xref: /openbmc/qemu/hw/adc/zynq-xadc.c (revision 7025114b1cd7683cb7fbef0810577c67aa3cbbd8)
1 /*
2  * ADC registers for Xilinx Zynq Platform
3  *
4  * Copyright (c) 2015 Guenter Roeck
5  * Based on hw/misc/zynq_slcr.c, written by Michal Simek
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  *
12  * You should have received a copy of the GNU General Public License along
13  * with this program; if not, see <http://www.gnu.org/licenses/>.
14  */
15 
16 #include "qemu/osdep.h"
17 #include "hw/irq.h"
18 #include "hw/adc/zynq-xadc.h"
19 #include "migration/vmstate.h"
20 #include "qemu/timer.h"
21 #include "qemu/log.h"
22 #include "qemu/module.h"
23 
24 enum {
25     CFG                = 0x000 / 4,
26     INT_STS,
27     INT_MASK,
28     MSTS,
29     CMDFIFO,
30     RDFIFO,
31     MCTL,
32 };
33 
34 #define CFG_ENABLE              BIT(31)
35 #define CFG_CFIFOTH_SHIFT       20
36 #define CFG_CFIFOTH_LENGTH      4
37 #define CFG_DFIFOTH_SHIFT       16
38 #define CFG_DFIFOTH_LENGTH      4
39 #define CFG_WEDGE               BIT(13)
40 #define CFG_REDGE               BIT(12)
41 #define CFG_TCKRATE_SHIFT       8
42 #define CFG_TCKRATE_LENGTH      2
43 
44 #define CFG_TCKRATE_DIV(x)      (0x1 << (x - 1))
45 
46 #define CFG_IGAP_SHIFT          0
47 #define CFG_IGAP_LENGTH         5
48 
49 #define INT_CFIFO_LTH           BIT(9)
50 #define INT_DFIFO_GTH           BIT(8)
51 #define INT_OT                  BIT(7)
52 #define INT_ALM_SHIFT           0
53 #define INT_ALM_LENGTH          7
54 #define INT_ALM_MASK            (((1 << INT_ALM_LENGTH) - 1) << INT_ALM_SHIFT)
55 
56 #define INT_ALL (INT_CFIFO_LTH | INT_DFIFO_GTH | INT_OT | INT_ALM_MASK)
57 
58 #define MSTS_CFIFO_LVL_SHIFT    16
59 #define MSTS_CFIFO_LVL_LENGTH   4
60 #define MSTS_DFIFO_LVL_SHIFT    12
61 #define MSTS_DFIFO_LVL_LENGTH   4
62 #define MSTS_CFIFOF             BIT(11)
63 #define MSTS_CFIFOE             BIT(10)
64 #define MSTS_DFIFOF             BIT(9)
65 #define MSTS_DFIFOE             BIT(8)
66 #define MSTS_OT                 BIT(7)
67 #define MSTS_ALM_SHIFT          0
68 #define MSTS_ALM_LENGTH         7
69 
70 #define MCTL_RESET              BIT(4)
71 
72 #define CMD_NOP                 0x00
73 #define CMD_READ                0x01
74 #define CMD_WRITE               0x02
75 
76 static void zynq_xadc_update_ints(ZynqXADCState *s)
77 {
78 
79     /* We are fast, commands are actioned instantly so the CFIFO is always
80      * empty (and below threshold).
81      */
82     s->regs[INT_STS] |= INT_CFIFO_LTH;
83 
84     if (s->xadc_dfifo_entries >
85         extract32(s->regs[CFG], CFG_DFIFOTH_SHIFT, CFG_DFIFOTH_LENGTH)) {
86         s->regs[INT_STS] |= INT_DFIFO_GTH;
87     }
88 
89     qemu_set_irq(s->irq, !!(s->regs[INT_STS] & ~s->regs[INT_MASK]));
90 }
91 
92 static void zynq_xadc_reset(DeviceState *d)
93 {
94     ZynqXADCState *s = ZYNQ_XADC(d);
95 
96     s->regs[CFG] = 0x14 << CFG_IGAP_SHIFT |
97                    CFG_TCKRATE_DIV(4) << CFG_TCKRATE_SHIFT | CFG_REDGE;
98     s->regs[INT_STS] = INT_CFIFO_LTH;
99     s->regs[INT_MASK] = 0xffffffff;
100     s->regs[CMDFIFO] = 0;
101     s->regs[RDFIFO] = 0;
102     s->regs[MCTL] = MCTL_RESET;
103 
104     memset(s->xadc_regs, 0, sizeof(s->xadc_regs));
105     memset(s->xadc_dfifo, 0, sizeof(s->xadc_dfifo));
106     s->xadc_dfifo_entries = 0;
107 
108     zynq_xadc_update_ints(s);
109 }
110 
111 static uint16_t xadc_pop_dfifo(ZynqXADCState *s)
112 {
113     uint16_t rv = s->xadc_dfifo[0];
114     int i;
115 
116     if (s->xadc_dfifo_entries > 0) {
117         s->xadc_dfifo_entries--;
118     }
119     for (i = 0; i < s->xadc_dfifo_entries; i++) {
120         s->xadc_dfifo[i] = s->xadc_dfifo[i + 1];
121     }
122     s->xadc_dfifo[s->xadc_dfifo_entries] = 0;
123     zynq_xadc_update_ints(s);
124     return rv;
125 }
126 
127 static void xadc_push_dfifo(ZynqXADCState *s, uint16_t regval)
128 {
129     if (s->xadc_dfifo_entries < ZYNQ_XADC_FIFO_DEPTH) {
130         s->xadc_dfifo[s->xadc_dfifo_entries++] = s->xadc_read_reg_previous;
131     }
132     s->xadc_read_reg_previous = regval;
133     zynq_xadc_update_ints(s);
134 }
135 
136 static bool zynq_xadc_check_offset(hwaddr offset, bool rnw)
137 {
138     switch (offset) {
139     case CFG:
140     case INT_MASK:
141     case INT_STS:
142     case MCTL:
143         return true;
144     case RDFIFO:
145     case MSTS:
146         return rnw;     /* read only */
147     case CMDFIFO:
148         return !rnw;    /* write only */
149     default:
150         return false;
151     }
152 }
153 
154 static uint64_t zynq_xadc_read(void *opaque, hwaddr offset, unsigned size)
155 {
156     ZynqXADCState *s = opaque;
157     int reg = offset / 4;
158     uint32_t rv = 0;
159 
160     if (!zynq_xadc_check_offset(reg, true)) {
161         qemu_log_mask(LOG_GUEST_ERROR, "zynq_xadc: Invalid read access to "
162                       "addr %" HWADDR_PRIx "\n", offset);
163         return 0;
164     }
165 
166     switch (reg) {
167     case CFG:
168     case INT_MASK:
169     case INT_STS:
170     case MCTL:
171         rv = s->regs[reg];
172         break;
173     case MSTS:
174         rv = MSTS_CFIFOE;
175         rv |= s->xadc_dfifo_entries << MSTS_DFIFO_LVL_SHIFT;
176         if (!s->xadc_dfifo_entries) {
177             rv |= MSTS_DFIFOE;
178         } else if (s->xadc_dfifo_entries == ZYNQ_XADC_FIFO_DEPTH) {
179             rv |= MSTS_DFIFOF;
180         }
181         break;
182     case RDFIFO:
183         rv = xadc_pop_dfifo(s);
184         break;
185     }
186     return rv;
187 }
188 
189 static void zynq_xadc_write(void *opaque, hwaddr offset, uint64_t val,
190                             unsigned size)
191 {
192     ZynqXADCState *s = (ZynqXADCState *)opaque;
193     int reg = offset / 4;
194     int xadc_reg;
195     int xadc_cmd;
196     int xadc_data;
197 
198     if (!zynq_xadc_check_offset(reg, false)) {
199         qemu_log_mask(LOG_GUEST_ERROR, "zynq_xadc: Invalid write access "
200                       "to addr %" HWADDR_PRIx "\n", offset);
201         return;
202     }
203 
204     switch (reg) {
205     case CFG:
206         s->regs[CFG] = val;
207         break;
208     case INT_STS:
209         s->regs[INT_STS] &= ~val;
210         break;
211     case INT_MASK:
212         s->regs[INT_MASK] = val & INT_ALL;
213         break;
214     case CMDFIFO:
215         xadc_cmd  = extract32(val, 26,  4);
216         xadc_reg  = extract32(val, 16, 10);
217         xadc_data = extract32(val,  0, 16);
218 
219         if (s->regs[MCTL] & MCTL_RESET) {
220             qemu_log_mask(LOG_GUEST_ERROR, "zynq_xadc: Sending command "
221                           "while comm channel held in reset: %" PRIx32 "\n",
222                           (uint32_t) val);
223             break;
224         }
225 
226         if (xadc_reg >= ZYNQ_XADC_NUM_ADC_REGS && xadc_cmd != CMD_NOP) {
227             qemu_log_mask(LOG_GUEST_ERROR, "read/write op to invalid xadc "
228                           "reg 0x%x\n", xadc_reg);
229             break;
230         }
231 
232         switch (xadc_cmd) {
233         case CMD_READ:
234             xadc_push_dfifo(s, s->xadc_regs[xadc_reg]);
235             break;
236         case CMD_WRITE:
237             s->xadc_regs[xadc_reg] = xadc_data;
238             /* fallthrough */
239         case CMD_NOP:
240             xadc_push_dfifo(s, 0);
241             break;
242         }
243         break;
244     case MCTL:
245         s->regs[MCTL] = val & 0x00fffeff;
246         break;
247     }
248     zynq_xadc_update_ints(s);
249 }
250 
251 static const MemoryRegionOps xadc_ops = {
252     .read = zynq_xadc_read,
253     .write = zynq_xadc_write,
254     .endianness = DEVICE_NATIVE_ENDIAN,
255 };
256 
257 static void zynq_xadc_init(Object *obj)
258 {
259     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
260     ZynqXADCState *s = ZYNQ_XADC(obj);
261 
262     memory_region_init_io(&s->iomem, obj, &xadc_ops, s, "zynq-xadc",
263                           ZYNQ_XADC_MMIO_SIZE);
264     sysbus_init_mmio(sbd, &s->iomem);
265     sysbus_init_irq(sbd, &s->irq);
266 }
267 
268 static const VMStateDescription vmstate_zynq_xadc = {
269     .name = "zynq-xadc",
270     .version_id = 1,
271     .minimum_version_id = 1,
272     .fields = (VMStateField[]) {
273         VMSTATE_UINT32_ARRAY(regs, ZynqXADCState, ZYNQ_XADC_NUM_IO_REGS),
274         VMSTATE_UINT16_ARRAY(xadc_regs, ZynqXADCState,
275                              ZYNQ_XADC_NUM_ADC_REGS),
276         VMSTATE_UINT16_ARRAY(xadc_dfifo, ZynqXADCState,
277                              ZYNQ_XADC_FIFO_DEPTH),
278         VMSTATE_UINT16(xadc_read_reg_previous, ZynqXADCState),
279         VMSTATE_UINT16(xadc_dfifo_entries, ZynqXADCState),
280         VMSTATE_END_OF_LIST()
281     }
282 };
283 
284 static void zynq_xadc_class_init(ObjectClass *klass, void *data)
285 {
286     DeviceClass *dc = DEVICE_CLASS(klass);
287 
288     dc->vmsd = &vmstate_zynq_xadc;
289     dc->reset = zynq_xadc_reset;
290 }
291 
292 static const TypeInfo zynq_xadc_info = {
293     .class_init = zynq_xadc_class_init,
294     .name  = TYPE_ZYNQ_XADC,
295     .parent = TYPE_SYS_BUS_DEVICE,
296     .instance_size  = sizeof(ZynqXADCState),
297     .instance_init = zynq_xadc_init,
298 };
299 
300 static void zynq_xadc_register_types(void)
301 {
302     type_register_static(&zynq_xadc_info);
303 }
304 
305 type_init(zynq_xadc_register_types)
306