1 /* 2 * Arm SSE (Subsystems for Embedded): IoTKit 3 * 4 * Copyright (c) 2018 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 or 9 * (at your option) any later version. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/log.h" 14 #include "qemu/module.h" 15 #include "qemu/bitops.h" 16 #include "qapi/error.h" 17 #include "trace.h" 18 #include "hw/sysbus.h" 19 #include "migration/vmstate.h" 20 #include "hw/registerfields.h" 21 #include "hw/arm/armsse.h" 22 #include "hw/arm/boot.h" 23 #include "hw/irq.h" 24 25 /* Format of the System Information block SYS_CONFIG register */ 26 typedef enum SysConfigFormat { 27 IoTKitFormat, 28 SSE200Format, 29 } SysConfigFormat; 30 31 struct ARMSSEInfo { 32 const char *name; 33 int sram_banks; 34 int num_cpus; 35 uint32_t sys_version; 36 uint32_t cpuwait_rst; 37 SysConfigFormat sys_config_format; 38 bool has_mhus; 39 bool has_ppus; 40 bool has_cachectrl; 41 bool has_cpusecctrl; 42 bool has_cpuid; 43 Property *props; 44 }; 45 46 static Property iotkit_properties[] = { 47 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, 48 MemoryRegion *), 49 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), 50 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0), 51 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), 52 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), 53 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true), 54 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true), 55 DEFINE_PROP_END_OF_LIST() 56 }; 57 58 static Property armsse_properties[] = { 59 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, 60 MemoryRegion *), 61 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), 62 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0), 63 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), 64 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), 65 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false), 66 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false), 67 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true), 68 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true), 69 DEFINE_PROP_END_OF_LIST() 70 }; 71 72 static const ARMSSEInfo armsse_variants[] = { 73 { 74 .name = TYPE_IOTKIT, 75 .sram_banks = 1, 76 .num_cpus = 1, 77 .sys_version = 0x41743, 78 .cpuwait_rst = 0, 79 .sys_config_format = IoTKitFormat, 80 .has_mhus = false, 81 .has_ppus = false, 82 .has_cachectrl = false, 83 .has_cpusecctrl = false, 84 .has_cpuid = false, 85 .props = iotkit_properties, 86 }, 87 { 88 .name = TYPE_SSE200, 89 .sram_banks = 4, 90 .num_cpus = 2, 91 .sys_version = 0x22041743, 92 .cpuwait_rst = 2, 93 .sys_config_format = SSE200Format, 94 .has_mhus = true, 95 .has_ppus = true, 96 .has_cachectrl = true, 97 .has_cpusecctrl = true, 98 .has_cpuid = true, 99 .props = armsse_properties, 100 }, 101 }; 102 103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info) 104 { 105 /* Return the SYS_CONFIG value for this SSE */ 106 uint32_t sys_config; 107 108 switch (info->sys_config_format) { 109 case IoTKitFormat: 110 sys_config = 0; 111 sys_config = deposit32(sys_config, 0, 4, info->sram_banks); 112 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12); 113 break; 114 case SSE200Format: 115 sys_config = 0; 116 sys_config = deposit32(sys_config, 0, 4, info->sram_banks); 117 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width); 118 sys_config = deposit32(sys_config, 24, 4, 2); 119 if (info->num_cpus > 1) { 120 sys_config = deposit32(sys_config, 10, 1, 1); 121 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1); 122 sys_config = deposit32(sys_config, 28, 4, 2); 123 } 124 break; 125 default: 126 g_assert_not_reached(); 127 } 128 return sys_config; 129 } 130 131 /* Clock frequency in HZ of the 32KHz "slow clock" */ 132 #define S32KCLK (32 * 1000) 133 134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */ 135 static bool irq_is_common[32] = { 136 [0 ... 5] = true, 137 /* 6, 7: per-CPU MHU interrupts */ 138 [8 ... 12] = true, 139 /* 13: per-CPU icache interrupt */ 140 /* 14: reserved */ 141 [15 ... 20] = true, 142 /* 21: reserved */ 143 [22 ... 26] = true, 144 /* 27: reserved */ 145 /* 28, 29: per-CPU CTI interrupts */ 146 /* 30, 31: reserved */ 147 }; 148 149 /* 150 * Create an alias region in @container of @size bytes starting at @base 151 * which mirrors the memory starting at @orig. 152 */ 153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container, 154 const char *name, hwaddr base, hwaddr size, hwaddr orig) 155 { 156 memory_region_init_alias(mr, NULL, name, container, orig, size); 157 /* The alias is even lower priority than unimplemented_device regions */ 158 memory_region_add_subregion_overlap(container, base, mr, -1500); 159 } 160 161 static void irq_status_forwarder(void *opaque, int n, int level) 162 { 163 qemu_irq destirq = opaque; 164 165 qemu_set_irq(destirq, level); 166 } 167 168 static void nsccfg_handler(void *opaque, int n, int level) 169 { 170 ARMSSE *s = ARMSSE(opaque); 171 172 s->nsccfg = level; 173 } 174 175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum) 176 { 177 /* Each of the 4 AHB and 4 APB PPCs that might be present in a 178 * system using the ARMSSE has a collection of control lines which 179 * are provided by the security controller and which we want to 180 * expose as control lines on the ARMSSE device itself, so the 181 * code using the ARMSSE can wire them up to the PPCs. 182 */ 183 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum]; 184 DeviceState *armssedev = DEVICE(s); 185 DeviceState *dev_secctl = DEVICE(&s->secctl); 186 DeviceState *dev_splitter = DEVICE(splitter); 187 char *name; 188 189 name = g_strdup_printf("%s_nonsec", ppcname); 190 qdev_pass_gpios(dev_secctl, armssedev, name); 191 g_free(name); 192 name = g_strdup_printf("%s_ap", ppcname); 193 qdev_pass_gpios(dev_secctl, armssedev, name); 194 g_free(name); 195 name = g_strdup_printf("%s_irq_enable", ppcname); 196 qdev_pass_gpios(dev_secctl, armssedev, name); 197 g_free(name); 198 name = g_strdup_printf("%s_irq_clear", ppcname); 199 qdev_pass_gpios(dev_secctl, armssedev, name); 200 g_free(name); 201 202 /* irq_status is a little more tricky, because we need to 203 * split it so we can send it both to the security controller 204 * and to our OR gate for the NVIC interrupt line. 205 * Connect up the splitter's outputs, and create a GPIO input 206 * which will pass the line state to the input splitter. 207 */ 208 name = g_strdup_printf("%s_irq_status", ppcname); 209 qdev_connect_gpio_out(dev_splitter, 0, 210 qdev_get_gpio_in_named(dev_secctl, 211 name, 0)); 212 qdev_connect_gpio_out(dev_splitter, 1, 213 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum)); 214 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0); 215 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder, 216 s->irq_status_in[ppcnum], name, 1); 217 g_free(name); 218 } 219 220 static void armsse_forward_sec_resp_cfg(ARMSSE *s) 221 { 222 /* Forward the 3rd output from the splitter device as a 223 * named GPIO output of the armsse object. 224 */ 225 DeviceState *dev = DEVICE(s); 226 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter); 227 228 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1); 229 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder, 230 s->sec_resp_cfg, 1); 231 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); 232 } 233 234 static void armsse_init(Object *obj) 235 { 236 ARMSSE *s = ARMSSE(obj); 237 ARMSSEClass *asc = ARMSSE_GET_CLASS(obj); 238 const ARMSSEInfo *info = asc->info; 239 int i; 240 241 assert(info->sram_banks <= MAX_SRAM_BANKS); 242 assert(info->num_cpus <= SSE_MAX_CPUS); 243 244 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX); 245 246 for (i = 0; i < info->num_cpus; i++) { 247 /* 248 * We put each CPU in its own cluster as they are logically 249 * distinct and may be configured differently. 250 */ 251 char *name; 252 253 name = g_strdup_printf("cluster%d", i); 254 object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER); 255 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i); 256 g_free(name); 257 258 name = g_strdup_printf("armv7m%d", i); 259 object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i], 260 TYPE_ARMV7M); 261 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", 262 ARM_CPU_TYPE_NAME("cortex-m33")); 263 g_free(name); 264 name = g_strdup_printf("arm-sse-cpu-container%d", i); 265 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX); 266 g_free(name); 267 if (i > 0) { 268 name = g_strdup_printf("arm-sse-container-alias%d", i); 269 memory_region_init_alias(&s->container_alias[i - 1], obj, 270 name, &s->container, 0, UINT64_MAX); 271 g_free(name); 272 } 273 } 274 275 object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL); 276 object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC); 277 object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC); 278 for (i = 0; i < info->sram_banks; i++) { 279 char *name = g_strdup_printf("mpc%d", i); 280 object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC); 281 g_free(name); 282 } 283 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate, 284 TYPE_OR_IRQ); 285 286 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { 287 char *name = g_strdup_printf("mpc-irq-splitter-%d", i); 288 SplitIRQ *splitter = &s->mpc_irq_splitter[i]; 289 290 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ); 291 g_free(name); 292 } 293 object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER); 294 object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER); 295 object_initialize_child(obj, "s32ktimer", &s->s32ktimer, 296 TYPE_CMSDK_APB_TIMER); 297 object_initialize_child(obj, "dualtimer", &s->dualtimer, 298 TYPE_CMSDK_APB_DUALTIMER); 299 object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog, 300 TYPE_CMSDK_APB_WATCHDOG); 301 object_initialize_child(obj, "nswatchdog", &s->nswatchdog, 302 TYPE_CMSDK_APB_WATCHDOG); 303 object_initialize_child(obj, "swatchdog", &s->swatchdog, 304 TYPE_CMSDK_APB_WATCHDOG); 305 object_initialize_child(obj, "armsse-sysctl", &s->sysctl, 306 TYPE_IOTKIT_SYSCTL); 307 object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo, 308 TYPE_IOTKIT_SYSINFO); 309 if (info->has_mhus) { 310 object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU); 311 object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU); 312 } 313 if (info->has_ppus) { 314 for (i = 0; i < info->num_cpus; i++) { 315 char *name = g_strdup_printf("CPU%dCORE_PPU", i); 316 int ppuidx = CPU0CORE_PPU + i; 317 318 object_initialize_child(obj, name, &s->ppu[ppuidx], 319 TYPE_UNIMPLEMENTED_DEVICE); 320 g_free(name); 321 } 322 object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU], 323 TYPE_UNIMPLEMENTED_DEVICE); 324 for (i = 0; i < info->sram_banks; i++) { 325 char *name = g_strdup_printf("RAM%d_PPU", i); 326 int ppuidx = RAM0_PPU + i; 327 328 object_initialize_child(obj, name, &s->ppu[ppuidx], 329 TYPE_UNIMPLEMENTED_DEVICE); 330 g_free(name); 331 } 332 } 333 if (info->has_cachectrl) { 334 for (i = 0; i < info->num_cpus; i++) { 335 char *name = g_strdup_printf("cachectrl%d", i); 336 337 object_initialize_child(obj, name, &s->cachectrl[i], 338 TYPE_UNIMPLEMENTED_DEVICE); 339 g_free(name); 340 } 341 } 342 if (info->has_cpusecctrl) { 343 for (i = 0; i < info->num_cpus; i++) { 344 char *name = g_strdup_printf("cpusecctrl%d", i); 345 346 object_initialize_child(obj, name, &s->cpusecctrl[i], 347 TYPE_UNIMPLEMENTED_DEVICE); 348 g_free(name); 349 } 350 } 351 if (info->has_cpuid) { 352 for (i = 0; i < info->num_cpus; i++) { 353 char *name = g_strdup_printf("cpuid%d", i); 354 355 object_initialize_child(obj, name, &s->cpuid[i], 356 TYPE_ARMSSE_CPUID); 357 g_free(name); 358 } 359 } 360 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ); 361 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate, 362 TYPE_OR_IRQ); 363 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter, 364 TYPE_SPLIT_IRQ); 365 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { 366 char *name = g_strdup_printf("ppc-irq-splitter-%d", i); 367 SplitIRQ *splitter = &s->ppc_irq_splitter[i]; 368 369 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ); 370 g_free(name); 371 } 372 if (info->num_cpus > 1) { 373 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { 374 if (irq_is_common[i]) { 375 char *name = g_strdup_printf("cpu-irq-splitter%d", i); 376 SplitIRQ *splitter = &s->cpu_irq_splitter[i]; 377 378 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ); 379 g_free(name); 380 } 381 } 382 } 383 } 384 385 static void armsse_exp_irq(void *opaque, int n, int level) 386 { 387 qemu_irq *irqarray = opaque; 388 389 qemu_set_irq(irqarray[n], level); 390 } 391 392 static void armsse_mpcexp_status(void *opaque, int n, int level) 393 { 394 ARMSSE *s = ARMSSE(opaque); 395 qemu_set_irq(s->mpcexp_status_in[n], level); 396 } 397 398 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno) 399 { 400 /* 401 * Return a qemu_irq which can be used to signal IRQ n to 402 * all CPUs in the SSE. 403 */ 404 ARMSSEClass *asc = ARMSSE_GET_CLASS(s); 405 const ARMSSEInfo *info = asc->info; 406 407 assert(irq_is_common[irqno]); 408 409 if (info->num_cpus == 1) { 410 /* Only one CPU -- just connect directly to it */ 411 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno); 412 } else { 413 /* Connect to the splitter which feeds all CPUs */ 414 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0); 415 } 416 } 417 418 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr) 419 { 420 /* Map a PPU unimplemented device stub */ 421 DeviceState *dev = DEVICE(&s->ppu[ppuidx]); 422 423 qdev_prop_set_string(dev, "name", name); 424 qdev_prop_set_uint64(dev, "size", 0x1000); 425 sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal); 426 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr); 427 } 428 429 static void armsse_realize(DeviceState *dev, Error **errp) 430 { 431 ARMSSE *s = ARMSSE(dev); 432 ARMSSEClass *asc = ARMSSE_GET_CLASS(dev); 433 const ARMSSEInfo *info = asc->info; 434 int i; 435 MemoryRegion *mr; 436 Error *err = NULL; 437 SysBusDevice *sbd_apb_ppc0; 438 SysBusDevice *sbd_secctl; 439 DeviceState *dev_apb_ppc0; 440 DeviceState *dev_apb_ppc1; 441 DeviceState *dev_secctl; 442 DeviceState *dev_splitter; 443 uint32_t addr_width_max; 444 445 if (!s->board_memory) { 446 error_setg(errp, "memory property was not set"); 447 return; 448 } 449 450 if (!s->mainclk_frq) { 451 error_setg(errp, "MAINCLK property was not set"); 452 return; 453 } 454 455 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */ 456 assert(is_power_of_2(info->sram_banks)); 457 addr_width_max = 24 - ctz32(info->sram_banks); 458 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) { 459 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d", 460 addr_width_max); 461 return; 462 } 463 464 /* Handling of which devices should be available only to secure 465 * code is usually done differently for M profile than for A profile. 466 * Instead of putting some devices only into the secure address space, 467 * devices exist in both address spaces but with hard-wired security 468 * permissions that will cause the CPU to fault for non-secure accesses. 469 * 470 * The ARMSSE has an IDAU (Implementation Defined Access Unit), 471 * which specifies hard-wired security permissions for different 472 * areas of the physical address space. For the ARMSSE IDAU, the 473 * top 4 bits of the physical address are the IDAU region ID, and 474 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS 475 * region, otherwise it is an S region. 476 * 477 * The various devices and RAMs are generally all mapped twice, 478 * once into a region that the IDAU defines as secure and once 479 * into a non-secure region. They sit behind either a Memory 480 * Protection Controller (for RAM) or a Peripheral Protection 481 * Controller (for devices), which allow a more fine grained 482 * configuration of whether non-secure accesses are permitted. 483 * 484 * (The other place that guest software can configure security 485 * permissions is in the architected SAU (Security Attribution 486 * Unit), which is entirely inside the CPU. The IDAU can upgrade 487 * the security attributes for a region to more restrictive than 488 * the SAU specifies, but cannot downgrade them.) 489 * 490 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff 491 * 0x20000000..0x2007ffff 32KB FPGA block RAM 492 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff 493 * 0x40000000..0x4000ffff base peripheral region 1 494 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE) 495 * 0x40020000..0x4002ffff system control element peripherals 496 * 0x40080000..0x400fffff base peripheral region 2 497 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff 498 */ 499 500 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2); 501 502 for (i = 0; i < info->num_cpus; i++) { 503 DeviceState *cpudev = DEVICE(&s->armv7m[i]); 504 Object *cpuobj = OBJECT(&s->armv7m[i]); 505 int j; 506 char *gpioname; 507 508 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32); 509 /* 510 * In real hardware the initial Secure VTOR is set from the INITSVTOR* 511 * registers in the IoT Kit System Control Register block. In QEMU 512 * we set the initial value here, and also the reset value of the 513 * sysctl register, from this object's QOM init-svtor property. 514 * If the guest changes the INITSVTOR* registers at runtime then the 515 * code in iotkit-sysctl.c will update the CPU init-svtor property 516 * (which will then take effect on the next CPU warm-reset). 517 * 518 * Note that typically a board using the SSE-200 will have a system 519 * control processor whose boot firmware initializes the INITSVTOR* 520 * registers before powering up the CPUs. QEMU doesn't emulate 521 * the control processor, so instead we behave in the way that the 522 * firmware does: the initial value should be set by the board code 523 * (using the init-svtor property on the ARMSSE object) to match 524 * whatever its firmware does. 525 */ 526 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor); 527 /* 528 * CPUs start powered down if the corresponding bit in the CPUWAIT 529 * register is 1. In real hardware the CPUWAIT register reset value is 530 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and 531 * CPUWAIT1_RST parameters), but since all the boards we care about 532 * start CPU0 and leave CPU1 powered off, we hard-code that in 533 * info->cpuwait_rst for now. We can add QOM properties for this 534 * later if necessary. 535 */ 536 if (extract32(info->cpuwait_rst, i, 1)) { 537 object_property_set_bool(cpuobj, true, "start-powered-off", &err); 538 if (err) { 539 error_propagate(errp, err); 540 return; 541 } 542 } 543 if (!s->cpu_fpu[i]) { 544 object_property_set_bool(cpuobj, false, "vfp", &err); 545 if (err) { 546 error_propagate(errp, err); 547 return; 548 } 549 } 550 if (!s->cpu_dsp[i]) { 551 object_property_set_bool(cpuobj, false, "dsp", &err); 552 if (err) { 553 error_propagate(errp, err); 554 return; 555 } 556 } 557 558 if (i > 0) { 559 memory_region_add_subregion_overlap(&s->cpu_container[i], 0, 560 &s->container_alias[i - 1], -1); 561 } else { 562 memory_region_add_subregion_overlap(&s->cpu_container[i], 0, 563 &s->container, -1); 564 } 565 object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]), 566 "memory", &error_abort); 567 object_property_set_link(cpuobj, OBJECT(s), "idau", &error_abort); 568 sysbus_realize(SYS_BUS_DEVICE(cpuobj), &err); 569 if (err) { 570 error_propagate(errp, err); 571 return; 572 } 573 /* 574 * The cluster must be realized after the armv7m container, as 575 * the container's CPU object is only created on realize, and the 576 * CPU must exist and have been parented into the cluster before 577 * the cluster is realized. 578 */ 579 qdev_realize(DEVICE(&s->cluster[i]), NULL, &err); 580 if (err) { 581 error_propagate(errp, err); 582 return; 583 } 584 585 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */ 586 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq); 587 for (j = 0; j < s->exp_numirq; j++) { 588 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32); 589 } 590 if (i == 0) { 591 gpioname = g_strdup("EXP_IRQ"); 592 } else { 593 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i); 594 } 595 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq, 596 s->exp_irqs[i], 597 gpioname, s->exp_numirq); 598 g_free(gpioname); 599 } 600 601 /* Wire up the splitters that connect common IRQs to all CPUs */ 602 if (info->num_cpus > 1) { 603 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { 604 if (irq_is_common[i]) { 605 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]); 606 DeviceState *devs = DEVICE(splitter); 607 int cpunum; 608 609 object_property_set_int(splitter, info->num_cpus, 610 "num-lines", &err); 611 if (err) { 612 error_propagate(errp, err); 613 return; 614 } 615 qdev_realize(DEVICE(splitter), NULL, &err); 616 if (err) { 617 error_propagate(errp, err); 618 return; 619 } 620 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { 621 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); 622 623 qdev_connect_gpio_out(devs, cpunum, 624 qdev_get_gpio_in(cpudev, i)); 625 } 626 } 627 } 628 } 629 630 /* Set up the big aliases first */ 631 make_alias(s, &s->alias1, &s->container, "alias 1", 632 0x10000000, 0x10000000, 0x00000000); 633 make_alias(s, &s->alias2, &s->container, 634 "alias 2", 0x30000000, 0x10000000, 0x20000000); 635 /* The 0x50000000..0x5fffffff region is not a pure alias: it has 636 * a few extra devices that only appear there (generally the 637 * control interfaces for the protection controllers). 638 * We implement this by mapping those devices over the top of this 639 * alias MR at a higher priority. Some of the devices in this range 640 * are per-CPU, so we must put this alias in the per-cpu containers. 641 */ 642 for (i = 0; i < info->num_cpus; i++) { 643 make_alias(s, &s->alias3[i], &s->cpu_container[i], 644 "alias 3", 0x50000000, 0x10000000, 0x40000000); 645 } 646 647 /* Security controller */ 648 sysbus_realize(SYS_BUS_DEVICE(&s->secctl), &err); 649 if (err) { 650 error_propagate(errp, err); 651 return; 652 } 653 sbd_secctl = SYS_BUS_DEVICE(&s->secctl); 654 dev_secctl = DEVICE(&s->secctl); 655 sysbus_mmio_map(sbd_secctl, 0, 0x50080000); 656 sysbus_mmio_map(sbd_secctl, 1, 0x40080000); 657 658 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1); 659 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in); 660 661 /* The sec_resp_cfg output from the security controller must be split into 662 * multiple lines, one for each of the PPCs within the ARMSSE and one 663 * that will be an output from the ARMSSE to the system. 664 */ 665 object_property_set_int(OBJECT(&s->sec_resp_splitter), 3, 666 "num-lines", &err); 667 if (err) { 668 error_propagate(errp, err); 669 return; 670 } 671 qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, &err); 672 if (err) { 673 error_propagate(errp, err); 674 return; 675 } 676 dev_splitter = DEVICE(&s->sec_resp_splitter); 677 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0, 678 qdev_get_gpio_in(dev_splitter, 0)); 679 680 /* Each SRAM bank lives behind its own Memory Protection Controller */ 681 for (i = 0; i < info->sram_banks; i++) { 682 char *ramname = g_strdup_printf("armsse.sram%d", i); 683 SysBusDevice *sbd_mpc; 684 uint32_t sram_bank_size = 1 << s->sram_addr_width; 685 686 memory_region_init_ram(&s->sram[i], NULL, ramname, 687 sram_bank_size, &err); 688 g_free(ramname); 689 if (err) { 690 error_propagate(errp, err); 691 return; 692 } 693 object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]), 694 "downstream", &error_abort); 695 sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), &err); 696 if (err) { 697 error_propagate(errp, err); 698 return; 699 } 700 /* Map the upstream end of the MPC into the right place... */ 701 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]); 702 memory_region_add_subregion(&s->container, 703 0x20000000 + i * sram_bank_size, 704 sysbus_mmio_get_region(sbd_mpc, 1)); 705 /* ...and its register interface */ 706 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000, 707 sysbus_mmio_get_region(sbd_mpc, 0)); 708 } 709 710 /* We must OR together lines from the MPC splitters to go to the NVIC */ 711 object_property_set_int(OBJECT(&s->mpc_irq_orgate), 712 IOTS_NUM_EXP_MPC + info->sram_banks, 713 "num-lines", &err); 714 if (err) { 715 error_propagate(errp, err); 716 return; 717 } 718 qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, &err); 719 if (err) { 720 error_propagate(errp, err); 721 return; 722 } 723 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0, 724 armsse_get_common_irq_in(s, 9)); 725 726 /* Devices behind APB PPC0: 727 * 0x40000000: timer0 728 * 0x40001000: timer1 729 * 0x40002000: dual timer 730 * 0x40003000: MHU0 (SSE-200 only) 731 * 0x40004000: MHU1 (SSE-200 only) 732 * We must configure and realize each downstream device and connect 733 * it to the appropriate PPC port; then we can realize the PPC and 734 * map its upstream ends to the right place in the container. 735 */ 736 qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq); 737 sysbus_realize(SYS_BUS_DEVICE(&s->timer0), &err); 738 if (err) { 739 error_propagate(errp, err); 740 return; 741 } 742 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0, 743 armsse_get_common_irq_in(s, 3)); 744 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0); 745 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", 746 &error_abort); 747 748 qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq); 749 sysbus_realize(SYS_BUS_DEVICE(&s->timer1), &err); 750 if (err) { 751 error_propagate(errp, err); 752 return; 753 } 754 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0, 755 armsse_get_common_irq_in(s, 4)); 756 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0); 757 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", 758 &error_abort); 759 760 qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq); 761 sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), &err); 762 if (err) { 763 error_propagate(errp, err); 764 return; 765 } 766 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0, 767 armsse_get_common_irq_in(s, 5)); 768 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0); 769 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", 770 &error_abort); 771 772 if (info->has_mhus) { 773 /* 774 * An SSE-200 with only one CPU should have only one MHU created, 775 * with the region where the second MHU usually is being RAZ/WI. 776 * We don't implement that SSE-200 config; if we want to support 777 * it then this code needs to be enhanced to handle creating the 778 * RAZ/WI region instead of the second MHU. 779 */ 780 assert(info->num_cpus == ARRAY_SIZE(s->mhu)); 781 782 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) { 783 char *port; 784 int cpunum; 785 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]); 786 787 sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), &err); 788 if (err) { 789 error_propagate(errp, err); 790 return; 791 } 792 port = g_strdup_printf("port[%d]", i + 3); 793 mr = sysbus_mmio_get_region(mhu_sbd, 0); 794 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), 795 port, &error_abort); 796 g_free(port); 797 798 /* 799 * Each MHU has an irq line for each CPU: 800 * MHU 0 irq line 0 -> CPU 0 IRQ 6 801 * MHU 0 irq line 1 -> CPU 1 IRQ 6 802 * MHU 1 irq line 0 -> CPU 0 IRQ 7 803 * MHU 1 irq line 1 -> CPU 1 IRQ 7 804 */ 805 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { 806 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); 807 808 sysbus_connect_irq(mhu_sbd, cpunum, 809 qdev_get_gpio_in(cpudev, 6 + i)); 810 } 811 } 812 } 813 814 sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), &err); 815 if (err) { 816 error_propagate(errp, err); 817 return; 818 } 819 820 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0); 821 dev_apb_ppc0 = DEVICE(&s->apb_ppc0); 822 823 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0); 824 memory_region_add_subregion(&s->container, 0x40000000, mr); 825 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1); 826 memory_region_add_subregion(&s->container, 0x40001000, mr); 827 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2); 828 memory_region_add_subregion(&s->container, 0x40002000, mr); 829 if (info->has_mhus) { 830 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3); 831 memory_region_add_subregion(&s->container, 0x40003000, mr); 832 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4); 833 memory_region_add_subregion(&s->container, 0x40004000, mr); 834 } 835 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) { 836 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i, 837 qdev_get_gpio_in_named(dev_apb_ppc0, 838 "cfg_nonsec", i)); 839 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i, 840 qdev_get_gpio_in_named(dev_apb_ppc0, 841 "cfg_ap", i)); 842 } 843 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0, 844 qdev_get_gpio_in_named(dev_apb_ppc0, 845 "irq_enable", 0)); 846 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0, 847 qdev_get_gpio_in_named(dev_apb_ppc0, 848 "irq_clear", 0)); 849 qdev_connect_gpio_out(dev_splitter, 0, 850 qdev_get_gpio_in_named(dev_apb_ppc0, 851 "cfg_sec_resp", 0)); 852 853 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external 854 * ones) are sent individually to the security controller, and also 855 * ORed together to give a single combined PPC interrupt to the NVIC. 856 */ 857 object_property_set_int(OBJECT(&s->ppc_irq_orgate), 858 NUM_PPCS, "num-lines", &err); 859 if (err) { 860 error_propagate(errp, err); 861 return; 862 } 863 qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, &err); 864 if (err) { 865 error_propagate(errp, err); 866 return; 867 } 868 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0, 869 armsse_get_common_irq_in(s, 10)); 870 871 /* 872 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias): 873 * private per-CPU region (all these devices are SSE-200 only): 874 * 0x50010000: L1 icache control registers 875 * 0x50011000: CPUSECCTRL (CPU local security control registers) 876 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block 877 */ 878 if (info->has_cachectrl) { 879 for (i = 0; i < info->num_cpus; i++) { 880 char *name = g_strdup_printf("cachectrl%d", i); 881 MemoryRegion *mr; 882 883 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name); 884 g_free(name); 885 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000); 886 sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), &err); 887 if (err) { 888 error_propagate(errp, err); 889 return; 890 } 891 892 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0); 893 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr); 894 } 895 } 896 if (info->has_cpusecctrl) { 897 for (i = 0; i < info->num_cpus; i++) { 898 char *name = g_strdup_printf("CPUSECCTRL%d", i); 899 MemoryRegion *mr; 900 901 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name); 902 g_free(name); 903 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000); 904 sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), &err); 905 if (err) { 906 error_propagate(errp, err); 907 return; 908 } 909 910 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0); 911 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr); 912 } 913 } 914 if (info->has_cpuid) { 915 for (i = 0; i < info->num_cpus; i++) { 916 MemoryRegion *mr; 917 918 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i); 919 sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), &err); 920 if (err) { 921 error_propagate(errp, err); 922 return; 923 } 924 925 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0); 926 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr); 927 } 928 } 929 930 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */ 931 /* Devices behind APB PPC1: 932 * 0x4002f000: S32K timer 933 */ 934 qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK); 935 sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), &err); 936 if (err) { 937 error_propagate(errp, err); 938 return; 939 } 940 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0, 941 armsse_get_common_irq_in(s, 2)); 942 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0); 943 object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", 944 &error_abort); 945 946 sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), &err); 947 if (err) { 948 error_propagate(errp, err); 949 return; 950 } 951 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0); 952 memory_region_add_subregion(&s->container, 0x4002f000, mr); 953 954 dev_apb_ppc1 = DEVICE(&s->apb_ppc1); 955 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0, 956 qdev_get_gpio_in_named(dev_apb_ppc1, 957 "cfg_nonsec", 0)); 958 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0, 959 qdev_get_gpio_in_named(dev_apb_ppc1, 960 "cfg_ap", 0)); 961 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0, 962 qdev_get_gpio_in_named(dev_apb_ppc1, 963 "irq_enable", 0)); 964 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0, 965 qdev_get_gpio_in_named(dev_apb_ppc1, 966 "irq_clear", 0)); 967 qdev_connect_gpio_out(dev_splitter, 1, 968 qdev_get_gpio_in_named(dev_apb_ppc1, 969 "cfg_sec_resp", 0)); 970 971 object_property_set_int(OBJECT(&s->sysinfo), info->sys_version, 972 "SYS_VERSION", &err); 973 if (err) { 974 error_propagate(errp, err); 975 return; 976 } 977 object_property_set_int(OBJECT(&s->sysinfo), 978 armsse_sys_config_value(s, info), 979 "SYS_CONFIG", &err); 980 if (err) { 981 error_propagate(errp, err); 982 return; 983 } 984 sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), &err); 985 if (err) { 986 error_propagate(errp, err); 987 return; 988 } 989 /* System information registers */ 990 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000); 991 /* System control registers */ 992 object_property_set_int(OBJECT(&s->sysctl), info->sys_version, 993 "SYS_VERSION", &error_abort); 994 object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst, 995 "CPUWAIT_RST", &error_abort); 996 object_property_set_int(OBJECT(&s->sysctl), s->init_svtor, 997 "INITSVTOR0_RST", &error_abort); 998 object_property_set_int(OBJECT(&s->sysctl), s->init_svtor, 999 "INITSVTOR1_RST", &error_abort); 1000 sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), &err); 1001 if (err) { 1002 error_propagate(errp, err); 1003 return; 1004 } 1005 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000); 1006 1007 if (info->has_ppus) { 1008 /* CPUnCORE_PPU for each CPU */ 1009 for (i = 0; i < info->num_cpus; i++) { 1010 char *name = g_strdup_printf("CPU%dCORE_PPU", i); 1011 1012 map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000); 1013 /* 1014 * We don't support CPU debug so don't create the 1015 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000. 1016 */ 1017 g_free(name); 1018 } 1019 map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000); 1020 1021 for (i = 0; i < info->sram_banks; i++) { 1022 char *name = g_strdup_printf("RAM%d_PPU", i); 1023 1024 map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000); 1025 g_free(name); 1026 } 1027 } 1028 1029 /* This OR gate wires together outputs from the secure watchdogs to NMI */ 1030 object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err); 1031 if (err) { 1032 error_propagate(errp, err); 1033 return; 1034 } 1035 qdev_realize(DEVICE(&s->nmi_orgate), NULL, &err); 1036 if (err) { 1037 error_propagate(errp, err); 1038 return; 1039 } 1040 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0, 1041 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0)); 1042 1043 qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK); 1044 sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), &err); 1045 if (err) { 1046 error_propagate(errp, err); 1047 return; 1048 } 1049 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 1050 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0)); 1051 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000); 1052 1053 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */ 1054 1055 qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq); 1056 sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), &err); 1057 if (err) { 1058 error_propagate(errp, err); 1059 return; 1060 } 1061 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0, 1062 armsse_get_common_irq_in(s, 1)); 1063 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000); 1064 1065 qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq); 1066 sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), &err); 1067 if (err) { 1068 error_propagate(errp, err); 1069 return; 1070 } 1071 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0, 1072 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1)); 1073 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000); 1074 1075 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { 1076 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]); 1077 1078 object_property_set_int(splitter, 2, "num-lines", &err); 1079 if (err) { 1080 error_propagate(errp, err); 1081 return; 1082 } 1083 qdev_realize(DEVICE(splitter), NULL, &err); 1084 if (err) { 1085 error_propagate(errp, err); 1086 return; 1087 } 1088 } 1089 1090 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) { 1091 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i); 1092 1093 armsse_forward_ppc(s, ppcname, i); 1094 g_free(ppcname); 1095 } 1096 1097 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) { 1098 char *ppcname = g_strdup_printf("apb_ppcexp%d", i); 1099 1100 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC); 1101 g_free(ppcname); 1102 } 1103 1104 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) { 1105 /* Wire up IRQ splitter for internal PPCs */ 1106 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]); 1107 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status", 1108 i - NUM_EXTERNAL_PPCS); 1109 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1; 1110 1111 qdev_connect_gpio_out(devs, 0, 1112 qdev_get_gpio_in_named(dev_secctl, gpioname, 0)); 1113 qdev_connect_gpio_out(devs, 1, 1114 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i)); 1115 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0, 1116 qdev_get_gpio_in(devs, 0)); 1117 g_free(gpioname); 1118 } 1119 1120 /* Wire up the splitters for the MPC IRQs */ 1121 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { 1122 SplitIRQ *splitter = &s->mpc_irq_splitter[i]; 1123 DeviceState *dev_splitter = DEVICE(splitter); 1124 1125 object_property_set_int(OBJECT(splitter), 2, "num-lines", &err); 1126 if (err) { 1127 error_propagate(errp, err); 1128 return; 1129 } 1130 qdev_realize(DEVICE(splitter), NULL, &err); 1131 if (err) { 1132 error_propagate(errp, err); 1133 return; 1134 } 1135 1136 if (i < IOTS_NUM_EXP_MPC) { 1137 /* Splitter input is from GPIO input line */ 1138 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0); 1139 qdev_connect_gpio_out(dev_splitter, 0, 1140 qdev_get_gpio_in_named(dev_secctl, 1141 "mpcexp_status", i)); 1142 } else { 1143 /* Splitter input is from our own MPC */ 1144 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]), 1145 "irq", 0, 1146 qdev_get_gpio_in(dev_splitter, 0)); 1147 qdev_connect_gpio_out(dev_splitter, 0, 1148 qdev_get_gpio_in_named(dev_secctl, 1149 "mpc_status", 0)); 1150 } 1151 1152 qdev_connect_gpio_out(dev_splitter, 1, 1153 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i)); 1154 } 1155 /* Create GPIO inputs which will pass the line state for our 1156 * mpcexp_irq inputs to the correct splitter devices. 1157 */ 1158 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status", 1159 IOTS_NUM_EXP_MPC); 1160 1161 armsse_forward_sec_resp_cfg(s); 1162 1163 /* Forward the MSC related signals */ 1164 qdev_pass_gpios(dev_secctl, dev, "mscexp_status"); 1165 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear"); 1166 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns"); 1167 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0, 1168 armsse_get_common_irq_in(s, 11)); 1169 1170 /* 1171 * Expose our container region to the board model; this corresponds 1172 * to the AHB Slave Expansion ports which allow bus master devices 1173 * (eg DMA controllers) in the board model to make transactions into 1174 * devices in the ARMSSE. 1175 */ 1176 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container); 1177 1178 system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq; 1179 } 1180 1181 static void armsse_idau_check(IDAUInterface *ii, uint32_t address, 1182 int *iregion, bool *exempt, bool *ns, bool *nsc) 1183 { 1184 /* 1185 * For ARMSSE systems the IDAU responses are simple logical functions 1186 * of the address bits. The NSC attribute is guest-adjustable via the 1187 * NSCCFG register in the security controller. 1188 */ 1189 ARMSSE *s = ARMSSE(ii); 1190 int region = extract32(address, 28, 4); 1191 1192 *ns = !(region & 1); 1193 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2)); 1194 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ 1195 *exempt = (address & 0xeff00000) == 0xe0000000; 1196 *iregion = region; 1197 } 1198 1199 static const VMStateDescription armsse_vmstate = { 1200 .name = "iotkit", 1201 .version_id = 1, 1202 .minimum_version_id = 1, 1203 .fields = (VMStateField[]) { 1204 VMSTATE_UINT32(nsccfg, ARMSSE), 1205 VMSTATE_END_OF_LIST() 1206 } 1207 }; 1208 1209 static void armsse_reset(DeviceState *dev) 1210 { 1211 ARMSSE *s = ARMSSE(dev); 1212 1213 s->nsccfg = 0; 1214 } 1215 1216 static void armsse_class_init(ObjectClass *klass, void *data) 1217 { 1218 DeviceClass *dc = DEVICE_CLASS(klass); 1219 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass); 1220 ARMSSEClass *asc = ARMSSE_CLASS(klass); 1221 const ARMSSEInfo *info = data; 1222 1223 dc->realize = armsse_realize; 1224 dc->vmsd = &armsse_vmstate; 1225 device_class_set_props(dc, info->props); 1226 dc->reset = armsse_reset; 1227 iic->check = armsse_idau_check; 1228 asc->info = info; 1229 } 1230 1231 static const TypeInfo armsse_info = { 1232 .name = TYPE_ARMSSE, 1233 .parent = TYPE_SYS_BUS_DEVICE, 1234 .instance_size = sizeof(ARMSSE), 1235 .instance_init = armsse_init, 1236 .abstract = true, 1237 .interfaces = (InterfaceInfo[]) { 1238 { TYPE_IDAU_INTERFACE }, 1239 { } 1240 } 1241 }; 1242 1243 static void armsse_register_types(void) 1244 { 1245 int i; 1246 1247 type_register_static(&armsse_info); 1248 1249 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) { 1250 TypeInfo ti = { 1251 .name = armsse_variants[i].name, 1252 .parent = TYPE_ARMSSE, 1253 .class_init = armsse_class_init, 1254 .class_data = (void *)&armsse_variants[i], 1255 }; 1256 type_register(&ti); 1257 } 1258 } 1259 1260 type_init(armsse_register_types); 1261