->sram_banks; i++) {
325             char *name = g_strdup_printf("RAM%d_PPU", i);
326             int ppuidx = RAM0_PPU + i;
327 
328             object_initialize_child(obj, name, &s->ppu[ppuidx],
329                                     TYPE_UNIMPLEMENTED_DEVICE);
330             g_free(name);
331         }
332     }
333     if (info->has_cachectrl) {
334         for (i = 0; i < info->num_cpus; i++) {
335             char *name = g_strdup_printf("cachectrl%d", i);
336 
337             object_initialize_child(obj, name, &s->cachectrl[i],
338                                     TYPE_UNIMPLEMENTED_DEVICE);
339             g_free(name);
340         }
341     }
342     if (info->has_cpusecctrl) {
343         for (i = 0; i < info->num_cpus; i++) {
344             char *name = g_strdup_printf("cpusecctrl%d", i);
345 
346             object_initialize_child(obj, name, &s->cpusecctrl[i],
347                                     TYPE_UNIMPLEMENTED_DEVICE);
348             g_free(name);
349         }
350     }
351     if (info->has_cpuid) {
352         for (i = 0; i < info->num_cpus; i++) {
353             char *name = g_strdup_printf("cpuid%d", i);
354 
355             object_initialize_child(obj, name, &s->cpuid[i],
356                                     TYPE_ARMSSE_CPUID);
357             g_free(name);
358         }
359     }
360     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
361     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
362                             TYPE_OR_IRQ);
363     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
364                             TYPE_SPLIT_IRQ);
365     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
366         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
367         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
368 
369         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
370         g_free(name);
371     }
372     if (info->num_cpus > 1) {
373         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
374             if (irq_is_common[i]) {
375                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
376                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
377 
378                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
379                 g_free(name);
380             }
381         }
382     }
383 }
384 
385 static void armsse_exp_irq(void *opaque, int n, int level)
386 {
387     qemu_irq *irqarray = opaque;
388 
389     qemu_set_irq(irqarray[n], level);
390 }
391 
392 static void armsse_mpcexp_status(void *opaque, int n, int level)
393 {
394     ARMSSE *s = ARMSSE(opaque);
395     qemu_set_irq(s->mpcexp_status_in[n], level);
396 }
397 
398 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
399 {
400     /*
401      * Return a qemu_irq which can be used to signal IRQ n to
402      * all CPUs in the SSE.
403      */
404     ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
405     const ARMSSEInfo *info = asc->info;
406 
407     assert(irq_is_common[irqno]);
408 
409     if (info->num_cpus == 1) {
410         /* Only one CPU -- just connect directly to it */
411         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
412     } else {
413         /* Connect to the splitter which feeds all CPUs */
414         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
415     }
416 }
417 
418 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
419 {
420     /* Map a PPU unimplemented device stub */
421     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
422 
423     qdev_prop_set_string(dev, "name", name);
424     qdev_prop_set_uint64(dev, "size", 0x1000);
425     sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
426     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
427 }
428 
429 static void armsse_realize(DeviceState *dev, Error **errp)
430 {
431     ARMSSE *s = ARMSSE(dev);
432     ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
433     const ARMSSEInfo *info = asc->info;
434     int i;
435     MemoryRegion *mr;
436     Error *err = NULL;
437     SysBusDevice *sbd_apb_ppc0;
438     SysBusDevice *sbd_secctl;
439     DeviceState *dev_apb_ppc0;
440     DeviceState *dev_apb_ppc1;
441     DeviceState *dev_secctl;
442     DeviceState *dev_splitter;
443     uint32_t addr_width_max;
444 
445     if (!s->board_memory) {
446         error_setg(errp, "memory property was not set");
447         return;
448     }
449 
450     if (!s->mainclk_frq) {
451         error_setg(errp, "MAINCLK property was not set");
452         return;
453     }
454 
455     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
456     assert(is_power_of_2(info->sram_banks));
457     addr_width_max = 24 - ctz32(info->sram_banks);
458     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
459         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
460                    addr_width_max);
461         return;
462     }
463 
464     /* Handling of which devices should be available only to secure
465      * code is usually done differently for M profile than for A profile.
466      * Instead of putting some devices only into the secure address space,
467      * devices exist in both address spaces but with hard-wired security
468      * permissions that will cause the CPU to fault for non-secure accesses.
469      *
470      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
471      * which specifies hard-wired security permissions for different
472      * areas of the physical address space. For the ARMSSE IDAU, the
473      * top 4 bits of the physical address are the IDAU region ID, and
474      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
475      * region, otherwise it is an S region.
476      *
477      * The various devices and RAMs are generally all mapped twice,
478      * once into a region that the IDAU defines as secure and once
479      * into a non-secure region. They sit behind either a Memory
480      * Protection Controller (for RAM) or a Peripheral Protection
481      * Controller (for devices), which allow a more fine grained
482      * configuration of whether non-secure accesses are permitted.
483      *
484      * (The other place that guest software can configure security
485      * permissions is in the architected SAU (Security Attribution
486      * Unit), which is entirely inside the CPU. The IDAU can upgrade
487      * the security attributes for a region to more restrictive than
488      * the SAU specifies, but cannot downgrade them.)
489      *
490      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
491      * 0x20000000..0x2007ffff  32KB FPGA block RAM
492      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
493      * 0x40000000..0x4000ffff  base peripheral region 1
494      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
495      * 0x40020000..0x4002ffff  system control element peripherals
496      * 0x40080000..0x400fffff  base peripheral region 2
497      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
498      */
499 
500     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
501 
502     for (i = 0; i < info->num_cpus; i++) {
503         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
504         Object *cpuobj = OBJECT(&s->armv7m[i]);
505         int j;
506         char *gpioname;
507 
508         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
509         /*
510          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
511          * registers in the IoT Kit System Control Register block. In QEMU
512          * we set the initial value here, and also the reset value of the
513          * sysctl register, from this object's QOM init-svtor property.
514          * If the guest changes the INITSVTOR* registers at runtime then the
515          * code in iotkit-sysctl.c will update the CPU init-svtor property
516          * (which will then take effect on the next CPU warm-reset).
517          *
518          * Note that typically a board using the SSE-200 will have a system
519          * control processor whose boot firmware initializes the INITSVTOR*
520          * registers before powering up the CPUs. QEMU doesn't emulate
521          * the control processor, so instead we behave in the way that the
522          * firmware does: the initial value should be set by the board code
523          * (using the init-svtor property on the ARMSSE object) to match
524          * whatever its firmware does.
525          */
526         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
527         /*
528          * CPUs start powered down if the corresponding bit in the CPUWAIT
529          * register is 1. In real hardware the CPUWAIT register reset value is
530          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
531          * CPUWAIT1_RST parameters), but since all the boards we care about
532          * start CPU0 and leave CPU1 powered off, we hard-code that in
533          * info->cpuwait_rst for now. We can add QOM properties for this
534          * later if necessary.
535          */
536         if (extract32(info->cpuwait_rst, i, 1)) {
537             object_property_set_bool(cpuobj, true, "start-powered-off", &err);
538             if (err) {
539                 error_propagate(errp, err);
540                 return;
541             }
542         }
543         if (!s->cpu_fpu[i]) {
544             object_property_set_bool(cpuobj, false, "vfp", &err);
545             if (err) {
546                 error_propagate(errp, err);
547                 return;
548             }
549         }
550         if (!s->cpu_dsp[i]) {
551             object_property_set_bool(cpuobj, false, "dsp", &err);
552             if (err) {
553                 error_propagate(errp, err);
554                 return;
555             }
556         }
557 
558         if (i > 0) {
559             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
560                                                 &s->container_alias[i - 1], -1);
561         } else {
562             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
563                                                 &s->container, -1);
564         }
565         object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
566                                  "memory", &error_abort);
567         object_property_set_link(cpuobj, OBJECT(s), "idau", &error_abort);
568         sysbus_realize(SYS_BUS_DEVICE(cpuobj), &err);
569         if (err) {
570             error_propagate(errp, err);
571             return;
572         }
573         /*
574          * The cluster must be realized after the armv7m container, as
575          * the container's CPU object is only created on realize, and the
576          * CPU must exist and have been parented into the cluster before
577          * the cluster is realized.
578          */
579         qdev_realize(DEVICE(&s->cluster[i]), NULL, &err);
580         if (err) {
581             error_propagate(errp, err);
582             return;
583         }
584 
585         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
586         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
587         for (j = 0; j < s->exp_numirq; j++) {
588             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
589         }
590         if (i == 0) {
591             gpioname = g_strdup("EXP_IRQ");
592         } else {
593             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
594         }
595         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
596                                             s->exp_irqs[i],
597                                             gpioname, s->exp_numirq);
598         g_free(gpioname);
599     }
600 
601     /* Wire up the splitters that connect common IRQs to all CPUs */
602     if (info->num_cpus > 1) {
603         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
604             if (irq_is_common[i]) {
605                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
606                 DeviceState *devs = DEVICE(splitter);
607                 int cpunum;
608 
609                 object_property_set_int(splitter, info->num_cpus,
610                                         "num-lines", &err);
611                 if (err) {
612                     error_propagate(errp, err);
613                     return;
614                 }
615                 qdev_realize(DEVICE(splitter), NULL, &err);
616                 if (err) {
617                     error_propagate(errp, err);
618                     return;
619                 }
620                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
621                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
622 
623                     qdev_connect_gpio_out(devs, cpunum,
624                                           qdev_get_gpio_in(cpudev, i));
625                 }
626             }
627         }
628     }
629 
630     /* Set up the big aliases first */
631     make_alias(s, &s->alias1, &s->container, "alias 1",
632                0x10000000, 0x10000000, 0x00000000);
633     make_alias(s, &s->alias2, &s->container,
634                "alias 2", 0x30000000, 0x10000000, 0x20000000);
635     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
636      * a few extra devices that only appear there (generally the
637      * control interfaces for the protection controllers).
638      * We implement this by mapping those devices over the top of this
639      * alias MR at a higher priority. Some of the devices in this range
640      * are per-CPU, so we must put this alias in the per-cpu containers.
641      */
642     for (i = 0; i < info->num_cpus; i++) {
643         make_alias(s, &s->alias3[i], &s->cpu_container[i],
644                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
645     }
646 
647     /* Security controller */
648     sysbus_realize(SYS_BUS_DEVICE(&s->secctl), &err);
649     if (err) {
650         error_propagate(errp, err);
651         return;
652     }
653     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
654     dev_secctl = DEVICE(&s->secctl);
655     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
656     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
657 
658     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
659     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
660 
661     /* The sec_resp_cfg output from the security controller must be split into
662      * multiple lines, one for each of the PPCs within the ARMSSE and one
663      * that will be an output from the ARMSSE to the system.
664      */
665     object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
666                             "num-lines", &err);
667     if (err) {
668         error_propagate(errp, err);
669         return;
670     }
671     qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, &err);
672     if (err) {
673         error_propagate(errp, err);
674         return;
675     }
676     dev_splitter = DEVICE(&s->sec_resp_splitter);
677     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
678                                 qdev_get_gpio_in(dev_splitter, 0));
679 
680     /* Each SRAM bank lives behind its own Memory Protection Controller */
681     for (i = 0; i < info->sram_banks; i++) {
682         char *ramname = g_strdup_printf("armsse.sram%d", i);
683         SysBusDevice *sbd_mpc;
684         uint32_t sram_bank_size = 1 << s->sram_addr_width;
685 
686         memory_region_init_ram(&s->sram[i], NULL, ramname,
687                                sram_bank_size, &err);
688         g_free(ramname);
689         if (err) {
690             error_propagate(errp, err);
691             return;
692         }
693         object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
694                                  "downstream", &error_abort);
695         sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), &err);
696         if (err) {
697             error_propagate(errp, err);
698             return;
699         }
700         /* Map the upstream end of the MPC into the right place... */
701         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
702         memory_region_add_subregion(&s->container,
703                                     0x20000000 + i * sram_bank_size,
704                                     sysbus_mmio_get_region(sbd_mpc, 1));
705         /* ...and its register interface */
706         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
707                                     sysbus_mmio_get_region(sbd_mpc, 0));
708     }
709 
710     /* We must OR together lines from the MPC splitters to go to the NVIC */
711     object_property_set_int(OBJECT(&s->mpc_irq_orgate),
712                             IOTS_NUM_EXP_MPC + info->sram_banks,
713                             "num-lines", &err);
714     if (err) {
715         error_propagate(errp, err);
716         return;
717     }
718     qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, &err);
719     if (err) {
720         error_propagate(errp, err);
721         return;
722     }
723     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
724                           armsse_get_common_irq_in(s, 9));
725 
726     /* Devices behind APB PPC0:
727      *   0x40000000: timer0
728      *   0x40001000: timer1
729      *   0x40002000: dual timer
730      *   0x40003000: MHU0 (SSE-200 only)
731      *   0x40004000: MHU1 (SSE-200 only)
732      * We must configure and realize each downstream device and connect
733      * it to the appropriate PPC port; then we can realize the PPC and
734      * map its upstream ends to the right place in the container.
735      */
736     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
737     sysbus_realize(SYS_BUS_DEVICE(&s->timer0), &err);
738     if (err) {
739         error_propagate(errp, err);
740         return;
741     }
742     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
743                        armsse_get_common_irq_in(s, 3));
744     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
745     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]",
746                              &error_abort);
747 
748     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
749     sysbus_realize(SYS_BUS_DEVICE(&s->timer1), &err);
750     if (err) {
751         error_propagate(errp, err);
752         return;
753     }
754     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
755                        armsse_get_common_irq_in(s, 4));
756     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
757     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]",
758                              &error_abort);
759 
760     qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
761     sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), &err);
762     if (err) {
763         error_propagate(errp, err);
764         return;
765     }
766     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
767                        armsse_get_common_irq_in(s, 5));
768     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
769     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]",
770                              &error_abort);
771 
772     if (info->has_mhus) {
773         /*
774          * An SSE-200 with only one CPU should have only one MHU created,
775          * with the region where the second MHU usually is being RAZ/WI.
776          * We don't implement that SSE-200 config; if we want to support
777          * it then this code needs to be enhanced to handle creating the
778          * RAZ/WI region instead of the second MHU.
779          */
780         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
781 
782         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
783             char *port;
784             int cpunum;
785             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
786 
787             sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), &err);
788             if (err) {
789                 error_propagate(errp, err);
790                 return;
791             }
792             port = g_strdup_printf("port[%d]", i + 3);
793             mr = sysbus_mmio_get_region(mhu_sbd, 0);
794             object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
795                                      port, &error_abort);
796             g_free(port);
797 
798             /*
799              * Each MHU has an irq line for each CPU:
800              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
801              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
802              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
803              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
804              */
805             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
806                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
807 
808                 sysbus_connect_irq(mhu_sbd, cpunum,
809                                    qdev_get_gpio_in(cpudev, 6 + i));
810             }
811         }
812     }
813 
814     sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), &err);
815     if (err) {
816         error_propagate(errp, err);
817         return;
818     }
819 
820     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
821     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
822 
823     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
824     memory_region_add_subregion(&s->container, 0x40000000, mr);
825     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
826     memory_region_add_subregion(&s->container, 0x40001000, mr);
827     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
828     memory_region_add_subregion(&s->container, 0x40002000, mr);
829     if (info->has_mhus) {
830         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
831         memory_region_add_subregion(&s->container, 0x40003000, mr);
832         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
833         memory_region_add_subregion(&s->container, 0x40004000, mr);
834     }
835     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
836         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
837                                     qdev_get_gpio_in_named(dev_apb_ppc0,
838                                                            "cfg_nonsec", i));
839         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
840                                     qdev_get_gpio_in_named(dev_apb_ppc0,
841                                                            "cfg_ap", i));
842     }
843     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
844                                 qdev_get_gpio_in_named(dev_apb_ppc0,
845                                                        "irq_enable", 0));
846     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
847                                 qdev_get_gpio_in_named(dev_apb_ppc0,
848                                                        "irq_clear", 0));
849     qdev_connect_gpio_out(dev_splitter, 0,
850                           qdev_get_gpio_in_named(dev_apb_ppc0,
851                                                  "cfg_sec_resp", 0));
852 
853     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
854      * ones) are sent individually to the security controller, and also
855      * ORed together to give a single combined PPC interrupt to the NVIC.
856      */
857     object_property_set_int(OBJECT(&s->ppc_irq_orgate),
858                             NUM_PPCS, "num-lines", &err);
859     if (err) {
860         error_propagate(errp, err);
861         return;
862     }
863     qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, &err);
864     if (err) {
865         error_propagate(errp, err);
866         return;
867     }
868     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
869                           armsse_get_common_irq_in(s, 10));
870 
871     /*
872      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
873      * private per-CPU region (all these devices are SSE-200 only):
874      *  0x50010000: L1 icache control registers
875      *  0x50011000: CPUSECCTRL (CPU local security control registers)
876      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
877      */
878     if (info->has_cachectrl) {
879         for (i = 0; i < info->num_cpus; i++) {
880             char *name = g_strdup_printf("cachectrl%d", i);
881             MemoryRegion *mr;
882 
883             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
884             g_free(name);
885             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
886             sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), &err);
887             if (err) {
888                 error_propagate(errp, err);
889                 return;
890             }
891 
892             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
893             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
894         }
895     }
896     if (info->has_cpusecctrl) {
897         for (i = 0; i < info->num_cpus; i++) {
898             char *name = g_strdup_printf("CPUSECCTRL%d", i);
899             MemoryRegion *mr;
900 
901             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
902             g_free(name);
903             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
904             sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), &err);
905             if (err) {
906                 error_propagate(errp, err);
907                 return;
908             }
909 
910             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
911             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
912         }
913     }
914     if (info->has_cpuid) {
915         for (i = 0; i < info->num_cpus; i++) {
916             MemoryRegion *mr;
917 
918             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
919             sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), &err);
920             if (err) {
921                 error_propagate(errp, err);
922                 return;
923             }
924 
925             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
926             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
927         }
928     }
929 
930     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
931     /* Devices behind APB PPC1:
932      *   0x4002f000: S32K timer
933      */
934     qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
935     sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), &err);
936     if (err) {
937         error_propagate(errp, err);
938         return;
939     }
940     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
941                        armsse_get_common_irq_in(s, 2));
942     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
943     object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]",
944                              &error_abort);
945 
946     sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), &err);
947     if (err) {
948         error_propagate(errp, err);
949         return;
950     }
951     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
952     memory_region_add_subregion(&s->container, 0x4002f000, mr);
953 
954     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
955     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
956                                 qdev_get_gpio_in_named(dev_apb_ppc1,
957                                                        "cfg_nonsec", 0));
958     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
959                                 qdev_get_gpio_in_named(dev_apb_ppc1,
960                                                        "cfg_ap", 0));
961     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
962                                 qdev_get_gpio_in_named(dev_apb_ppc1,
963                                                        "irq_enable", 0));
964     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
965                                 qdev_get_gpio_in_named(dev_apb_ppc1,
966                                                        "irq_clear", 0));
967     qdev_connect_gpio_out(dev_splitter, 1,
968                           qdev_get_gpio_in_named(dev_apb_ppc1,
969                                                  "cfg_sec_resp", 0));
970 
971     object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
972                             "SYS_VERSION", &err);
973     if (err) {
974         error_propagate(errp, err);
975         return;
976     }
977     object_property_set_int(OBJECT(&s->sysinfo),
978                             armsse_sys_config_value(s, info),
979                             "SYS_CONFIG", &err);
980     if (err) {
981         error_propagate(errp, err);
982         return;
983     }
984     sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), &err);
985     if (err) {
986         error_propagate(errp, err);
987         return;
988     }
989     /* System information registers */
990     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
991     /* System control registers */
992     object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
993                             "SYS_VERSION", &error_abort);
994     object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
995                             "CPUWAIT_RST", &error_abort);
996     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
997                             "INITSVTOR0_RST", &error_abort);
998     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
999                             "INITSVTOR1_RST", &error_abort);
1000     sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), &err);
1001     if (err) {
1002         error_propagate(errp, err);
1003         return;
1004     }
1005     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1006 
1007     if (info->has_ppus) {
1008         /* CPUnCORE_PPU for each CPU */
1009         for (i = 0; i < info->num_cpus; i++) {
1010             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1011 
1012             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1013             /*
1014              * We don't support CPU debug so don't create the
1015              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1016              */
1017             g_free(name);
1018         }
1019         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1020 
1021         for (i = 0; i < info->sram_banks; i++) {
1022             char *name = g_strdup_printf("RAM%d_PPU", i);
1023 
1024             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1025             g_free(name);
1026         }
1027     }
1028 
1029     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1030     object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1031     if (err) {
1032         error_propagate(errp, err);
1033         return;
1034     }
1035     qdev_realize(DEVICE(&s->nmi_orgate), NULL, &err);
1036     if (err) {
1037         error_propagate(errp, err);
1038         return;
1039     }
1040     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1041                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1042 
1043     qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1044     sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), &err);
1045     if (err) {
1046         error_propagate(errp, err);
1047         return;
1048     }
1049     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1050                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1051     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1052 
1053     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1054 
1055     qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1056     sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), &err);
1057     if (err) {
1058         error_propagate(errp, err);
1059         return;
1060     }
1061     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1062                        armsse_get_common_irq_in(s, 1));
1063     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1064 
1065     qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1066     sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), &err);
1067     if (err) {
1068         error_propagate(errp, err);
1069         return;
1070     }
1071     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1072                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1073     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1074 
1075     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1076         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1077 
1078         object_property_set_int(splitter, 2, "num-lines", &err);
1079         if (err) {
1080             error_propagate(errp, err);
1081             return;
1082         }
1083         qdev_realize(DEVICE(splitter), NULL, &err);
1084         if (err) {
1085             error_propagate(errp, err);
1086             return;
1087         }
1088     }
1089 
1090     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1091         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1092 
1093         armsse_forward_ppc(s, ppcname, i);
1094         g_free(ppcname);
1095     }
1096 
1097     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1098         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1099 
1100         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1101         g_free(ppcname);
1102     }
1103 
1104     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1105         /* Wire up IRQ splitter for internal PPCs */
1106         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1107         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1108                                          i - NUM_EXTERNAL_PPCS);
1109         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1110 
1111         qdev_connect_gpio_out(devs, 0,
1112                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1113         qdev_connect_gpio_out(devs, 1,
1114                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1115         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1116                                     qdev_get_gpio_in(devs, 0));
1117         g_free(gpioname);
1118     }
1119 
1120     /* Wire up the splitters for the MPC IRQs */
1121     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1122         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1123         DeviceState *dev_splitter = DEVICE(splitter);
1124 
1125         object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1126         if (err) {
1127             error_propagate(errp, err);
1128             return;
1129         }
1130         qdev_realize(DEVICE(splitter), NULL, &err);
1131         if (err) {
1132             error_propagate(errp, err);
1133             return;
1134         }
1135 
1136         if (i < IOTS_NUM_EXP_MPC) {
1137             /* Splitter input is from GPIO input line */
1138             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1139             qdev_connect_gpio_out(dev_splitter, 0,
1140                                   qdev_get_gpio_in_named(dev_secctl,
1141                                                          "mpcexp_status", i));
1142         } else {
1143             /* Splitter input is from our own MPC */
1144             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1145                                         "irq", 0,
1146                                         qdev_get_gpio_in(dev_splitter, 0));
1147             qdev_connect_gpio_out(dev_splitter, 0,
1148                                   qdev_get_gpio_in_named(dev_secctl,
1149                                                          "mpc_status", 0));
1150         }
1151 
1152         qdev_connect_gpio_out(dev_splitter, 1,
1153                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1154     }
1155     /* Create GPIO inputs which will pass the line state for our
1156      * mpcexp_irq inputs to the correct splitter devices.
1157      */
1158     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1159                             IOTS_NUM_EXP_MPC);
1160 
1161     armsse_forward_sec_resp_cfg(s);
1162 
1163     /* Forward the MSC related signals */
1164     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1165     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1166     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1167     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1168                                 armsse_get_common_irq_in(s, 11));
1169 
1170     /*
1171      * Expose our container region to the board model; this corresponds
1172      * to the AHB Slave Expansion ports which allow bus master devices
1173      * (eg DMA controllers) in the board model to make transactions into
1174      * devices in the ARMSSE.
1175      */
1176     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1177 
1178     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1179 }
1180 
1181 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1182                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1183 {
1184     /*
1185      * For ARMSSE systems the IDAU responses are simple logical functions
1186      * of the address bits. The NSC attribute is guest-adjustable via the
1187      * NSCCFG register in the security controller.
1188      */
1189     ARMSSE *s = ARMSSE(ii);
1190     int region = extract32(address, 28, 4);
1191 
1192     *ns = !(region & 1);
1193     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1194     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1195     *exempt = (address & 0xeff00000) == 0xe0000000;
1196     *iregion = region;
1197 }
1198 
1199 static const VMStateDescription armsse_vmstate = {
1200     .name = "iotkit",
1201     .version_id = 1,
1202     .minimum_version_id = 1,
1203     .fields = (VMStateField[]) {
1204         VMSTATE_UINT32(nsccfg, ARMSSE),
1205         VMSTATE_END_OF_LIST()
1206     }
1207 };
1208 
1209 static void armsse_reset(DeviceState *dev)
1210 {
1211     ARMSSE *s = ARMSSE(dev);
1212 
1213     s->nsccfg = 0;
1214 }
1215 
1216 static void armsse_class_init(ObjectClass *klass, void *data)
1217 {
1218     DeviceClass *dc = DEVICE_CLASS(klass);
1219     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1220     ARMSSEClass *asc = ARMSSE_CLASS(klass);
1221     const ARMSSEInfo *info = data;
1222 
1223     dc->realize = armsse_realize;
1224     dc->vmsd = &armsse_vmstate;
1225     device_class_set_props(dc, info->props);
1226     dc->reset = armsse_reset;
1227     iic->check = armsse_idau_check;
1228     asc->info = info;
1229 }
1230 
1231 static const TypeInfo armsse_info = {
1232     .name = TYPE_ARMSSE,
1233     .parent = TYPE_SYS_BUS_DEVICE,
1234     .instance_size = sizeof(ARMSSE),
1235     .instance_init = armsse_init,
1236     .abstract = true,
1237     .interfaces = (InterfaceInfo[]) {
1238         { TYPE_IDAU_INTERFACE },
1239         { }
1240     }
1241 };
1242 
1243 static void armsse_register_types(void)
1244 {
1245     int i;
1246 
1247     type_register_static(&armsse_info);
1248 
1249     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1250         TypeInfo ti = {
1251             .name = armsse_variants[i].name,
1252             .parent = TYPE_ARMSSE,
1253             .class_init = armsse_class_init,
1254             .class_data = (void *)&armsse_variants[i],
1255         };
1256         type_register(&ti);
1257     }
1258 }
1259 
1260 type_init(armsse_register_types);
1261