xref: /openbmc/qemu/hw/arm/armsse.c (revision 20a4f14f)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat {
27     IoTKitFormat,
28     SSE200Format,
29 } SysConfigFormat;
30 
31 struct ARMSSEInfo {
32     const char *name;
33     int sram_banks;
34     int num_cpus;
35     uint32_t sys_version;
36     uint32_t cpuwait_rst;
37     SysConfigFormat sys_config_format;
38     bool has_mhus;
39     bool has_ppus;
40     bool has_cachectrl;
41     bool has_cpusecctrl;
42     bool has_cpuid;
43     Property *props;
44 };
45 
46 static Property iotkit_properties[] = {
47     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
48                      MemoryRegion *),
49     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
50     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
51     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55     DEFINE_PROP_END_OF_LIST()
56 };
57 
58 static Property armsse_properties[] = {
59     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60                      MemoryRegion *),
61     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
63     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
64     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
65     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
66     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
67     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
68     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
69     DEFINE_PROP_END_OF_LIST()
70 };
71 
72 static const ARMSSEInfo armsse_variants[] = {
73     {
74         .name = TYPE_IOTKIT,
75         .sram_banks = 1,
76         .num_cpus = 1,
77         .sys_version = 0x41743,
78         .cpuwait_rst = 0,
79         .sys_config_format = IoTKitFormat,
80         .has_mhus = false,
81         .has_ppus = false,
82         .has_cachectrl = false,
83         .has_cpusecctrl = false,
84         .has_cpuid = false,
85         .props = iotkit_properties,
86     },
87     {
88         .name = TYPE_SSE200,
89         .sram_banks = 4,
90         .num_cpus = 2,
91         .sys_version = 0x22041743,
92         .cpuwait_rst = 2,
93         .sys_config_format = SSE200Format,
94         .has_mhus = true,
95         .has_ppus = true,
96         .has_cachectrl = true,
97         .has_cpusecctrl = true,
98         .has_cpuid = true,
99         .props = armsse_properties,
100     },
101 };
102 
103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
104 {
105     /* Return the SYS_CONFIG value for this SSE */
106     uint32_t sys_config;
107 
108     switch (info->sys_config_format) {
109     case IoTKitFormat:
110         sys_config = 0;
111         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
112         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
113         break;
114     case SSE200Format:
115         sys_config = 0;
116         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
117         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
118         sys_config = deposit32(sys_config, 24, 4, 2);
119         if (info->num_cpus > 1) {
120             sys_config = deposit32(sys_config, 10, 1, 1);
121             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
122             sys_config = deposit32(sys_config, 28, 4, 2);
123         }
124         break;
125     default:
126         g_assert_not_reached();
127     }
128     return sys_config;
129 }
130 
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
133 
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common[32] = {
136     [0 ... 5] = true,
137     /* 6, 7: per-CPU MHU interrupts */
138     [8 ... 12] = true,
139     /* 13: per-CPU icache interrupt */
140     /* 14: reserved */
141     [15 ... 20] = true,
142     /* 21: reserved */
143     [22 ... 26] = true,
144     /* 27: reserved */
145     /* 28, 29: per-CPU CTI interrupts */
146     /* 30, 31: reserved */
147 };
148 
149 /*
150  * Create an alias region in @container of @size bytes starting at @base
151  * which mirrors the memory starting at @orig.
152  */
153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
154                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
155 {
156     memory_region_init_alias(mr, NULL, name, container, orig, size);
157     /* The alias is even lower priority than unimplemented_device regions */
158     memory_region_add_subregion_overlap(container, base, mr, -1500);
159 }
160 
161 static void irq_status_forwarder(void *opaque, int n, int level)
162 {
163     qemu_irq destirq = opaque;
164 
165     qemu_set_irq(destirq, level);
166 }
167 
168 static void nsccfg_handler(void *opaque, int n, int level)
169 {
170     ARMSSE *s = ARMSSE(opaque);
171 
172     s->nsccfg = level;
173 }
174 
175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
176 {
177     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178      * system using the ARMSSE has a collection of control lines which
179      * are provided by the security controller and which we want to
180      * expose as control lines on the ARMSSE device itself, so the
181      * code using the ARMSSE can wire them up to the PPCs.
182      */
183     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
184     DeviceState *armssedev = DEVICE(s);
185     DeviceState *dev_secctl = DEVICE(&s->secctl);
186     DeviceState *dev_splitter = DEVICE(splitter);
187     char *name;
188 
189     name = g_strdup_printf("%s_nonsec", ppcname);
190     qdev_pass_gpios(dev_secctl, armssedev, name);
191     g_free(name);
192     name = g_strdup_printf("%s_ap", ppcname);
193     qdev_pass_gpios(dev_secctl, armssedev, name);
194     g_free(name);
195     name = g_strdup_printf("%s_irq_enable", ppcname);
196     qdev_pass_gpios(dev_secctl, armssedev, name);
197     g_free(name);
198     name = g_strdup_printf("%s_irq_clear", ppcname);
199     qdev_pass_gpios(dev_secctl, armssedev, name);
200     g_free(name);
201 
202     /* irq_status is a little more tricky, because we need to
203      * split it so we can send it both to the security controller
204      * and to our OR gate for the NVIC interrupt line.
205      * Connect up the splitter's outputs, and create a GPIO input
206      * which will pass the line state to the input splitter.
207      */
208     name = g_strdup_printf("%s_irq_status", ppcname);
209     qdev_connect_gpio_out(dev_splitter, 0,
210                           qdev_get_gpio_in_named(dev_secctl,
211                                                  name, 0));
212     qdev_connect_gpio_out(dev_splitter, 1,
213                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
214     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
215     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
216                                         s->irq_status_in[ppcnum], name, 1);
217     g_free(name);
218 }
219 
220 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
221 {
222     /* Forward the 3rd output from the splitter device as a
223      * named GPIO output of the armsse object.
224      */
225     DeviceState *dev = DEVICE(s);
226     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
227 
228     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
229     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
230                                            s->sec_resp_cfg, 1);
231     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
232 }
233 
234 static void armsse_init(Object *obj)
235 {
236     ARMSSE *s = ARMSSE(obj);
237     ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
238     const ARMSSEInfo *info = asc->info;
239     int i;
240 
241     assert(info->sram_banks <= MAX_SRAM_BANKS);
242     assert(info->num_cpus <= SSE_MAX_CPUS);
243 
244     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
245 
246     for (i = 0; i < info->num_cpus; i++) {
247         /*
248          * We put each CPU in its own cluster as they are logically
249          * distinct and may be configured differently.
250          */
251         char *name;
252 
253         name = g_strdup_printf("cluster%d", i);
254         object_initialize_child(obj, name, &s->cluster[i],
255                                 sizeof(s->cluster[i]), TYPE_CPU_CLUSTER,
256                                 &error_abort, NULL);
257         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
258         g_free(name);
259 
260         name = g_strdup_printf("armv7m%d", i);
261         sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
262                               &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
263         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
264                              ARM_CPU_TYPE_NAME("cortex-m33"));
265         g_free(name);
266         name = g_strdup_printf("arm-sse-cpu-container%d", i);
267         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
268         g_free(name);
269         if (i > 0) {
270             name = g_strdup_printf("arm-sse-container-alias%d", i);
271             memory_region_init_alias(&s->container_alias[i - 1], obj,
272                                      name, &s->container, 0, UINT64_MAX);
273             g_free(name);
274         }
275     }
276 
277     sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
278                           TYPE_IOTKIT_SECCTL);
279     sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
280                           TYPE_TZ_PPC);
281     sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
282                           TYPE_TZ_PPC);
283     for (i = 0; i < info->sram_banks; i++) {
284         char *name = g_strdup_printf("mpc%d", i);
285         sysbus_init_child_obj(obj, name, &s->mpc[i],
286                               sizeof(s->mpc[i]), TYPE_TZ_MPC);
287         g_free(name);
288     }
289     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
290                             sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
291                             &error_abort, NULL);
292 
293     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
294         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
295         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
296 
297         object_initialize_child(obj, name, splitter, sizeof(*splitter),
298                                 TYPE_SPLIT_IRQ, &error_abort, NULL);
299         g_free(name);
300     }
301     sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
302                           TYPE_CMSDK_APB_TIMER);
303     sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
304                           TYPE_CMSDK_APB_TIMER);
305     sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
306                           TYPE_CMSDK_APB_TIMER);
307     sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
308                           TYPE_CMSDK_APB_DUALTIMER);
309     sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
310                           sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
311     sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
312                           sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
313     sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
314                           sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
315     sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
316                           sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
317     sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
318                           sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
319     if (info->has_mhus) {
320         sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
321                               TYPE_ARMSSE_MHU);
322         sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
323                               TYPE_ARMSSE_MHU);
324     }
325     if (info->has_ppus) {
326         for (i = 0; i < info->num_cpus; i++) {
327             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
328             int ppuidx = CPU0CORE_PPU + i;
329 
330             sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
331                                   sizeof(s->ppu[ppuidx]),
332                                   TYPE_UNIMPLEMENTED_DEVICE);
333             g_free(name);
334         }
335         sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
336                               sizeof(s->ppu[DBG_PPU]),
337                               TYPE_UNIMPLEMENTED_DEVICE);
338         for (i = 0; i < info->sram_banks; i++) {
339             char *name = g_strdup_printf("RAM%d_PPU", i);
340             int ppuidx = RAM0_PPU + i;
341 
342             sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
343                                   sizeof(s->ppu[ppuidx]),
344                                   TYPE_UNIMPLEMENTED_DEVICE);
345             g_free(name);
346         }
347     }
348     if (info->has_cachectrl) {
349         for (i = 0; i < info->num_cpus; i++) {
350             char *name = g_strdup_printf("cachectrl%d", i);
351 
352             sysbus_init_child_obj(obj, name, &s->cachectrl[i],
353                                   sizeof(s->cachectrl[i]),
354                                   TYPE_UNIMPLEMENTED_DEVICE);
355             g_free(name);
356         }
357     }
358     if (info->has_cpusecctrl) {
359         for (i = 0; i < info->num_cpus; i++) {
360             char *name = g_strdup_printf("cpusecctrl%d", i);
361 
362             sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
363                                   sizeof(s->cpusecctrl[i]),
364                                   TYPE_UNIMPLEMENTED_DEVICE);
365             g_free(name);
366         }
367     }
368     if (info->has_cpuid) {
369         for (i = 0; i < info->num_cpus; i++) {
370             char *name = g_strdup_printf("cpuid%d", i);
371 
372             sysbus_init_child_obj(obj, name, &s->cpuid[i],
373                                   sizeof(s->cpuid[i]),
374                                   TYPE_ARMSSE_CPUID);
375             g_free(name);
376         }
377     }
378     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
379                             sizeof(s->nmi_orgate), TYPE_OR_IRQ,
380                             &error_abort, NULL);
381     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
382                             sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
383                             &error_abort, NULL);
384     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
385                             sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
386                             &error_abort, NULL);
387     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
388         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
389         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
390 
391         object_initialize_child(obj, name, splitter, sizeof(*splitter),
392                                 TYPE_SPLIT_IRQ, &error_abort, NULL);
393         g_free(name);
394     }
395     if (info->num_cpus > 1) {
396         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
397             if (irq_is_common[i]) {
398                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
399                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
400 
401                 object_initialize_child(obj, name, splitter, sizeof(*splitter),
402                                         TYPE_SPLIT_IRQ, &error_abort, NULL);
403                 g_free(name);
404             }
405         }
406     }
407 }
408 
409 static void armsse_exp_irq(void *opaque, int n, int level)
410 {
411     qemu_irq *irqarray = opaque;
412 
413     qemu_set_irq(irqarray[n], level);
414 }
415 
416 static void armsse_mpcexp_status(void *opaque, int n, int level)
417 {
418     ARMSSE *s = ARMSSE(opaque);
419     qemu_set_irq(s->mpcexp_status_in[n], level);
420 }
421 
422 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
423 {
424     /*
425      * Return a qemu_irq which can be used to signal IRQ n to
426      * all CPUs in the SSE.
427      */
428     ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
429     const ARMSSEInfo *info = asc->info;
430 
431     assert(irq_is_common[irqno]);
432 
433     if (info->num_cpus == 1) {
434         /* Only one CPU -- just connect directly to it */
435         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
436     } else {
437         /* Connect to the splitter which feeds all CPUs */
438         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
439     }
440 }
441 
442 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
443 {
444     /* Map a PPU unimplemented device stub */
445     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
446 
447     qdev_prop_set_string(dev, "name", name);
448     qdev_prop_set_uint64(dev, "size", 0x1000);
449     qdev_init_nofail(dev);
450     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
451 }
452 
453 static void armsse_realize(DeviceState *dev, Error **errp)
454 {
455     ARMSSE *s = ARMSSE(dev);
456     ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
457     const ARMSSEInfo *info = asc->info;
458     int i;
459     MemoryRegion *mr;
460     Error *err = NULL;
461     SysBusDevice *sbd_apb_ppc0;
462     SysBusDevice *sbd_secctl;
463     DeviceState *dev_apb_ppc0;
464     DeviceState *dev_apb_ppc1;
465     DeviceState *dev_secctl;
466     DeviceState *dev_splitter;
467     uint32_t addr_width_max;
468 
469     if (!s->board_memory) {
470         error_setg(errp, "memory property was not set");
471         return;
472     }
473 
474     if (!s->mainclk_frq) {
475         error_setg(errp, "MAINCLK property was not set");
476         return;
477     }
478 
479     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
480     assert(is_power_of_2(info->sram_banks));
481     addr_width_max = 24 - ctz32(info->sram_banks);
482     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
483         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
484                    addr_width_max);
485         return;
486     }
487 
488     /* Handling of which devices should be available only to secure
489      * code is usually done differently for M profile than for A profile.
490      * Instead of putting some devices only into the secure address space,
491      * devices exist in both address spaces but with hard-wired security
492      * permissions that will cause the CPU to fault for non-secure accesses.
493      *
494      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
495      * which specifies hard-wired security permissions for different
496      * areas of the physical address space. For the ARMSSE IDAU, the
497      * top 4 bits of the physical address are the IDAU region ID, and
498      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
499      * region, otherwise it is an S region.
500      *
501      * The various devices and RAMs are generally all mapped twice,
502      * once into a region that the IDAU defines as secure and once
503      * into a non-secure region. They sit behind either a Memory
504      * Protection Controller (for RAM) or a Peripheral Protection
505      * Controller (for devices), which allow a more fine grained
506      * configuration of whether non-secure accesses are permitted.
507      *
508      * (The other place that guest software can configure security
509      * permissions is in the architected SAU (Security Attribution
510      * Unit), which is entirely inside the CPU. The IDAU can upgrade
511      * the security attributes for a region to more restrictive than
512      * the SAU specifies, but cannot downgrade them.)
513      *
514      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
515      * 0x20000000..0x2007ffff  32KB FPGA block RAM
516      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
517      * 0x40000000..0x4000ffff  base peripheral region 1
518      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
519      * 0x40020000..0x4002ffff  system control element peripherals
520      * 0x40080000..0x400fffff  base peripheral region 2
521      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
522      */
523 
524     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
525 
526     for (i = 0; i < info->num_cpus; i++) {
527         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
528         Object *cpuobj = OBJECT(&s->armv7m[i]);
529         int j;
530         char *gpioname;
531 
532         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
533         /*
534          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
535          * registers in the IoT Kit System Control Register block. In QEMU
536          * we set the initial value here, and also the reset value of the
537          * sysctl register, from this object's QOM init-svtor property.
538          * If the guest changes the INITSVTOR* registers at runtime then the
539          * code in iotkit-sysctl.c will update the CPU init-svtor property
540          * (which will then take effect on the next CPU warm-reset).
541          *
542          * Note that typically a board using the SSE-200 will have a system
543          * control processor whose boot firmware initializes the INITSVTOR*
544          * registers before powering up the CPUs. QEMU doesn't emulate
545          * the control processor, so instead we behave in the way that the
546          * firmware does: the initial value should be set by the board code
547          * (using the init-svtor property on the ARMSSE object) to match
548          * whatever its firmware does.
549          */
550         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
551         /*
552          * CPUs start powered down if the corresponding bit in the CPUWAIT
553          * register is 1. In real hardware the CPUWAIT register reset value is
554          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
555          * CPUWAIT1_RST parameters), but since all the boards we care about
556          * start CPU0 and leave CPU1 powered off, we hard-code that in
557          * info->cpuwait_rst for now. We can add QOM properties for this
558          * later if necessary.
559          */
560         if (extract32(info->cpuwait_rst, i, 1)) {
561             object_property_set_bool(cpuobj, true, "start-powered-off", &err);
562             if (err) {
563                 error_propagate(errp, err);
564                 return;
565             }
566         }
567         if (!s->cpu_fpu[i]) {
568             object_property_set_bool(cpuobj, false, "vfp", &err);
569             if (err) {
570                 error_propagate(errp, err);
571                 return;
572             }
573         }
574         if (!s->cpu_dsp[i]) {
575             object_property_set_bool(cpuobj, false, "dsp", &err);
576             if (err) {
577                 error_propagate(errp, err);
578                 return;
579             }
580         }
581 
582         if (i > 0) {
583             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
584                                                 &s->container_alias[i - 1], -1);
585         } else {
586             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
587                                                 &s->container, -1);
588         }
589         object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
590                                  "memory", &err);
591         if (err) {
592             error_propagate(errp, err);
593             return;
594         }
595         object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
596         if (err) {
597             error_propagate(errp, err);
598             return;
599         }
600         object_property_set_bool(cpuobj, true, "realized", &err);
601         if (err) {
602             error_propagate(errp, err);
603             return;
604         }
605         /*
606          * The cluster must be realized after the armv7m container, as
607          * the container's CPU object is only created on realize, and the
608          * CPU must exist and have been parented into the cluster before
609          * the cluster is realized.
610          */
611         object_property_set_bool(OBJECT(&s->cluster[i]),
612                                  true, "realized", &err);
613         if (err) {
614             error_propagate(errp, err);
615             return;
616         }
617 
618         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
619         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
620         for (j = 0; j < s->exp_numirq; j++) {
621             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
622         }
623         if (i == 0) {
624             gpioname = g_strdup("EXP_IRQ");
625         } else {
626             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
627         }
628         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
629                                             s->exp_irqs[i],
630                                             gpioname, s->exp_numirq);
631         g_free(gpioname);
632     }
633 
634     /* Wire up the splitters that connect common IRQs to all CPUs */
635     if (info->num_cpus > 1) {
636         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
637             if (irq_is_common[i]) {
638                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
639                 DeviceState *devs = DEVICE(splitter);
640                 int cpunum;
641 
642                 object_property_set_int(splitter, info->num_cpus,
643                                         "num-lines", &err);
644                 if (err) {
645                     error_propagate(errp, err);
646                     return;
647                 }
648                 object_property_set_bool(splitter, true, "realized", &err);
649                 if (err) {
650                     error_propagate(errp, err);
651                     return;
652                 }
653                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
654                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
655 
656                     qdev_connect_gpio_out(devs, cpunum,
657                                           qdev_get_gpio_in(cpudev, i));
658                 }
659             }
660         }
661     }
662 
663     /* Set up the big aliases first */
664     make_alias(s, &s->alias1, &s->container, "alias 1",
665                0x10000000, 0x10000000, 0x00000000);
666     make_alias(s, &s->alias2, &s->container,
667                "alias 2", 0x30000000, 0x10000000, 0x20000000);
668     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
669      * a few extra devices that only appear there (generally the
670      * control interfaces for the protection controllers).
671      * We implement this by mapping those devices over the top of this
672      * alias MR at a higher priority. Some of the devices in this range
673      * are per-CPU, so we must put this alias in the per-cpu containers.
674      */
675     for (i = 0; i < info->num_cpus; i++) {
676         make_alias(s, &s->alias3[i], &s->cpu_container[i],
677                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
678     }
679 
680     /* Security controller */
681     object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
682     if (err) {
683         error_propagate(errp, err);
684         return;
685     }
686     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
687     dev_secctl = DEVICE(&s->secctl);
688     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
689     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
690 
691     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
692     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
693 
694     /* The sec_resp_cfg output from the security controller must be split into
695      * multiple lines, one for each of the PPCs within the ARMSSE and one
696      * that will be an output from the ARMSSE to the system.
697      */
698     object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
699                             "num-lines", &err);
700     if (err) {
701         error_propagate(errp, err);
702         return;
703     }
704     object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
705                              "realized", &err);
706     if (err) {
707         error_propagate(errp, err);
708         return;
709     }
710     dev_splitter = DEVICE(&s->sec_resp_splitter);
711     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
712                                 qdev_get_gpio_in(dev_splitter, 0));
713 
714     /* Each SRAM bank lives behind its own Memory Protection Controller */
715     for (i = 0; i < info->sram_banks; i++) {
716         char *ramname = g_strdup_printf("armsse.sram%d", i);
717         SysBusDevice *sbd_mpc;
718         uint32_t sram_bank_size = 1 << s->sram_addr_width;
719 
720         memory_region_init_ram(&s->sram[i], NULL, ramname,
721                                sram_bank_size, &err);
722         g_free(ramname);
723         if (err) {
724             error_propagate(errp, err);
725             return;
726         }
727         object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
728                                  "downstream", &err);
729         if (err) {
730             error_propagate(errp, err);
731             return;
732         }
733         object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
734         if (err) {
735             error_propagate(errp, err);
736             return;
737         }
738         /* Map the upstream end of the MPC into the right place... */
739         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
740         memory_region_add_subregion(&s->container,
741                                     0x20000000 + i * sram_bank_size,
742                                     sysbus_mmio_get_region(sbd_mpc, 1));
743         /* ...and its register interface */
744         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
745                                     sysbus_mmio_get_region(sbd_mpc, 0));
746     }
747 
748     /* We must OR together lines from the MPC splitters to go to the NVIC */
749     object_property_set_int(OBJECT(&s->mpc_irq_orgate),
750                             IOTS_NUM_EXP_MPC + info->sram_banks,
751                             "num-lines", &err);
752     if (err) {
753         error_propagate(errp, err);
754         return;
755     }
756     object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
757                              "realized", &err);
758     if (err) {
759         error_propagate(errp, err);
760         return;
761     }
762     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
763                           armsse_get_common_irq_in(s, 9));
764 
765     /* Devices behind APB PPC0:
766      *   0x40000000: timer0
767      *   0x40001000: timer1
768      *   0x40002000: dual timer
769      *   0x40003000: MHU0 (SSE-200 only)
770      *   0x40004000: MHU1 (SSE-200 only)
771      * We must configure and realize each downstream device and connect
772      * it to the appropriate PPC port; then we can realize the PPC and
773      * map its upstream ends to the right place in the container.
774      */
775     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
776     object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
777     if (err) {
778         error_propagate(errp, err);
779         return;
780     }
781     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
782                        armsse_get_common_irq_in(s, 3));
783     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
784     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
785     if (err) {
786         error_propagate(errp, err);
787         return;
788     }
789 
790     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
791     object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
792     if (err) {
793         error_propagate(errp, err);
794         return;
795     }
796     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
797                        armsse_get_common_irq_in(s, 4));
798     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
799     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
800     if (err) {
801         error_propagate(errp, err);
802         return;
803     }
804 
805 
806     qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
807     object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
808     if (err) {
809         error_propagate(errp, err);
810         return;
811     }
812     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
813                        armsse_get_common_irq_in(s, 5));
814     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
815     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
816     if (err) {
817         error_propagate(errp, err);
818         return;
819     }
820 
821     if (info->has_mhus) {
822         /*
823          * An SSE-200 with only one CPU should have only one MHU created,
824          * with the region where the second MHU usually is being RAZ/WI.
825          * We don't implement that SSE-200 config; if we want to support
826          * it then this code needs to be enhanced to handle creating the
827          * RAZ/WI region instead of the second MHU.
828          */
829         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
830 
831         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
832             char *port;
833             int cpunum;
834             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
835 
836             object_property_set_bool(OBJECT(&s->mhu[i]), true,
837                                      "realized", &err);
838             if (err) {
839                 error_propagate(errp, err);
840                 return;
841             }
842             port = g_strdup_printf("port[%d]", i + 3);
843             mr = sysbus_mmio_get_region(mhu_sbd, 0);
844             object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
845                                      port, &err);
846             g_free(port);
847             if (err) {
848                 error_propagate(errp, err);
849                 return;
850             }
851 
852             /*
853              * Each MHU has an irq line for each CPU:
854              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
855              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
856              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
857              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
858              */
859             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
860                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
861 
862                 sysbus_connect_irq(mhu_sbd, cpunum,
863                                    qdev_get_gpio_in(cpudev, 6 + i));
864             }
865         }
866     }
867 
868     object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
869     if (err) {
870         error_propagate(errp, err);
871         return;
872     }
873 
874     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
875     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
876 
877     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
878     memory_region_add_subregion(&s->container, 0x40000000, mr);
879     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
880     memory_region_add_subregion(&s->container, 0x40001000, mr);
881     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
882     memory_region_add_subregion(&s->container, 0x40002000, mr);
883     if (info->has_mhus) {
884         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
885         memory_region_add_subregion(&s->container, 0x40003000, mr);
886         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
887         memory_region_add_subregion(&s->container, 0x40004000, mr);
888     }
889     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
890         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
891                                     qdev_get_gpio_in_named(dev_apb_ppc0,
892                                                            "cfg_nonsec", i));
893         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
894                                     qdev_get_gpio_in_named(dev_apb_ppc0,
895                                                            "cfg_ap", i));
896     }
897     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
898                                 qdev_get_gpio_in_named(dev_apb_ppc0,
899                                                        "irq_enable", 0));
900     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
901                                 qdev_get_gpio_in_named(dev_apb_ppc0,
902                                                        "irq_clear", 0));
903     qdev_connect_gpio_out(dev_splitter, 0,
904                           qdev_get_gpio_in_named(dev_apb_ppc0,
905                                                  "cfg_sec_resp", 0));
906 
907     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
908      * ones) are sent individually to the security controller, and also
909      * ORed together to give a single combined PPC interrupt to the NVIC.
910      */
911     object_property_set_int(OBJECT(&s->ppc_irq_orgate),
912                             NUM_PPCS, "num-lines", &err);
913     if (err) {
914         error_propagate(errp, err);
915         return;
916     }
917     object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
918                              "realized", &err);
919     if (err) {
920         error_propagate(errp, err);
921         return;
922     }
923     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
924                           armsse_get_common_irq_in(s, 10));
925 
926     /*
927      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
928      * private per-CPU region (all these devices are SSE-200 only):
929      *  0x50010000: L1 icache control registers
930      *  0x50011000: CPUSECCTRL (CPU local security control registers)
931      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
932      */
933     if (info->has_cachectrl) {
934         for (i = 0; i < info->num_cpus; i++) {
935             char *name = g_strdup_printf("cachectrl%d", i);
936             MemoryRegion *mr;
937 
938             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
939             g_free(name);
940             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
941             object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
942                                      "realized", &err);
943             if (err) {
944                 error_propagate(errp, err);
945                 return;
946             }
947 
948             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
949             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
950         }
951     }
952     if (info->has_cpusecctrl) {
953         for (i = 0; i < info->num_cpus; i++) {
954             char *name = g_strdup_printf("CPUSECCTRL%d", i);
955             MemoryRegion *mr;
956 
957             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
958             g_free(name);
959             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
960             object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
961                                      "realized", &err);
962             if (err) {
963                 error_propagate(errp, err);
964                 return;
965             }
966 
967             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
968             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
969         }
970     }
971     if (info->has_cpuid) {
972         for (i = 0; i < info->num_cpus; i++) {
973             MemoryRegion *mr;
974 
975             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
976             object_property_set_bool(OBJECT(&s->cpuid[i]), true,
977                                      "realized", &err);
978             if (err) {
979                 error_propagate(errp, err);
980                 return;
981             }
982 
983             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
984             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
985         }
986     }
987 
988     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
989     /* Devices behind APB PPC1:
990      *   0x4002f000: S32K timer
991      */
992     qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
993     object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
994     if (err) {
995         error_propagate(errp, err);
996         return;
997     }
998     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
999                        armsse_get_common_irq_in(s, 2));
1000     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
1001     object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
1002     if (err) {
1003         error_propagate(errp, err);
1004         return;
1005     }
1006 
1007     object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
1008     if (err) {
1009         error_propagate(errp, err);
1010         return;
1011     }
1012     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
1013     memory_region_add_subregion(&s->container, 0x4002f000, mr);
1014 
1015     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
1016     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1017                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1018                                                        "cfg_nonsec", 0));
1019     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1020                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1021                                                        "cfg_ap", 0));
1022     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1023                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1024                                                        "irq_enable", 0));
1025     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1026                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1027                                                        "irq_clear", 0));
1028     qdev_connect_gpio_out(dev_splitter, 1,
1029                           qdev_get_gpio_in_named(dev_apb_ppc1,
1030                                                  "cfg_sec_resp", 0));
1031 
1032     object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
1033                             "SYS_VERSION", &err);
1034     if (err) {
1035         error_propagate(errp, err);
1036         return;
1037     }
1038     object_property_set_int(OBJECT(&s->sysinfo),
1039                             armsse_sys_config_value(s, info),
1040                             "SYS_CONFIG", &err);
1041     if (err) {
1042         error_propagate(errp, err);
1043         return;
1044     }
1045     object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
1046     if (err) {
1047         error_propagate(errp, err);
1048         return;
1049     }
1050     /* System information registers */
1051     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
1052     /* System control registers */
1053     object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
1054                             "SYS_VERSION", &err);
1055     object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
1056                             "CPUWAIT_RST", &err);
1057     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1058                             "INITSVTOR0_RST", &err);
1059     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1060                             "INITSVTOR1_RST", &err);
1061     object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
1062     if (err) {
1063         error_propagate(errp, err);
1064         return;
1065     }
1066     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1067 
1068     if (info->has_ppus) {
1069         /* CPUnCORE_PPU for each CPU */
1070         for (i = 0; i < info->num_cpus; i++) {
1071             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1072 
1073             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1074             /*
1075              * We don't support CPU debug so don't create the
1076              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1077              */
1078             g_free(name);
1079         }
1080         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1081 
1082         for (i = 0; i < info->sram_banks; i++) {
1083             char *name = g_strdup_printf("RAM%d_PPU", i);
1084 
1085             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1086             g_free(name);
1087         }
1088     }
1089 
1090     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1091     object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1092     if (err) {
1093         error_propagate(errp, err);
1094         return;
1095     }
1096     object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
1097     if (err) {
1098         error_propagate(errp, err);
1099         return;
1100     }
1101     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1102                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1103 
1104     qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1105     object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
1106     if (err) {
1107         error_propagate(errp, err);
1108         return;
1109     }
1110     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1111                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1112     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1113 
1114     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1115 
1116     qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1117     object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
1118     if (err) {
1119         error_propagate(errp, err);
1120         return;
1121     }
1122     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1123                        armsse_get_common_irq_in(s, 1));
1124     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1125 
1126     qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1127     object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
1128     if (err) {
1129         error_propagate(errp, err);
1130         return;
1131     }
1132     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1133                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1134     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1135 
1136     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1137         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1138 
1139         object_property_set_int(splitter, 2, "num-lines", &err);
1140         if (err) {
1141             error_propagate(errp, err);
1142             return;
1143         }
1144         object_property_set_bool(splitter, true, "realized", &err);
1145         if (err) {
1146             error_propagate(errp, err);
1147             return;
1148         }
1149     }
1150 
1151     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1152         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1153 
1154         armsse_forward_ppc(s, ppcname, i);
1155         g_free(ppcname);
1156     }
1157 
1158     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1159         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1160 
1161         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1162         g_free(ppcname);
1163     }
1164 
1165     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1166         /* Wire up IRQ splitter for internal PPCs */
1167         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1168         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1169                                          i - NUM_EXTERNAL_PPCS);
1170         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1171 
1172         qdev_connect_gpio_out(devs, 0,
1173                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1174         qdev_connect_gpio_out(devs, 1,
1175                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1176         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1177                                     qdev_get_gpio_in(devs, 0));
1178         g_free(gpioname);
1179     }
1180 
1181     /* Wire up the splitters for the MPC IRQs */
1182     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1183         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1184         DeviceState *dev_splitter = DEVICE(splitter);
1185 
1186         object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1187         if (err) {
1188             error_propagate(errp, err);
1189             return;
1190         }
1191         object_property_set_bool(OBJECT(splitter), true, "realized", &err);
1192         if (err) {
1193             error_propagate(errp, err);
1194             return;
1195         }
1196 
1197         if (i < IOTS_NUM_EXP_MPC) {
1198             /* Splitter input is from GPIO input line */
1199             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1200             qdev_connect_gpio_out(dev_splitter, 0,
1201                                   qdev_get_gpio_in_named(dev_secctl,
1202                                                          "mpcexp_status", i));
1203         } else {
1204             /* Splitter input is from our own MPC */
1205             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1206                                         "irq", 0,
1207                                         qdev_get_gpio_in(dev_splitter, 0));
1208             qdev_connect_gpio_out(dev_splitter, 0,
1209                                   qdev_get_gpio_in_named(dev_secctl,
1210                                                          "mpc_status", 0));
1211         }
1212 
1213         qdev_connect_gpio_out(dev_splitter, 1,
1214                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1215     }
1216     /* Create GPIO inputs which will pass the line state for our
1217      * mpcexp_irq inputs to the correct splitter devices.
1218      */
1219     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1220                             IOTS_NUM_EXP_MPC);
1221 
1222     armsse_forward_sec_resp_cfg(s);
1223 
1224     /* Forward the MSC related signals */
1225     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1226     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1227     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1228     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1229                                 armsse_get_common_irq_in(s, 11));
1230 
1231     /*
1232      * Expose our container region to the board model; this corresponds
1233      * to the AHB Slave Expansion ports which allow bus master devices
1234      * (eg DMA controllers) in the board model to make transactions into
1235      * devices in the ARMSSE.
1236      */
1237     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1238 
1239     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1240 }
1241 
1242 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1243                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1244 {
1245     /*
1246      * For ARMSSE systems the IDAU responses are simple logical functions
1247      * of the address bits. The NSC attribute is guest-adjustable via the
1248      * NSCCFG register in the security controller.
1249      */
1250     ARMSSE *s = ARMSSE(ii);
1251     int region = extract32(address, 28, 4);
1252 
1253     *ns = !(region & 1);
1254     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1255     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1256     *exempt = (address & 0xeff00000) == 0xe0000000;
1257     *iregion = region;
1258 }
1259 
1260 static const VMStateDescription armsse_vmstate = {
1261     .name = "iotkit",
1262     .version_id = 1,
1263     .minimum_version_id = 1,
1264     .fields = (VMStateField[]) {
1265         VMSTATE_UINT32(nsccfg, ARMSSE),
1266         VMSTATE_END_OF_LIST()
1267     }
1268 };
1269 
1270 static void armsse_reset(DeviceState *dev)
1271 {
1272     ARMSSE *s = ARMSSE(dev);
1273 
1274     s->nsccfg = 0;
1275 }
1276 
1277 static void armsse_class_init(ObjectClass *klass, void *data)
1278 {
1279     DeviceClass *dc = DEVICE_CLASS(klass);
1280     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1281     ARMSSEClass *asc = ARMSSE_CLASS(klass);
1282     const ARMSSEInfo *info = data;
1283 
1284     dc->realize = armsse_realize;
1285     dc->vmsd = &armsse_vmstate;
1286     device_class_set_props(dc, info->props);
1287     dc->reset = armsse_reset;
1288     iic->check = armsse_idau_check;
1289     asc->info = info;
1290 }
1291 
1292 static const TypeInfo armsse_info = {
1293     .name = TYPE_ARMSSE,
1294     .parent = TYPE_SYS_BUS_DEVICE,
1295     .instance_size = sizeof(ARMSSE),
1296     .instance_init = armsse_init,
1297     .abstract = true,
1298     .interfaces = (InterfaceInfo[]) {
1299         { TYPE_IDAU_INTERFACE },
1300         { }
1301     }
1302 };
1303 
1304 static void armsse_register_types(void)
1305 {
1306     int i;
1307 
1308     type_register_static(&armsse_info);
1309 
1310     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1311         TypeInfo ti = {
1312             .name = armsse_variants[i].name,
1313             .parent = TYPE_ARMSSE,
1314             .class_init = armsse_class_init,
1315             .class_data = (void *)&armsse_variants[i],
1316         };
1317         type_register(&ti);
1318     }
1319 }
1320 
1321 type_init(armsse_register_types);
1322