1 /* 2 * ADC registers for Xilinx Zynq Platform 3 * 4 * Copyright (c) 2015 Guenter Roeck 5 * Based on hw/misc/zynq_slcr.c, written by Michal Simek 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * You should have received a copy of the GNU General Public License along 13 * with this program; if not, see <http://www.gnu.org/licenses/>. 14 */ 15 16 #include "qemu/osdep.h" 17 #include "hw/irq.h" 18 #include "hw/adc/zynq-xadc.h" 19 #include "migration/vmstate.h" 20 #include "qemu/timer.h" 21 #include "qemu/log.h" 22 #include "qemu/module.h" 23 24 enum { 25 CFG = 0x000 / 4, 26 INT_STS, 27 INT_MASK, 28 MSTS, 29 CMDFIFO, 30 RDFIFO, 31 MCTL, 32 }; 33 34 #define CFG_ENABLE BIT(31) 35 #define CFG_CFIFOTH_SHIFT 20 36 #define CFG_CFIFOTH_LENGTH 4 37 #define CFG_DFIFOTH_SHIFT 16 38 #define CFG_DFIFOTH_LENGTH 4 39 #define CFG_WEDGE BIT(13) 40 #define CFG_REDGE BIT(12) 41 #define CFG_TCKRATE_SHIFT 8 42 #define CFG_TCKRATE_LENGTH 2 43 44 #define CFG_TCKRATE_DIV(x) (0x1 << (x - 1)) 45 46 #define CFG_IGAP_SHIFT 0 47 #define CFG_IGAP_LENGTH 5 48 49 #define INT_CFIFO_LTH BIT(9) 50 #define INT_DFIFO_GTH BIT(8) 51 #define INT_OT BIT(7) 52 #define INT_ALM_SHIFT 0 53 #define INT_ALM_LENGTH 7 54 #define INT_ALM_MASK (((1 << INT_ALM_LENGTH) - 1) << INT_ALM_SHIFT) 55 56 #define INT_ALL (INT_CFIFO_LTH | INT_DFIFO_GTH | INT_OT | INT_ALM_MASK) 57 58 #define MSTS_CFIFO_LVL_SHIFT 16 59 #define MSTS_CFIFO_LVL_LENGTH 4 60 #define MSTS_DFIFO_LVL_SHIFT 12 61 #define MSTS_DFIFO_LVL_LENGTH 4 62 #define MSTS_CFIFOF BIT(11) 63 #define MSTS_CFIFOE BIT(10) 64 #define MSTS_DFIFOF BIT(9) 65 #define MSTS_DFIFOE BIT(8) 66 #define MSTS_OT BIT(7) 67 #define MSTS_ALM_SHIFT 0 68 #define MSTS_ALM_LENGTH 7 69 70 #define MCTL_RESET BIT(4) 71 72 #define CMD_NOP 0x00 73 #define CMD_READ 0x01 74 #define CMD_WRITE 0x02 75 76 static void zynq_xadc_update_ints(ZynqXADCState *s) 77 { 78 79 /* We are fast, commands are actioned instantly so the CFIFO is always 80 * empty (and below threshold). 81 */ 82 s->regs[INT_STS] |= INT_CFIFO_LTH; 83 84 if (s->xadc_dfifo_entries > 85 extract32(s->regs[CFG], CFG_DFIFOTH_SHIFT, CFG_DFIFOTH_LENGTH)) { 86 s->regs[INT_STS] |= INT_DFIFO_GTH; 87 } 88 89 qemu_set_irq(s->irq, !!(s->regs[INT_STS] & ~s->regs[INT_MASK])); 90 } 91 92 static void zynq_xadc_reset(DeviceState *d) 93 { 94 ZynqXADCState *s = ZYNQ_XADC(d); 95 96 s->regs[CFG] = 0x14 << CFG_IGAP_SHIFT | 97 CFG_TCKRATE_DIV(4) << CFG_TCKRATE_SHIFT | CFG_REDGE; 98 s->regs[INT_STS] = INT_CFIFO_LTH; 99 s->regs[INT_MASK] = 0xffffffff; 100 s->regs[CMDFIFO] = 0; 101 s->regs[RDFIFO] = 0; 102 s->regs[MCTL] = MCTL_RESET; 103 104 memset(s->xadc_regs, 0, sizeof(s->xadc_regs)); 105 memset(s->xadc_dfifo, 0, sizeof(s->xadc_dfifo)); 106 s->xadc_dfifo_entries = 0; 107 108 zynq_xadc_update_ints(s); 109 } 110 111 static uint16_t xadc_pop_dfifo(ZynqXADCState *s) 112 { 113 uint16_t rv = s->xadc_dfifo[0]; 114 int i; 115 116 if (s->xadc_dfifo_entries > 0) { 117 s->xadc_dfifo_entries--; 118 } 119 for (i = 0; i < s->xadc_dfifo_entries; i++) { 120 s->xadc_dfifo[i] = s->xadc_dfifo[i + 1]; 121 } 122 s->xadc_dfifo[s->xadc_dfifo_entries] = 0; 123 zynq_xadc_update_ints(s); 124 return rv; 125 } 126 127 static void xadc_push_dfifo(ZynqXADCState *s, uint16_t regval) 128 { 129 if (s->xadc_dfifo_entries < ZYNQ_XADC_FIFO_DEPTH) { 130 s->xadc_dfifo[s->xadc_dfifo_entries++] = s->xadc_read_reg_previous; 131 } 132 s->xadc_read_reg_previous = regval; 133 zynq_xadc_update_ints(s); 134 } 135 136 static bool zynq_xadc_check_offset(hwaddr offset, bool rnw) 137 { 138 switch (offset) { 139 case CFG: 140 case INT_MASK: 141 case INT_STS: 142 case MCTL: 143 return true; 144 case RDFIFO: 145 case MSTS: 146 return rnw; /* read only */ 147 case CMDFIFO: 148 return !rnw; /* write only */ 149 default: 150 return false; 151 } 152 } 153 154 static uint64_t zynq_xadc_read(void *opaque, hwaddr offset, unsigned size) 155 { 156 ZynqXADCState *s = opaque; 157 int reg = offset / 4; 158 uint32_t rv = 0; 159 160 if (!zynq_xadc_check_offset(reg, true)) { 161 qemu_log_mask(LOG_GUEST_ERROR, "zynq_xadc: Invalid read access to " 162 "addr %" HWADDR_PRIx "\n", offset); 163 return 0; 164 } 165 166 switch (reg) { 167 case CFG: 168 case INT_MASK: 169 case INT_STS: 170 case MCTL: 171 rv = s->regs[reg]; 172 break; 173 case MSTS: 174 rv = MSTS_CFIFOE; 175 rv |= s->xadc_dfifo_entries << MSTS_DFIFO_LVL_SHIFT; 176 if (!s->xadc_dfifo_entries) { 177 rv |= MSTS_DFIFOE; 178 } else if (s->xadc_dfifo_entries == ZYNQ_XADC_FIFO_DEPTH) { 179 rv |= MSTS_DFIFOF; 180 } 181 break; 182 case RDFIFO: 183 rv = xadc_pop_dfifo(s); 184 break; 185 } 186 return rv; 187 } 188 189 static void zynq_xadc_write(void *opaque, hwaddr offset, uint64_t val, 190 unsigned size) 191 { 192 ZynqXADCState *s = (ZynqXADCState *)opaque; 193 int reg = offset / 4; 194 int xadc_reg; 195 int xadc_cmd; 196 int xadc_data; 197 198 if (!zynq_xadc_check_offset(reg, false)) { 199 qemu_log_mask(LOG_GUEST_ERROR, "zynq_xadc: Invalid write access " 200 "to addr %" HWADDR_PRIx "\n", offset); 201 return; 202 } 203 204 switch (reg) { 205 case CFG: 206 s->regs[CFG] = val; 207 break; 208 case INT_STS: 209 s->regs[INT_STS] &= ~val; 210 break; 211 case INT_MASK: 212 s->regs[INT_MASK] = val & INT_ALL; 213 break; 214 case CMDFIFO: 215 xadc_cmd = extract32(val, 26, 4); 216 xadc_reg = extract32(val, 16, 10); 217 xadc_data = extract32(val, 0, 16); 218 219 if (s->regs[MCTL] & MCTL_RESET) { 220 qemu_log_mask(LOG_GUEST_ERROR, "zynq_xadc: Sending command " 221 "while comm channel held in reset: %" PRIx32 "\n", 222 (uint32_t) val); 223 break; 224 } 225 226 if (xadc_reg >= ZYNQ_XADC_NUM_ADC_REGS && xadc_cmd != CMD_NOP) { 227 qemu_log_mask(LOG_GUEST_ERROR, "read/write op to invalid xadc " 228 "reg 0x%x\n", xadc_reg); 229 break; 230 } 231 232 switch (xadc_cmd) { 233 case CMD_READ: 234 xadc_push_dfifo(s, s->xadc_regs[xadc_reg]); 235 break; 236 case CMD_WRITE: 237 s->xadc_regs[xadc_reg] = xadc_data; 238 /* fallthrough */ 239 case CMD_NOP: 240 xadc_push_dfifo(s, 0); 241 break; 242 } 243 break; 244 case MCTL: 245 s->regs[MCTL] = val & 0x00fffeff; 246 break; 247 } 248 zynq_xadc_update_ints(s); 249 } 250 251 static const MemoryRegionOps xadc_ops = { 252 .read = zynq_xadc_read, 253 .write = zynq_xadc_write, 254 .endianness = DEVICE_NATIVE_ENDIAN, 255 }; 256 257 static void zynq_xadc_init(Object *obj) 258 { 259 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 260 ZynqXADCState *s = ZYNQ_XADC(obj); 261 262 memory_region_init_io(&s->iomem, obj, &xadc_ops, s, "zynq-xadc", 263 ZYNQ_XADC_MMIO_SIZE); 264 sysbus_init_mmio(sbd, &s->iomem); 265 sysbus_init_irq(sbd, &s->irq); 266 } 267 268 static const VMStateDescription vmstate_zynq_xadc = { 269 .name = "zynq-xadc", 270 .version_id = 1, 271 .minimum_version_id = 1, 272 .fields = (const VMStateField[]) { 273 VMSTATE_UINT32_ARRAY(regs, ZynqXADCState, ZYNQ_XADC_NUM_IO_REGS), 274 VMSTATE_UINT16_ARRAY(xadc_regs, ZynqXADCState, 275 ZYNQ_XADC_NUM_ADC_REGS), 276 VMSTATE_UINT16_ARRAY(xadc_dfifo, ZynqXADCState, 277 ZYNQ_XADC_FIFO_DEPTH), 278 VMSTATE_UINT16(xadc_read_reg_previous, ZynqXADCState), 279 VMSTATE_UINT16(xadc_dfifo_entries, ZynqXADCState), 280 VMSTATE_END_OF_LIST() 281 } 282 }; 283 284 static void zynq_xadc_class_init(ObjectClass *klass, void *data) 285 { 286 DeviceClass *dc = DEVICE_CLASS(klass); 287 288 dc->vmsd = &vmstate_zynq_xadc; 289 device_class_set_legacy_reset(dc, zynq_xadc_reset); 290 } 291 292 static const TypeInfo zynq_xadc_info = { 293 .class_init = zynq_xadc_class_init, 294 .name = TYPE_ZYNQ_XADC, 295 .parent = TYPE_SYS_BUS_DEVICE, 296 .instance_size = sizeof(ZynqXADCState), 297 .instance_init = zynq_xadc_init, 298 }; 299 300 static void zynq_xadc_register_types(void) 301 { 302 type_register_static(&zynq_xadc_info); 303 } 304 305 type_init(zynq_xadc_register_types) 306