1 /* 2 * NVDIMM ACPI Implementation 3 * 4 * Copyright(C) 2015 Intel Corporation. 5 * 6 * Author: 7 * Xiao Guangrong <guangrong.xiao@linux.intel.com> 8 * 9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 10 * and the DSM specification can be found at: 11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 12 * 13 * Currently, it only supports PMEM Virtualization. 14 * 15 * This library is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU Lesser General Public 17 * License as published by the Free Software Foundation; either 18 * version 2 of the License, or (at your option) any later version. 19 * 20 * This library is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * Lesser General Public License for more details. 24 * 25 * You should have received a copy of the GNU Lesser General Public 26 * License along with this library; if not, see <http://www.gnu.org/licenses/> 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/acpi/acpi.h" 31 #include "hw/acpi/aml-build.h" 32 #include "hw/acpi/bios-linker-loader.h" 33 #include "hw/nvram/fw_cfg.h" 34 #include "hw/mem/nvdimm.h" 35 36 static int nvdimm_device_list(Object *obj, void *opaque) 37 { 38 GSList **list = opaque; 39 40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) { 41 *list = g_slist_append(*list, DEVICE(obj)); 42 } 43 44 object_child_foreach(obj, nvdimm_device_list, opaque); 45 return 0; 46 } 47 48 /* 49 * inquire NVDIMM devices and link them into the list which is 50 * returned to the caller. 51 * 52 * Note: it is the caller's responsibility to free the list to avoid 53 * memory leak. 54 */ 55 static GSList *nvdimm_get_device_list(void) 56 { 57 GSList *list = NULL; 58 59 object_child_foreach(qdev_get_machine(), nvdimm_device_list, &list); 60 return list; 61 } 62 63 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 64 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \ 65 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \ 66 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) } 67 68 /* 69 * define Byte Addressable Persistent Memory (PM) Region according to 70 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. 71 */ 72 static const uint8_t nvdimm_nfit_spa_uuid[] = 73 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 74 0x18, 0xb7, 0x8c, 0xdb); 75 76 /* 77 * NVDIMM Firmware Interface Table 78 * @signature: "NFIT" 79 * 80 * It provides information that allows OSPM to enumerate NVDIMM present in 81 * the platform and associate system physical address ranges created by the 82 * NVDIMMs. 83 * 84 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 85 */ 86 struct NvdimmNfitHeader { 87 ACPI_TABLE_HEADER_DEF 88 uint32_t reserved; 89 } QEMU_PACKED; 90 typedef struct NvdimmNfitHeader NvdimmNfitHeader; 91 92 /* 93 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware 94 * Interface Table (NFIT). 95 */ 96 97 /* 98 * System Physical Address Range Structure 99 * 100 * It describes the system physical address ranges occupied by NVDIMMs and 101 * the types of the regions. 102 */ 103 struct NvdimmNfitSpa { 104 uint16_t type; 105 uint16_t length; 106 uint16_t spa_index; 107 uint16_t flags; 108 uint32_t reserved; 109 uint32_t proximity_domain; 110 uint8_t type_guid[16]; 111 uint64_t spa_base; 112 uint64_t spa_length; 113 uint64_t mem_attr; 114 } QEMU_PACKED; 115 typedef struct NvdimmNfitSpa NvdimmNfitSpa; 116 117 /* 118 * Memory Device to System Physical Address Range Mapping Structure 119 * 120 * It enables identifying each NVDIMM region and the corresponding SPA 121 * describing the memory interleave 122 */ 123 struct NvdimmNfitMemDev { 124 uint16_t type; 125 uint16_t length; 126 uint32_t nfit_handle; 127 uint16_t phys_id; 128 uint16_t region_id; 129 uint16_t spa_index; 130 uint16_t dcr_index; 131 uint64_t region_len; 132 uint64_t region_offset; 133 uint64_t region_dpa; 134 uint16_t interleave_index; 135 uint16_t interleave_ways; 136 uint16_t flags; 137 uint16_t reserved; 138 } QEMU_PACKED; 139 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; 140 141 /* 142 * NVDIMM Control Region Structure 143 * 144 * It describes the NVDIMM and if applicable, Block Control Window. 145 */ 146 struct NvdimmNfitControlRegion { 147 uint16_t type; 148 uint16_t length; 149 uint16_t dcr_index; 150 uint16_t vendor_id; 151 uint16_t device_id; 152 uint16_t revision_id; 153 uint16_t sub_vendor_id; 154 uint16_t sub_device_id; 155 uint16_t sub_revision_id; 156 uint8_t reserved[6]; 157 uint32_t serial_number; 158 uint16_t fic; 159 uint16_t num_bcw; 160 uint64_t bcw_size; 161 uint64_t cmd_offset; 162 uint64_t cmd_size; 163 uint64_t status_offset; 164 uint64_t status_size; 165 uint16_t flags; 166 uint8_t reserved2[6]; 167 } QEMU_PACKED; 168 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; 169 170 /* 171 * Module serial number is a unique number for each device. We use the 172 * slot id of NVDIMM device to generate this number so that each device 173 * associates with a different number. 174 * 175 * 0x123456 is a magic number we arbitrarily chose. 176 */ 177 static uint32_t nvdimm_slot_to_sn(int slot) 178 { 179 return 0x123456 + slot; 180 } 181 182 /* 183 * handle is used to uniquely associate nfit_memdev structure with NVDIMM 184 * ACPI device - nfit_memdev.nfit_handle matches with the value returned 185 * by ACPI device _ADR method. 186 * 187 * We generate the handle with the slot id of NVDIMM device and reserve 188 * 0 for NVDIMM root device. 189 */ 190 static uint32_t nvdimm_slot_to_handle(int slot) 191 { 192 return slot + 1; 193 } 194 195 /* 196 * index uniquely identifies the structure, 0 is reserved which indicates 197 * that the structure is not valid or the associated structure is not 198 * present. 199 * 200 * Each NVDIMM device needs two indexes, one for nfit_spa and another for 201 * nfit_dc which are generated by the slot id of NVDIMM device. 202 */ 203 static uint16_t nvdimm_slot_to_spa_index(int slot) 204 { 205 return (slot + 1) << 1; 206 } 207 208 /* See the comments of nvdimm_slot_to_spa_index(). */ 209 static uint32_t nvdimm_slot_to_dcr_index(int slot) 210 { 211 return nvdimm_slot_to_spa_index(slot) + 1; 212 } 213 214 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) 215 { 216 NVDIMMDevice *nvdimm = NULL; 217 GSList *list, *device_list = nvdimm_get_device_list(); 218 219 for (list = device_list; list; list = list->next) { 220 NVDIMMDevice *nvd = list->data; 221 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, 222 NULL); 223 224 if (nvdimm_slot_to_handle(slot) == handle) { 225 nvdimm = nvd; 226 break; 227 } 228 } 229 230 g_slist_free(device_list); 231 return nvdimm; 232 } 233 234 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ 235 static void 236 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) 237 { 238 NvdimmNfitSpa *nfit_spa; 239 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP, 240 NULL); 241 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 242 NULL); 243 uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, 244 NULL); 245 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 246 NULL); 247 248 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); 249 250 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range 251 Structure */); 252 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); 253 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 254 255 /* 256 * Control region is strict as all the device info, such as SN, index, 257 * is associated with slot id. 258 */ 259 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for 260 management during hot add/online 261 operation */ | 262 2 /* Data in Proximity Domain field is 263 valid*/); 264 265 /* NUMA node. */ 266 nfit_spa->proximity_domain = cpu_to_le32(node); 267 /* the region reported as PMEM. */ 268 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, 269 sizeof(nvdimm_nfit_spa_uuid)); 270 271 nfit_spa->spa_base = cpu_to_le64(addr); 272 nfit_spa->spa_length = cpu_to_le64(size); 273 274 /* It is the PMEM and can be cached as writeback. */ 275 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 276 0x8000ULL /* EFI_MEMORY_NV */); 277 } 278 279 /* 280 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping 281 * Structure 282 */ 283 static void 284 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) 285 { 286 NvdimmNfitMemDev *nfit_memdev; 287 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 288 NULL); 289 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 290 NULL); 291 uint32_t handle = nvdimm_slot_to_handle(slot); 292 293 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); 294 295 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address 296 Range Map Structure*/); 297 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); 298 nfit_memdev->nfit_handle = cpu_to_le32(handle); 299 300 /* 301 * associate memory device with System Physical Address Range 302 * Structure. 303 */ 304 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 305 /* associate memory device with Control Region Structure. */ 306 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 307 308 /* The memory region on the device. */ 309 nfit_memdev->region_len = cpu_to_le64(size); 310 /* The device address starts from 0. */ 311 nfit_memdev->region_dpa = cpu_to_le64(0); 312 313 /* Only one interleave for PMEM. */ 314 nfit_memdev->interleave_ways = cpu_to_le16(1); 315 } 316 317 /* 318 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. 319 */ 320 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) 321 { 322 NvdimmNfitControlRegion *nfit_dcr; 323 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 324 NULL); 325 uint32_t sn = nvdimm_slot_to_sn(slot); 326 327 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); 328 329 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); 330 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); 331 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 332 333 /* vendor: Intel. */ 334 nfit_dcr->vendor_id = cpu_to_le16(0x8086); 335 nfit_dcr->device_id = cpu_to_le16(1); 336 337 /* The _DSM method is following Intel's DSM specification. */ 338 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported 339 in ACPI 6.0 is 1. */); 340 nfit_dcr->serial_number = cpu_to_le32(sn); 341 nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter 342 2: NVDIMM Device Specific Method 343 (DSM) in DSM Spec Rev1.*/); 344 } 345 346 static GArray *nvdimm_build_device_structure(void) 347 { 348 GSList *device_list = nvdimm_get_device_list(); 349 GArray *structures = g_array_new(false, true /* clear */, 1); 350 351 for (; device_list; device_list = device_list->next) { 352 DeviceState *dev = device_list->data; 353 354 /* build System Physical Address Range Structure. */ 355 nvdimm_build_structure_spa(structures, dev); 356 357 /* 358 * build Memory Device to System Physical Address Range Mapping 359 * Structure. 360 */ 361 nvdimm_build_structure_memdev(structures, dev); 362 363 /* build NVDIMM Control Region Structure. */ 364 nvdimm_build_structure_dcr(structures, dev); 365 } 366 g_slist_free(device_list); 367 368 return structures; 369 } 370 371 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) 372 { 373 fit_buf->fit = g_array_new(false, true /* clear */, 1); 374 } 375 376 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf) 377 { 378 g_array_free(fit_buf->fit, true); 379 fit_buf->fit = nvdimm_build_device_structure(); 380 fit_buf->dirty = true; 381 } 382 383 void nvdimm_plug(AcpiNVDIMMState *state) 384 { 385 nvdimm_build_fit_buffer(&state->fit_buf); 386 } 387 388 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets, 389 GArray *table_data, BIOSLinker *linker) 390 { 391 NvdimmFitBuffer *fit_buf = &state->fit_buf; 392 unsigned int header; 393 394 acpi_add_table(table_offsets, table_data); 395 396 /* NFIT header. */ 397 header = table_data->len; 398 acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); 399 /* NVDIMM device structures. */ 400 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); 401 402 build_header(linker, table_data, 403 (void *)(table_data->data + header), "NFIT", 404 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL); 405 } 406 407 #define NVDIMM_DSM_MEMORY_SIZE 4096 408 409 struct NvdimmDsmIn { 410 uint32_t handle; 411 uint32_t revision; 412 uint32_t function; 413 /* the remaining size in the page is used by arg3. */ 414 union { 415 uint8_t arg3[4084]; 416 }; 417 } QEMU_PACKED; 418 typedef struct NvdimmDsmIn NvdimmDsmIn; 419 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE); 420 421 struct NvdimmDsmOut { 422 /* the size of buffer filled by QEMU. */ 423 uint32_t len; 424 uint8_t data[4092]; 425 } QEMU_PACKED; 426 typedef struct NvdimmDsmOut NvdimmDsmOut; 427 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE); 428 429 struct NvdimmDsmFunc0Out { 430 /* the size of buffer filled by QEMU. */ 431 uint32_t len; 432 uint32_t supported_func; 433 } QEMU_PACKED; 434 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; 435 436 struct NvdimmDsmFuncNoPayloadOut { 437 /* the size of buffer filled by QEMU. */ 438 uint32_t len; 439 uint32_t func_ret_status; 440 } QEMU_PACKED; 441 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; 442 443 struct NvdimmFuncGetLabelSizeOut { 444 /* the size of buffer filled by QEMU. */ 445 uint32_t len; 446 uint32_t func_ret_status; /* return status code. */ 447 uint32_t label_size; /* the size of label data area. */ 448 /* 449 * Maximum size of the namespace label data length supported by 450 * the platform in Get/Set Namespace Label Data functions. 451 */ 452 uint32_t max_xfer; 453 } QEMU_PACKED; 454 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; 455 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE); 456 457 struct NvdimmFuncGetLabelDataIn { 458 uint32_t offset; /* the offset in the namespace label data area. */ 459 uint32_t length; /* the size of data is to be read via the function. */ 460 } QEMU_PACKED; 461 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; 462 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + 463 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 464 465 struct NvdimmFuncGetLabelDataOut { 466 /* the size of buffer filled by QEMU. */ 467 uint32_t len; 468 uint32_t func_ret_status; /* return status code. */ 469 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */ 470 } QEMU_PACKED; 471 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; 472 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE); 473 474 struct NvdimmFuncSetLabelDataIn { 475 uint32_t offset; /* the offset in the namespace label data area. */ 476 uint32_t length; /* the size of data is to be written via the function. */ 477 uint8_t in_buf[0]; /* the data written to label data area. */ 478 } QEMU_PACKED; 479 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; 480 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + 481 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 482 483 struct NvdimmFuncReadFITIn { 484 uint32_t offset; /* the offset into FIT buffer. */ 485 } QEMU_PACKED; 486 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; 487 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + 488 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 489 490 struct NvdimmFuncReadFITOut { 491 /* the size of buffer filled by QEMU. */ 492 uint32_t len; 493 uint32_t func_ret_status; /* return status code. */ 494 uint8_t fit[0]; /* the FIT data. */ 495 } QEMU_PACKED; 496 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; 497 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE); 498 499 static void 500 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) 501 { 502 NvdimmDsmFunc0Out func0 = { 503 .len = cpu_to_le32(sizeof(func0)), 504 .supported_func = cpu_to_le32(supported_func), 505 }; 506 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); 507 } 508 509 static void 510 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) 511 { 512 NvdimmDsmFuncNoPayloadOut out = { 513 .len = cpu_to_le32(sizeof(out)), 514 .func_ret_status = cpu_to_le32(func_ret_status), 515 }; 516 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); 517 } 518 519 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */ 520 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */ 521 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */ 522 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */ 523 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */ 524 525 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 526 527 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ 528 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in, 529 hwaddr dsm_mem_addr) 530 { 531 NvdimmFitBuffer *fit_buf = &state->fit_buf; 532 NvdimmFuncReadFITIn *read_fit; 533 NvdimmFuncReadFITOut *read_fit_out; 534 GArray *fit; 535 uint32_t read_len = 0, func_ret_status; 536 int size; 537 538 read_fit = (NvdimmFuncReadFITIn *)in->arg3; 539 le32_to_cpus(&read_fit->offset); 540 541 fit = fit_buf->fit; 542 543 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n", 544 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No"); 545 546 if (read_fit->offset > fit->len) { 547 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID; 548 goto exit; 549 } 550 551 /* It is the first time to read FIT. */ 552 if (!read_fit->offset) { 553 fit_buf->dirty = false; 554 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ 555 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED; 556 goto exit; 557 } 558 559 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS; 560 read_len = MIN(fit->len - read_fit->offset, 561 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut)); 562 563 exit: 564 size = sizeof(NvdimmFuncReadFITOut) + read_len; 565 read_fit_out = g_malloc(size); 566 567 read_fit_out->len = cpu_to_le32(size); 568 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); 569 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); 570 571 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); 572 573 g_free(read_fit_out); 574 } 575 576 static void 577 nvdimm_dsm_handle_reserved_root_method(AcpiNVDIMMState *state, 578 NvdimmDsmIn *in, hwaddr dsm_mem_addr) 579 { 580 switch (in->function) { 581 case 0x0: 582 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); 583 return; 584 case 0x1 /* Read FIT */: 585 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); 586 return; 587 } 588 589 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 590 } 591 592 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 593 { 594 /* 595 * function 0 is called to inquire which functions are supported by 596 * OSPM 597 */ 598 if (!in->function) { 599 nvdimm_dsm_function0(0 /* No function supported other than 600 function 0 */, dsm_mem_addr); 601 return; 602 } 603 604 /* No function except function 0 is supported yet. */ 605 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 606 } 607 608 /* 609 * the max transfer size is the max size transferred by both a 610 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' 611 * function. 612 */ 613 static uint32_t nvdimm_get_max_xfer_label_size(void) 614 { 615 uint32_t max_get_size, max_set_size, dsm_memory_size; 616 617 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE; 618 619 /* 620 * the max data ACPI can read one time which is transferred by 621 * the response of 'Get Namespace Label Data' function. 622 */ 623 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); 624 625 /* 626 * the max data ACPI can write one time which is transferred by 627 * 'Set Namespace Label Data' function. 628 */ 629 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - 630 sizeof(NvdimmFuncSetLabelDataIn); 631 632 return MIN(max_get_size, max_set_size); 633 } 634 635 /* 636 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). 637 * 638 * It gets the size of Namespace Label data area and the max data size 639 * that Get/Set Namespace Label Data functions can transfer. 640 */ 641 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) 642 { 643 NvdimmFuncGetLabelSizeOut label_size_out = { 644 .len = cpu_to_le32(sizeof(label_size_out)), 645 }; 646 uint32_t label_size, mxfer; 647 648 label_size = nvdimm->label_size; 649 mxfer = nvdimm_get_max_xfer_label_size(); 650 651 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer); 652 653 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); 654 label_size_out.label_size = cpu_to_le32(label_size); 655 label_size_out.max_xfer = cpu_to_le32(mxfer); 656 657 cpu_physical_memory_write(dsm_mem_addr, &label_size_out, 658 sizeof(label_size_out)); 659 } 660 661 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, 662 uint32_t offset, uint32_t length) 663 { 664 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID; 665 666 if (offset + length < offset) { 667 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset, 668 length); 669 return ret; 670 } 671 672 if (nvdimm->label_size < offset + length) { 673 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n", 674 offset + length, nvdimm->label_size); 675 return ret; 676 } 677 678 if (length > nvdimm_get_max_xfer_label_size()) { 679 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n", 680 length, nvdimm_get_max_xfer_label_size()); 681 return ret; 682 } 683 684 return NVDIMM_DSM_RET_STATUS_SUCCESS; 685 } 686 687 /* 688 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). 689 */ 690 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 691 hwaddr dsm_mem_addr) 692 { 693 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 694 NvdimmFuncGetLabelDataIn *get_label_data; 695 NvdimmFuncGetLabelDataOut *get_label_data_out; 696 uint32_t status; 697 int size; 698 699 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; 700 le32_to_cpus(&get_label_data->offset); 701 le32_to_cpus(&get_label_data->length); 702 703 nvdimm_debug("Read Label Data: offset %#x length %#x.\n", 704 get_label_data->offset, get_label_data->length); 705 706 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, 707 get_label_data->length); 708 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { 709 nvdimm_dsm_no_payload(status, dsm_mem_addr); 710 return; 711 } 712 713 size = sizeof(*get_label_data_out) + get_label_data->length; 714 assert(size <= NVDIMM_DSM_MEMORY_SIZE); 715 get_label_data_out = g_malloc(size); 716 717 get_label_data_out->len = cpu_to_le32(size); 718 get_label_data_out->func_ret_status = 719 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); 720 nvc->read_label_data(nvdimm, get_label_data_out->out_buf, 721 get_label_data->length, get_label_data->offset); 722 723 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); 724 g_free(get_label_data_out); 725 } 726 727 /* 728 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). 729 */ 730 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 731 hwaddr dsm_mem_addr) 732 { 733 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 734 NvdimmFuncSetLabelDataIn *set_label_data; 735 uint32_t status; 736 737 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; 738 739 le32_to_cpus(&set_label_data->offset); 740 le32_to_cpus(&set_label_data->length); 741 742 nvdimm_debug("Write Label Data: offset %#x length %#x.\n", 743 set_label_data->offset, set_label_data->length); 744 745 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, 746 set_label_data->length); 747 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { 748 nvdimm_dsm_no_payload(status, dsm_mem_addr); 749 return; 750 } 751 752 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) + 753 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE); 754 755 nvc->write_label_data(nvdimm, set_label_data->in_buf, 756 set_label_data->length, set_label_data->offset); 757 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr); 758 } 759 760 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 761 { 762 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); 763 764 /* See the comments in nvdimm_dsm_root(). */ 765 if (!in->function) { 766 uint32_t supported_func = 0; 767 768 if (nvdimm && nvdimm->label_size) { 769 supported_func |= 0x1 /* Bit 0 indicates whether there is 770 support for any functions other 771 than function 0. */ | 772 1 << 4 /* Get Namespace Label Size */ | 773 1 << 5 /* Get Namespace Label Data */ | 774 1 << 6 /* Set Namespace Label Data */; 775 } 776 nvdimm_dsm_function0(supported_func, dsm_mem_addr); 777 return; 778 } 779 780 if (!nvdimm) { 781 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV, 782 dsm_mem_addr); 783 return; 784 } 785 786 /* Encode DSM function according to DSM Spec Rev1. */ 787 switch (in->function) { 788 case 4 /* Get Namespace Label Size */: 789 if (nvdimm->label_size) { 790 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); 791 return; 792 } 793 break; 794 case 5 /* Get Namespace Label Data */: 795 if (nvdimm->label_size) { 796 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); 797 return; 798 } 799 break; 800 case 0x6 /* Set Namespace Label Data */: 801 if (nvdimm->label_size) { 802 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); 803 return; 804 } 805 break; 806 } 807 808 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 809 } 810 811 static uint64_t 812 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) 813 { 814 nvdimm_debug("BUG: we never read _DSM IO Port.\n"); 815 return 0; 816 } 817 818 static void 819 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 820 { 821 AcpiNVDIMMState *state = opaque; 822 NvdimmDsmIn *in; 823 hwaddr dsm_mem_addr = val; 824 825 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr); 826 827 /* 828 * The DSM memory is mapped to guest address space so an evil guest 829 * can change its content while we are doing DSM emulation. Avoid 830 * this by copying DSM memory to QEMU local memory. 831 */ 832 in = g_new(NvdimmDsmIn, 1); 833 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); 834 835 le32_to_cpus(&in->revision); 836 le32_to_cpus(&in->function); 837 le32_to_cpus(&in->handle); 838 839 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision, 840 in->handle, in->function); 841 842 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { 843 nvdimm_debug("Revision %#x is not supported, expect %#x.\n", 844 in->revision, 0x1); 845 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 846 goto exit; 847 } 848 849 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { 850 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr); 851 goto exit; 852 } 853 854 /* Handle 0 is reserved for NVDIMM Root Device. */ 855 if (!in->handle) { 856 nvdimm_dsm_root(in, dsm_mem_addr); 857 goto exit; 858 } 859 860 nvdimm_dsm_device(in, dsm_mem_addr); 861 862 exit: 863 g_free(in); 864 } 865 866 static const MemoryRegionOps nvdimm_dsm_ops = { 867 .read = nvdimm_dsm_read, 868 .write = nvdimm_dsm_write, 869 .endianness = DEVICE_LITTLE_ENDIAN, 870 .valid = { 871 .min_access_size = 4, 872 .max_access_size = 4, 873 }, 874 }; 875 876 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) 877 { 878 if (dev->hotplugged) { 879 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); 880 } 881 } 882 883 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io, 884 FWCfgState *fw_cfg, Object *owner) 885 { 886 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, 887 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN); 888 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr); 889 890 state->dsm_mem = g_array_new(false, true /* clear */, 1); 891 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); 892 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, 893 state->dsm_mem->len); 894 895 nvdimm_init_fit_buffer(&state->fit_buf); 896 } 897 898 #define NVDIMM_COMMON_DSM "NCAL" 899 #define NVDIMM_ACPI_MEM_ADDR "MEMA" 900 901 #define NVDIMM_DSM_MEMORY "NRAM" 902 #define NVDIMM_DSM_IOPORT "NPIO" 903 904 #define NVDIMM_DSM_NOTIFY "NTFI" 905 #define NVDIMM_DSM_HANDLE "HDLE" 906 #define NVDIMM_DSM_REVISION "REVS" 907 #define NVDIMM_DSM_FUNCTION "FUNC" 908 #define NVDIMM_DSM_ARG3 "FARG" 909 910 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" 911 #define NVDIMM_DSM_OUT_BUF "ODAT" 912 913 #define NVDIMM_DSM_RFIT_STATUS "RSTA" 914 915 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" 916 917 static void nvdimm_build_common_dsm(Aml *dev) 918 { 919 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; 920 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; 921 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; 922 uint8_t byte_list[1]; 923 924 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); 925 uuid = aml_arg(0); 926 function = aml_arg(2); 927 handle = aml_arg(4); 928 dsm_mem = aml_local(6); 929 dsm_out_buf = aml_local(7); 930 931 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); 932 933 /* map DSM memory and IO into ACPI namespace. */ 934 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO, 935 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN)); 936 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, 937 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); 938 939 /* 940 * DSM notifier: 941 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to 942 * emulate the access. 943 * 944 * It is the IO port so that accessing them will cause VM-exit, the 945 * control will be transferred to QEMU. 946 */ 947 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, 948 AML_PRESERVE); 949 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, 950 sizeof(uint32_t) * BITS_PER_BYTE)); 951 aml_append(method, field); 952 953 /* 954 * DSM input: 955 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call 956 * happens on NVDIMM Root Device. 957 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. 958 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. 959 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package 960 * containing function-specific arguments. 961 * 962 * They are RAM mapping on host so that these accesses never cause 963 * VM-EXIT. 964 */ 965 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 966 AML_PRESERVE); 967 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, 968 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); 969 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, 970 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); 971 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, 972 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); 973 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, 974 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); 975 aml_append(method, field); 976 977 /* 978 * DSM output: 979 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. 980 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. 981 * 982 * Since the page is reused by both input and out, the input data 983 * will be lost after storing new result into ODAT so we should fetch 984 * all the input data before writing the result. 985 */ 986 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 987 AML_PRESERVE); 988 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, 989 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); 990 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, 991 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); 992 aml_append(method, field); 993 994 /* 995 * do not support any method if DSM memory address has not been 996 * patched. 997 */ 998 unpatched = aml_equal(dsm_mem, aml_int(0x0)); 999 1000 expected_uuid = aml_local(0); 1001 1002 ifctx = aml_if(aml_equal(handle, aml_int(0x0))); 1003 aml_append(ifctx, aml_store( 1004 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") 1005 /* UUID for NVDIMM Root Device */, expected_uuid)); 1006 aml_append(method, ifctx); 1007 elsectx = aml_else(); 1008 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); 1009 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID 1010 /* UUID for QEMU internal use */), expected_uuid)); 1011 aml_append(elsectx, ifctx); 1012 elsectx2 = aml_else(); 1013 aml_append(elsectx2, aml_store( 1014 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") 1015 /* UUID for NVDIMM Devices */, expected_uuid)); 1016 aml_append(elsectx, elsectx2); 1017 aml_append(method, elsectx); 1018 1019 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); 1020 1021 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); 1022 1023 /* 1024 * function 0 is called to inquire what functions are supported by 1025 * OSPM 1026 */ 1027 ifctx = aml_if(aml_equal(function, aml_int(0))); 1028 byte_list[0] = 0 /* No function Supported */; 1029 aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); 1030 aml_append(unsupport, ifctx); 1031 1032 /* No function is supported yet. */ 1033 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT; 1034 aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); 1035 aml_append(method, unsupport); 1036 1037 /* 1038 * The HDLE indicates the DSM function is issued from which device, 1039 * it reserves 0 for root device and is the handle for NVDIMM devices. 1040 * See the comments in nvdimm_slot_to_handle(). 1041 */ 1042 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); 1043 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); 1044 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION))); 1045 1046 /* 1047 * The fourth parameter (Arg3) of _DSM is a package which contains 1048 * a buffer, the layout of the buffer is specified by UUID (Arg0), 1049 * Revision ID (Arg1) and Function Index (Arg2) which are documented 1050 * in the DSM Spec. 1051 */ 1052 pckg = aml_arg(3); 1053 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), 1054 aml_int(4 /* Package */)) /* It is a Package? */, 1055 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, 1056 NULL)); 1057 1058 pckg_index = aml_local(2); 1059 pckg_buf = aml_local(3); 1060 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); 1061 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); 1062 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); 1063 aml_append(method, ifctx); 1064 1065 /* 1066 * tell QEMU about the real address of DSM memory, then QEMU 1067 * gets the control and fills the result in DSM memory. 1068 */ 1069 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); 1070 1071 dsm_out_buf_size = aml_local(1); 1072 /* RLEN is not included in the payload returned to guest. */ 1073 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), 1074 aml_int(4), dsm_out_buf_size)); 1075 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), 1076 dsm_out_buf_size)); 1077 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), 1078 aml_int(0), dsm_out_buf_size, "OBUF")); 1079 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"), 1080 dsm_out_buf)); 1081 aml_append(method, aml_return(dsm_out_buf)); 1082 aml_append(dev, method); 1083 } 1084 1085 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) 1086 { 1087 Aml *method; 1088 1089 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 1090 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), 1091 aml_arg(1), aml_arg(2), aml_arg(3), 1092 aml_int(handle)))); 1093 aml_append(dev, method); 1094 } 1095 1096 static void nvdimm_build_fit(Aml *dev) 1097 { 1098 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; 1099 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; 1100 1101 buf = aml_local(0); 1102 buf_size = aml_local(1); 1103 fit = aml_local(2); 1104 1105 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0))); 1106 1107 /* build helper function, RFIT. */ 1108 method = aml_method("RFIT", 1, AML_SERIALIZED); 1109 aml_append(method, aml_name_decl("OFST", aml_int(0))); 1110 1111 /* prepare input package. */ 1112 pkg = aml_package(1); 1113 aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); 1114 aml_append(pkg, aml_name("OFST")); 1115 1116 /* call Read_FIT function. */ 1117 call_result = aml_call5(NVDIMM_COMMON_DSM, 1118 aml_touuid(NVDIMM_QEMU_RSVD_UUID), 1119 aml_int(1) /* Revision 1 */, 1120 aml_int(0x1) /* Read FIT */, 1121 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); 1122 aml_append(method, aml_store(call_result, buf)); 1123 1124 /* handle _DSM result. */ 1125 aml_append(method, aml_create_dword_field(buf, 1126 aml_int(0) /* offset at byte 0 */, "STAU")); 1127 1128 aml_append(method, aml_store(aml_name("STAU"), 1129 aml_name(NVDIMM_DSM_RFIT_STATUS))); 1130 1131 /* if something is wrong during _DSM. */ 1132 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS), 1133 aml_name("STAU")); 1134 ifctx = aml_if(aml_lnot(ifcond)); 1135 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1136 aml_append(method, ifctx); 1137 1138 aml_append(method, aml_store(aml_sizeof(buf), buf_size)); 1139 aml_append(method, aml_subtract(buf_size, 1140 aml_int(4) /* the size of "STAU" */, 1141 buf_size)); 1142 1143 /* if we read the end of fit. */ 1144 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1145 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1146 aml_append(method, ifctx); 1147 1148 aml_append(method, aml_create_field(buf, 1149 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ 1150 aml_shiftleft(buf_size, aml_int(3)), "BUFF")); 1151 aml_append(method, aml_return(aml_name("BUFF"))); 1152 aml_append(dev, method); 1153 1154 /* build _FIT. */ 1155 method = aml_method("_FIT", 0, AML_SERIALIZED); 1156 offset = aml_local(3); 1157 1158 aml_append(method, aml_store(aml_buffer(0, NULL), fit)); 1159 aml_append(method, aml_store(aml_int(0), offset)); 1160 1161 whilectx = aml_while(aml_int(1)); 1162 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); 1163 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); 1164 1165 /* 1166 * if fit buffer was changed during RFIT, read from the beginning 1167 * again. 1168 */ 1169 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), 1170 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED))); 1171 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); 1172 aml_append(ifctx, aml_store(aml_int(0), offset)); 1173 aml_append(whilectx, ifctx); 1174 1175 elsectx = aml_else(); 1176 1177 /* finish fit read if no data is read out. */ 1178 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1179 aml_append(ifctx, aml_return(fit)); 1180 aml_append(elsectx, ifctx); 1181 1182 /* update the offset. */ 1183 aml_append(elsectx, aml_add(offset, buf_size, offset)); 1184 /* append the data we read out to the fit buffer. */ 1185 aml_append(elsectx, aml_concatenate(fit, buf, fit)); 1186 aml_append(whilectx, elsectx); 1187 aml_append(method, whilectx); 1188 1189 aml_append(dev, method); 1190 } 1191 1192 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) 1193 { 1194 uint32_t slot; 1195 1196 for (slot = 0; slot < ram_slots; slot++) { 1197 uint32_t handle = nvdimm_slot_to_handle(slot); 1198 Aml *nvdimm_dev; 1199 1200 nvdimm_dev = aml_device("NV%02X", slot); 1201 1202 /* 1203 * ACPI 6.0: 9.20 NVDIMM Devices: 1204 * 1205 * _ADR object that is used to supply OSPM with unique address 1206 * of the NVDIMM device. This is done by returning the NFIT Device 1207 * handle that is used to identify the associated entries in ACPI 1208 * table NFIT or _FIT. 1209 */ 1210 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); 1211 1212 nvdimm_build_device_dsm(nvdimm_dev, handle); 1213 aml_append(root_dev, nvdimm_dev); 1214 } 1215 } 1216 1217 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, 1218 BIOSLinker *linker, GArray *dsm_dma_arrea, 1219 uint32_t ram_slots) 1220 { 1221 Aml *ssdt, *sb_scope, *dev; 1222 int mem_addr_offset, nvdimm_ssdt; 1223 1224 acpi_add_table(table_offsets, table_data); 1225 1226 ssdt = init_aml_allocator(); 1227 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); 1228 1229 sb_scope = aml_scope("\\_SB"); 1230 1231 dev = aml_device("NVDR"); 1232 1233 /* 1234 * ACPI 6.0: 9.20 NVDIMM Devices: 1235 * 1236 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root 1237 * NVDIMM interface device. Platform firmware is required to contain one 1238 * such device in _SB scope if NVDIMMs support is exposed by platform to 1239 * OSPM. 1240 * For each NVDIMM present or intended to be supported by platform, 1241 * platform firmware also exposes an ACPI Namespace Device under the 1242 * root device. 1243 */ 1244 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); 1245 1246 nvdimm_build_common_dsm(dev); 1247 1248 /* 0 is reserved for root device. */ 1249 nvdimm_build_device_dsm(dev, 0); 1250 nvdimm_build_fit(dev); 1251 1252 nvdimm_build_nvdimm_devices(dev, ram_slots); 1253 1254 aml_append(sb_scope, dev); 1255 aml_append(ssdt, sb_scope); 1256 1257 nvdimm_ssdt = table_data->len; 1258 1259 /* copy AML table into ACPI tables blob and patch header there */ 1260 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); 1261 mem_addr_offset = build_append_named_dword(table_data, 1262 NVDIMM_ACPI_MEM_ADDR); 1263 1264 bios_linker_loader_alloc(linker, 1265 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea, 1266 sizeof(NvdimmDsmIn), false /* high memory */); 1267 bios_linker_loader_add_pointer(linker, 1268 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), 1269 NVDIMM_DSM_MEM_FILE, 0); 1270 build_header(linker, table_data, 1271 (void *)(table_data->data + nvdimm_ssdt), 1272 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM"); 1273 free_aml_allocator(); 1274 } 1275 1276 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, 1277 BIOSLinker *linker, AcpiNVDIMMState *state, 1278 uint32_t ram_slots) 1279 { 1280 GSList *device_list; 1281 1282 /* no nvdimm device can be plugged. */ 1283 if (!ram_slots) { 1284 return; 1285 } 1286 1287 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem, 1288 ram_slots); 1289 1290 device_list = nvdimm_get_device_list(); 1291 /* no NVDIMM device is plugged. */ 1292 if (!device_list) { 1293 return; 1294 } 1295 1296 nvdimm_build_nfit(state, table_offsets, table_data, linker); 1297 g_slist_free(device_list); 1298 } 1299