1 /* 2 * NVDIMM ACPI Implementation 3 * 4 * Copyright(C) 2015 Intel Corporation. 5 * 6 * Author: 7 * Xiao Guangrong <guangrong.xiao@linux.intel.com> 8 * 9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 10 * and the DSM specification can be found at: 11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 12 * 13 * Currently, it only supports PMEM Virtualization. 14 * 15 * This library is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU Lesser General Public 17 * License as published by the Free Software Foundation; either 18 * version 2.1 of the License, or (at your option) any later version. 19 * 20 * This library is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * Lesser General Public License for more details. 24 * 25 * You should have received a copy of the GNU Lesser General Public 26 * License along with this library; if not, see <http://www.gnu.org/licenses/> 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/uuid.h" 31 #include "qapi/error.h" 32 #include "hw/acpi/acpi.h" 33 #include "hw/acpi/aml-build.h" 34 #include "hw/acpi/bios-linker-loader.h" 35 #include "hw/nvram/fw_cfg.h" 36 #include "hw/mem/nvdimm.h" 37 #include "qemu/nvdimm-utils.h" 38 39 /* 40 * define Byte Addressable Persistent Memory (PM) Region according to 41 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. 42 */ 43 static const uint8_t nvdimm_nfit_spa_uuid[] = 44 UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 45 0x18, 0xb7, 0x8c, 0xdb); 46 47 /* 48 * NVDIMM Firmware Interface Table 49 * @signature: "NFIT" 50 * 51 * It provides information that allows OSPM to enumerate NVDIMM present in 52 * the platform and associate system physical address ranges created by the 53 * NVDIMMs. 54 * 55 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 56 */ 57 struct NvdimmNfitHeader { 58 ACPI_TABLE_HEADER_DEF 59 uint32_t reserved; 60 } QEMU_PACKED; 61 typedef struct NvdimmNfitHeader NvdimmNfitHeader; 62 63 /* 64 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware 65 * Interface Table (NFIT). 66 */ 67 68 /* 69 * System Physical Address Range Structure 70 * 71 * It describes the system physical address ranges occupied by NVDIMMs and 72 * the types of the regions. 73 */ 74 struct NvdimmNfitSpa { 75 uint16_t type; 76 uint16_t length; 77 uint16_t spa_index; 78 uint16_t flags; 79 uint32_t reserved; 80 uint32_t proximity_domain; 81 uint8_t type_guid[16]; 82 uint64_t spa_base; 83 uint64_t spa_length; 84 uint64_t mem_attr; 85 } QEMU_PACKED; 86 typedef struct NvdimmNfitSpa NvdimmNfitSpa; 87 88 /* 89 * Memory Device to System Physical Address Range Mapping Structure 90 * 91 * It enables identifying each NVDIMM region and the corresponding SPA 92 * describing the memory interleave 93 */ 94 struct NvdimmNfitMemDev { 95 uint16_t type; 96 uint16_t length; 97 uint32_t nfit_handle; 98 uint16_t phys_id; 99 uint16_t region_id; 100 uint16_t spa_index; 101 uint16_t dcr_index; 102 uint64_t region_len; 103 uint64_t region_offset; 104 uint64_t region_dpa; 105 uint16_t interleave_index; 106 uint16_t interleave_ways; 107 uint16_t flags; 108 uint16_t reserved; 109 } QEMU_PACKED; 110 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; 111 112 #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3) 113 114 /* 115 * NVDIMM Control Region Structure 116 * 117 * It describes the NVDIMM and if applicable, Block Control Window. 118 */ 119 struct NvdimmNfitControlRegion { 120 uint16_t type; 121 uint16_t length; 122 uint16_t dcr_index; 123 uint16_t vendor_id; 124 uint16_t device_id; 125 uint16_t revision_id; 126 uint16_t sub_vendor_id; 127 uint16_t sub_device_id; 128 uint16_t sub_revision_id; 129 uint8_t reserved[6]; 130 uint32_t serial_number; 131 uint16_t fic; 132 uint16_t num_bcw; 133 uint64_t bcw_size; 134 uint64_t cmd_offset; 135 uint64_t cmd_size; 136 uint64_t status_offset; 137 uint64_t status_size; 138 uint16_t flags; 139 uint8_t reserved2[6]; 140 } QEMU_PACKED; 141 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; 142 143 /* 144 * NVDIMM Platform Capabilities Structure 145 * 146 * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017 147 */ 148 struct NvdimmNfitPlatformCaps { 149 uint16_t type; 150 uint16_t length; 151 uint8_t highest_cap; 152 uint8_t reserved[3]; 153 uint32_t capabilities; 154 uint8_t reserved2[4]; 155 } QEMU_PACKED; 156 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps; 157 158 /* 159 * Module serial number is a unique number for each device. We use the 160 * slot id of NVDIMM device to generate this number so that each device 161 * associates with a different number. 162 * 163 * 0x123456 is a magic number we arbitrarily chose. 164 */ 165 static uint32_t nvdimm_slot_to_sn(int slot) 166 { 167 return 0x123456 + slot; 168 } 169 170 /* 171 * handle is used to uniquely associate nfit_memdev structure with NVDIMM 172 * ACPI device - nfit_memdev.nfit_handle matches with the value returned 173 * by ACPI device _ADR method. 174 * 175 * We generate the handle with the slot id of NVDIMM device and reserve 176 * 0 for NVDIMM root device. 177 */ 178 static uint32_t nvdimm_slot_to_handle(int slot) 179 { 180 return slot + 1; 181 } 182 183 /* 184 * index uniquely identifies the structure, 0 is reserved which indicates 185 * that the structure is not valid or the associated structure is not 186 * present. 187 * 188 * Each NVDIMM device needs two indexes, one for nfit_spa and another for 189 * nfit_dc which are generated by the slot id of NVDIMM device. 190 */ 191 static uint16_t nvdimm_slot_to_spa_index(int slot) 192 { 193 return (slot + 1) << 1; 194 } 195 196 /* See the comments of nvdimm_slot_to_spa_index(). */ 197 static uint32_t nvdimm_slot_to_dcr_index(int slot) 198 { 199 return nvdimm_slot_to_spa_index(slot) + 1; 200 } 201 202 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) 203 { 204 NVDIMMDevice *nvdimm = NULL; 205 GSList *list, *device_list = nvdimm_get_device_list(); 206 207 for (list = device_list; list; list = list->next) { 208 NVDIMMDevice *nvd = list->data; 209 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, 210 NULL); 211 212 if (nvdimm_slot_to_handle(slot) == handle) { 213 nvdimm = nvd; 214 break; 215 } 216 } 217 218 g_slist_free(device_list); 219 return nvdimm; 220 } 221 222 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ 223 static void 224 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) 225 { 226 NvdimmNfitSpa *nfit_spa; 227 uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP, 228 NULL); 229 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, 230 NULL); 231 uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, 232 NULL); 233 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 234 NULL); 235 236 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); 237 238 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range 239 Structure */); 240 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); 241 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 242 243 /* 244 * Control region is strict as all the device info, such as SN, index, 245 * is associated with slot id. 246 */ 247 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for 248 management during hot add/online 249 operation */ | 250 2 /* Data in Proximity Domain field is 251 valid*/); 252 253 /* NUMA node. */ 254 nfit_spa->proximity_domain = cpu_to_le32(node); 255 /* the region reported as PMEM. */ 256 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, 257 sizeof(nvdimm_nfit_spa_uuid)); 258 259 nfit_spa->spa_base = cpu_to_le64(addr); 260 nfit_spa->spa_length = cpu_to_le64(size); 261 262 /* It is the PMEM and can be cached as writeback. */ 263 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 264 0x8000ULL /* EFI_MEMORY_NV */); 265 } 266 267 /* 268 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping 269 * Structure 270 */ 271 static void 272 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) 273 { 274 NvdimmNfitMemDev *nfit_memdev; 275 NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev)); 276 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, 277 NULL); 278 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 279 NULL); 280 uint32_t handle = nvdimm_slot_to_handle(slot); 281 282 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); 283 284 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address 285 Range Map Structure*/); 286 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); 287 nfit_memdev->nfit_handle = cpu_to_le32(handle); 288 289 /* 290 * associate memory device with System Physical Address Range 291 * Structure. 292 */ 293 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 294 /* associate memory device with Control Region Structure. */ 295 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 296 297 /* The memory region on the device. */ 298 nfit_memdev->region_len = cpu_to_le64(size); 299 /* The device address starts from 0. */ 300 nfit_memdev->region_dpa = cpu_to_le64(0); 301 302 /* Only one interleave for PMEM. */ 303 nfit_memdev->interleave_ways = cpu_to_le16(1); 304 305 if (nvdimm->unarmed) { 306 nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED); 307 } 308 } 309 310 /* 311 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. 312 */ 313 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) 314 { 315 NvdimmNfitControlRegion *nfit_dcr; 316 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 317 NULL); 318 uint32_t sn = nvdimm_slot_to_sn(slot); 319 320 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); 321 322 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); 323 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); 324 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 325 326 /* vendor: Intel. */ 327 nfit_dcr->vendor_id = cpu_to_le16(0x8086); 328 nfit_dcr->device_id = cpu_to_le16(1); 329 330 /* The _DSM method is following Intel's DSM specification. */ 331 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported 332 in ACPI 6.0 is 1. */); 333 nfit_dcr->serial_number = cpu_to_le32(sn); 334 nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code: 335 Byte addressable, no energy backed. 336 See ACPI 6.2, sect 5.2.25.6 and 337 JEDEC Annex L Release 3. */); 338 } 339 340 /* 341 * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure 342 */ 343 static void 344 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities) 345 { 346 NvdimmNfitPlatformCaps *nfit_caps; 347 348 nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps)); 349 350 nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */); 351 nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps)); 352 nfit_caps->highest_cap = 31 - clz32(capabilities); 353 nfit_caps->capabilities = cpu_to_le32(capabilities); 354 } 355 356 static GArray *nvdimm_build_device_structure(NVDIMMState *state) 357 { 358 GSList *device_list = nvdimm_get_device_list(); 359 GArray *structures = g_array_new(false, true /* clear */, 1); 360 361 for (; device_list; device_list = device_list->next) { 362 DeviceState *dev = device_list->data; 363 364 /* build System Physical Address Range Structure. */ 365 nvdimm_build_structure_spa(structures, dev); 366 367 /* 368 * build Memory Device to System Physical Address Range Mapping 369 * Structure. 370 */ 371 nvdimm_build_structure_memdev(structures, dev); 372 373 /* build NVDIMM Control Region Structure. */ 374 nvdimm_build_structure_dcr(structures, dev); 375 } 376 g_slist_free(device_list); 377 378 if (state->persistence) { 379 nvdimm_build_structure_caps(structures, state->persistence); 380 } 381 382 return structures; 383 } 384 385 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) 386 { 387 fit_buf->fit = g_array_new(false, true /* clear */, 1); 388 } 389 390 static void nvdimm_build_fit_buffer(NVDIMMState *state) 391 { 392 NvdimmFitBuffer *fit_buf = &state->fit_buf; 393 394 g_array_free(fit_buf->fit, true); 395 fit_buf->fit = nvdimm_build_device_structure(state); 396 fit_buf->dirty = true; 397 } 398 399 void nvdimm_plug(NVDIMMState *state) 400 { 401 nvdimm_build_fit_buffer(state); 402 } 403 404 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets, 405 GArray *table_data, BIOSLinker *linker, 406 const char *oem_id, const char *oem_table_id) 407 { 408 NvdimmFitBuffer *fit_buf = &state->fit_buf; 409 unsigned int header; 410 411 acpi_add_table(table_offsets, table_data); 412 413 /* NFIT header. */ 414 header = table_data->len; 415 acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); 416 /* NVDIMM device structures. */ 417 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); 418 419 build_header(linker, table_data, 420 (void *)(table_data->data + header), "NFIT", 421 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, oem_id, 422 oem_table_id); 423 } 424 425 #define NVDIMM_DSM_MEMORY_SIZE 4096 426 427 struct NvdimmDsmIn { 428 uint32_t handle; 429 uint32_t revision; 430 uint32_t function; 431 /* the remaining size in the page is used by arg3. */ 432 union { 433 uint8_t arg3[4084]; 434 }; 435 } QEMU_PACKED; 436 typedef struct NvdimmDsmIn NvdimmDsmIn; 437 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE); 438 439 struct NvdimmDsmOut { 440 /* the size of buffer filled by QEMU. */ 441 uint32_t len; 442 uint8_t data[4092]; 443 } QEMU_PACKED; 444 typedef struct NvdimmDsmOut NvdimmDsmOut; 445 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE); 446 447 struct NvdimmDsmFunc0Out { 448 /* the size of buffer filled by QEMU. */ 449 uint32_t len; 450 uint32_t supported_func; 451 } QEMU_PACKED; 452 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; 453 454 struct NvdimmDsmFuncNoPayloadOut { 455 /* the size of buffer filled by QEMU. */ 456 uint32_t len; 457 uint32_t func_ret_status; 458 } QEMU_PACKED; 459 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; 460 461 struct NvdimmFuncGetLabelSizeOut { 462 /* the size of buffer filled by QEMU. */ 463 uint32_t len; 464 uint32_t func_ret_status; /* return status code. */ 465 uint32_t label_size; /* the size of label data area. */ 466 /* 467 * Maximum size of the namespace label data length supported by 468 * the platform in Get/Set Namespace Label Data functions. 469 */ 470 uint32_t max_xfer; 471 } QEMU_PACKED; 472 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; 473 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE); 474 475 struct NvdimmFuncGetLabelDataIn { 476 uint32_t offset; /* the offset in the namespace label data area. */ 477 uint32_t length; /* the size of data is to be read via the function. */ 478 } QEMU_PACKED; 479 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; 480 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + 481 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 482 483 struct NvdimmFuncGetLabelDataOut { 484 /* the size of buffer filled by QEMU. */ 485 uint32_t len; 486 uint32_t func_ret_status; /* return status code. */ 487 uint8_t out_buf[]; /* the data got via Get Namesapce Label function. */ 488 } QEMU_PACKED; 489 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; 490 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE); 491 492 struct NvdimmFuncSetLabelDataIn { 493 uint32_t offset; /* the offset in the namespace label data area. */ 494 uint32_t length; /* the size of data is to be written via the function. */ 495 uint8_t in_buf[]; /* the data written to label data area. */ 496 } QEMU_PACKED; 497 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; 498 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + 499 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 500 501 struct NvdimmFuncReadFITIn { 502 uint32_t offset; /* the offset into FIT buffer. */ 503 } QEMU_PACKED; 504 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; 505 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + 506 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 507 508 struct NvdimmFuncReadFITOut { 509 /* the size of buffer filled by QEMU. */ 510 uint32_t len; 511 uint32_t func_ret_status; /* return status code. */ 512 uint8_t fit[]; /* the FIT data. */ 513 } QEMU_PACKED; 514 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; 515 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE); 516 517 static void 518 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) 519 { 520 NvdimmDsmFunc0Out func0 = { 521 .len = cpu_to_le32(sizeof(func0)), 522 .supported_func = cpu_to_le32(supported_func), 523 }; 524 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); 525 } 526 527 static void 528 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) 529 { 530 NvdimmDsmFuncNoPayloadOut out = { 531 .len = cpu_to_le32(sizeof(out)), 532 .func_ret_status = cpu_to_le32(func_ret_status), 533 }; 534 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); 535 } 536 537 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */ 538 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */ 539 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */ 540 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */ 541 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */ 542 543 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 544 545 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ 546 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in, 547 hwaddr dsm_mem_addr) 548 { 549 NvdimmFitBuffer *fit_buf = &state->fit_buf; 550 NvdimmFuncReadFITIn *read_fit; 551 NvdimmFuncReadFITOut *read_fit_out; 552 GArray *fit; 553 uint32_t read_len = 0, func_ret_status; 554 int size; 555 556 read_fit = (NvdimmFuncReadFITIn *)in->arg3; 557 read_fit->offset = le32_to_cpu(read_fit->offset); 558 559 fit = fit_buf->fit; 560 561 nvdimm_debug("Read FIT: offset 0x%x FIT size 0x%x Dirty %s.\n", 562 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No"); 563 564 if (read_fit->offset > fit->len) { 565 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID; 566 goto exit; 567 } 568 569 /* It is the first time to read FIT. */ 570 if (!read_fit->offset) { 571 fit_buf->dirty = false; 572 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ 573 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED; 574 goto exit; 575 } 576 577 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS; 578 read_len = MIN(fit->len - read_fit->offset, 579 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut)); 580 581 exit: 582 size = sizeof(NvdimmFuncReadFITOut) + read_len; 583 read_fit_out = g_malloc(size); 584 585 read_fit_out->len = cpu_to_le32(size); 586 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); 587 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); 588 589 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); 590 591 g_free(read_fit_out); 592 } 593 594 static void 595 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state, 596 NvdimmDsmIn *in, hwaddr dsm_mem_addr) 597 { 598 switch (in->function) { 599 case 0x0: 600 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); 601 return; 602 case 0x1 /* Read FIT */: 603 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); 604 return; 605 } 606 607 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 608 } 609 610 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 611 { 612 /* 613 * function 0 is called to inquire which functions are supported by 614 * OSPM 615 */ 616 if (!in->function) { 617 nvdimm_dsm_function0(0 /* No function supported other than 618 function 0 */, dsm_mem_addr); 619 return; 620 } 621 622 /* No function except function 0 is supported yet. */ 623 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 624 } 625 626 /* 627 * the max transfer size is the max size transferred by both a 628 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' 629 * function. 630 */ 631 static uint32_t nvdimm_get_max_xfer_label_size(void) 632 { 633 uint32_t max_get_size, max_set_size, dsm_memory_size; 634 635 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE; 636 637 /* 638 * the max data ACPI can read one time which is transferred by 639 * the response of 'Get Namespace Label Data' function. 640 */ 641 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); 642 643 /* 644 * the max data ACPI can write one time which is transferred by 645 * 'Set Namespace Label Data' function. 646 */ 647 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - 648 sizeof(NvdimmFuncSetLabelDataIn); 649 650 return MIN(max_get_size, max_set_size); 651 } 652 653 /* 654 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). 655 * 656 * It gets the size of Namespace Label data area and the max data size 657 * that Get/Set Namespace Label Data functions can transfer. 658 */ 659 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) 660 { 661 NvdimmFuncGetLabelSizeOut label_size_out = { 662 .len = cpu_to_le32(sizeof(label_size_out)), 663 }; 664 uint32_t label_size, mxfer; 665 666 label_size = nvdimm->label_size; 667 mxfer = nvdimm_get_max_xfer_label_size(); 668 669 nvdimm_debug("label_size 0x%x, max_xfer 0x%x.\n", label_size, mxfer); 670 671 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); 672 label_size_out.label_size = cpu_to_le32(label_size); 673 label_size_out.max_xfer = cpu_to_le32(mxfer); 674 675 cpu_physical_memory_write(dsm_mem_addr, &label_size_out, 676 sizeof(label_size_out)); 677 } 678 679 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, 680 uint32_t offset, uint32_t length) 681 { 682 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID; 683 684 if (offset + length < offset) { 685 nvdimm_debug("offset 0x%x + length 0x%x is overflow.\n", offset, 686 length); 687 return ret; 688 } 689 690 if (nvdimm->label_size < offset + length) { 691 nvdimm_debug("position 0x%x is beyond label data (len = %" PRIx64 ").\n", 692 offset + length, nvdimm->label_size); 693 return ret; 694 } 695 696 if (length > nvdimm_get_max_xfer_label_size()) { 697 nvdimm_debug("length (0x%x) is larger than max_xfer (0x%x).\n", 698 length, nvdimm_get_max_xfer_label_size()); 699 return ret; 700 } 701 702 return NVDIMM_DSM_RET_STATUS_SUCCESS; 703 } 704 705 /* 706 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). 707 */ 708 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 709 hwaddr dsm_mem_addr) 710 { 711 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 712 NvdimmFuncGetLabelDataIn *get_label_data; 713 NvdimmFuncGetLabelDataOut *get_label_data_out; 714 uint32_t status; 715 int size; 716 717 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; 718 get_label_data->offset = le32_to_cpu(get_label_data->offset); 719 get_label_data->length = le32_to_cpu(get_label_data->length); 720 721 nvdimm_debug("Read Label Data: offset 0x%x length 0x%x.\n", 722 get_label_data->offset, get_label_data->length); 723 724 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, 725 get_label_data->length); 726 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { 727 nvdimm_dsm_no_payload(status, dsm_mem_addr); 728 return; 729 } 730 731 size = sizeof(*get_label_data_out) + get_label_data->length; 732 assert(size <= NVDIMM_DSM_MEMORY_SIZE); 733 get_label_data_out = g_malloc(size); 734 735 get_label_data_out->len = cpu_to_le32(size); 736 get_label_data_out->func_ret_status = 737 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); 738 nvc->read_label_data(nvdimm, get_label_data_out->out_buf, 739 get_label_data->length, get_label_data->offset); 740 741 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); 742 g_free(get_label_data_out); 743 } 744 745 /* 746 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). 747 */ 748 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 749 hwaddr dsm_mem_addr) 750 { 751 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 752 NvdimmFuncSetLabelDataIn *set_label_data; 753 uint32_t status; 754 755 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; 756 757 set_label_data->offset = le32_to_cpu(set_label_data->offset); 758 set_label_data->length = le32_to_cpu(set_label_data->length); 759 760 nvdimm_debug("Write Label Data: offset 0x%x length 0x%x.\n", 761 set_label_data->offset, set_label_data->length); 762 763 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, 764 set_label_data->length); 765 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { 766 nvdimm_dsm_no_payload(status, dsm_mem_addr); 767 return; 768 } 769 770 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) + 771 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE); 772 773 nvc->write_label_data(nvdimm, set_label_data->in_buf, 774 set_label_data->length, set_label_data->offset); 775 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr); 776 } 777 778 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 779 { 780 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); 781 782 /* See the comments in nvdimm_dsm_root(). */ 783 if (!in->function) { 784 uint32_t supported_func = 0; 785 786 if (nvdimm && nvdimm->label_size) { 787 supported_func |= 0x1 /* Bit 0 indicates whether there is 788 support for any functions other 789 than function 0. */ | 790 1 << 4 /* Get Namespace Label Size */ | 791 1 << 5 /* Get Namespace Label Data */ | 792 1 << 6 /* Set Namespace Label Data */; 793 } 794 nvdimm_dsm_function0(supported_func, dsm_mem_addr); 795 return; 796 } 797 798 if (!nvdimm) { 799 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV, 800 dsm_mem_addr); 801 return; 802 } 803 804 /* Encode DSM function according to DSM Spec Rev1. */ 805 switch (in->function) { 806 case 4 /* Get Namespace Label Size */: 807 if (nvdimm->label_size) { 808 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); 809 return; 810 } 811 break; 812 case 5 /* Get Namespace Label Data */: 813 if (nvdimm->label_size) { 814 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); 815 return; 816 } 817 break; 818 case 0x6 /* Set Namespace Label Data */: 819 if (nvdimm->label_size) { 820 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); 821 return; 822 } 823 break; 824 } 825 826 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 827 } 828 829 static uint64_t 830 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) 831 { 832 nvdimm_debug("BUG: we never read _DSM IO Port.\n"); 833 return 0; 834 } 835 836 static void 837 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 838 { 839 NVDIMMState *state = opaque; 840 NvdimmDsmIn *in; 841 hwaddr dsm_mem_addr = val; 842 843 nvdimm_debug("dsm memory address 0x%" HWADDR_PRIx ".\n", dsm_mem_addr); 844 845 /* 846 * The DSM memory is mapped to guest address space so an evil guest 847 * can change its content while we are doing DSM emulation. Avoid 848 * this by copying DSM memory to QEMU local memory. 849 */ 850 in = g_new(NvdimmDsmIn, 1); 851 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); 852 853 in->revision = le32_to_cpu(in->revision); 854 in->function = le32_to_cpu(in->function); 855 in->handle = le32_to_cpu(in->handle); 856 857 nvdimm_debug("Revision 0x%x Handler 0x%x Function 0x%x.\n", in->revision, 858 in->handle, in->function); 859 860 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { 861 nvdimm_debug("Revision 0x%x is not supported, expect 0x%x.\n", 862 in->revision, 0x1); 863 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 864 goto exit; 865 } 866 867 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { 868 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr); 869 goto exit; 870 } 871 872 /* Handle 0 is reserved for NVDIMM Root Device. */ 873 if (!in->handle) { 874 nvdimm_dsm_root(in, dsm_mem_addr); 875 goto exit; 876 } 877 878 nvdimm_dsm_device(in, dsm_mem_addr); 879 880 exit: 881 g_free(in); 882 } 883 884 static const MemoryRegionOps nvdimm_dsm_ops = { 885 .read = nvdimm_dsm_read, 886 .write = nvdimm_dsm_write, 887 .endianness = DEVICE_LITTLE_ENDIAN, 888 .valid = { 889 .min_access_size = 4, 890 .max_access_size = 4, 891 }, 892 }; 893 894 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) 895 { 896 if (dev->hotplugged) { 897 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); 898 } 899 } 900 901 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io, 902 struct AcpiGenericAddress dsm_io, 903 FWCfgState *fw_cfg, Object *owner) 904 { 905 state->dsm_io = dsm_io; 906 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, 907 "nvdimm-acpi-io", dsm_io.bit_width >> 3); 908 memory_region_add_subregion(io, dsm_io.address, &state->io_mr); 909 910 state->dsm_mem = g_array_new(false, true /* clear */, 1); 911 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); 912 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, 913 state->dsm_mem->len); 914 915 nvdimm_init_fit_buffer(&state->fit_buf); 916 } 917 918 #define NVDIMM_COMMON_DSM "NCAL" 919 #define NVDIMM_ACPI_MEM_ADDR "MEMA" 920 921 #define NVDIMM_DSM_MEMORY "NRAM" 922 #define NVDIMM_DSM_IOPORT "NPIO" 923 924 #define NVDIMM_DSM_NOTIFY "NTFI" 925 #define NVDIMM_DSM_HANDLE "HDLE" 926 #define NVDIMM_DSM_REVISION "REVS" 927 #define NVDIMM_DSM_FUNCTION "FUNC" 928 #define NVDIMM_DSM_ARG3 "FARG" 929 930 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" 931 #define NVDIMM_DSM_OUT_BUF "ODAT" 932 933 #define NVDIMM_DSM_RFIT_STATUS "RSTA" 934 935 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" 936 937 static void nvdimm_build_common_dsm(Aml *dev, 938 NVDIMMState *nvdimm_state) 939 { 940 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; 941 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; 942 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; 943 Aml *whilectx, *offset; 944 uint8_t byte_list[1]; 945 AmlRegionSpace rs; 946 947 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); 948 uuid = aml_arg(0); 949 function = aml_arg(2); 950 handle = aml_arg(4); 951 dsm_mem = aml_local(6); 952 dsm_out_buf = aml_local(7); 953 954 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); 955 956 if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) { 957 rs = AML_SYSTEM_IO; 958 } else { 959 rs = AML_SYSTEM_MEMORY; 960 } 961 962 /* map DSM memory and IO into ACPI namespace. */ 963 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs, 964 aml_int(nvdimm_state->dsm_io.address), 965 nvdimm_state->dsm_io.bit_width >> 3)); 966 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, 967 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); 968 969 /* 970 * DSM notifier: 971 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to 972 * emulate the access. 973 * 974 * It is the IO port so that accessing them will cause VM-exit, the 975 * control will be transferred to QEMU. 976 */ 977 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, 978 AML_PRESERVE); 979 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, 980 nvdimm_state->dsm_io.bit_width)); 981 aml_append(method, field); 982 983 /* 984 * DSM input: 985 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call 986 * happens on NVDIMM Root Device. 987 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. 988 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. 989 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package 990 * containing function-specific arguments. 991 * 992 * They are RAM mapping on host so that these accesses never cause 993 * VM-EXIT. 994 */ 995 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 996 AML_PRESERVE); 997 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, 998 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); 999 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, 1000 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); 1001 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, 1002 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); 1003 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, 1004 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); 1005 aml_append(method, field); 1006 1007 /* 1008 * DSM output: 1009 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. 1010 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. 1011 * 1012 * Since the page is reused by both input and out, the input data 1013 * will be lost after storing new result into ODAT so we should fetch 1014 * all the input data before writing the result. 1015 */ 1016 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 1017 AML_PRESERVE); 1018 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, 1019 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); 1020 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, 1021 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); 1022 aml_append(method, field); 1023 1024 /* 1025 * do not support any method if DSM memory address has not been 1026 * patched. 1027 */ 1028 unpatched = aml_equal(dsm_mem, aml_int(0x0)); 1029 1030 expected_uuid = aml_local(0); 1031 1032 ifctx = aml_if(aml_equal(handle, aml_int(0x0))); 1033 aml_append(ifctx, aml_store( 1034 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") 1035 /* UUID for NVDIMM Root Device */, expected_uuid)); 1036 aml_append(method, ifctx); 1037 elsectx = aml_else(); 1038 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); 1039 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID 1040 /* UUID for QEMU internal use */), expected_uuid)); 1041 aml_append(elsectx, ifctx); 1042 elsectx2 = aml_else(); 1043 aml_append(elsectx2, aml_store( 1044 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") 1045 /* UUID for NVDIMM Devices */, expected_uuid)); 1046 aml_append(elsectx, elsectx2); 1047 aml_append(method, elsectx); 1048 1049 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); 1050 1051 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); 1052 1053 /* 1054 * function 0 is called to inquire what functions are supported by 1055 * OSPM 1056 */ 1057 ifctx = aml_if(aml_equal(function, aml_int(0))); 1058 byte_list[0] = 0 /* No function Supported */; 1059 aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); 1060 aml_append(unsupport, ifctx); 1061 1062 /* No function is supported yet. */ 1063 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT; 1064 aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); 1065 aml_append(method, unsupport); 1066 1067 /* 1068 * The HDLE indicates the DSM function is issued from which device, 1069 * it reserves 0 for root device and is the handle for NVDIMM devices. 1070 * See the comments in nvdimm_slot_to_handle(). 1071 */ 1072 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); 1073 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); 1074 aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION))); 1075 1076 /* 1077 * The fourth parameter (Arg3) of _DSM is a package which contains 1078 * a buffer, the layout of the buffer is specified by UUID (Arg0), 1079 * Revision ID (Arg1) and Function Index (Arg2) which are documented 1080 * in the DSM Spec. 1081 */ 1082 pckg = aml_arg(3); 1083 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), 1084 aml_int(4 /* Package */)) /* It is a Package? */, 1085 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, 1086 NULL)); 1087 1088 pckg_index = aml_local(2); 1089 pckg_buf = aml_local(3); 1090 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); 1091 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); 1092 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); 1093 aml_append(method, ifctx); 1094 1095 /* 1096 * tell QEMU about the real address of DSM memory, then QEMU 1097 * gets the control and fills the result in DSM memory. 1098 */ 1099 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); 1100 1101 dsm_out_buf_size = aml_local(1); 1102 /* RLEN is not included in the payload returned to guest. */ 1103 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), 1104 aml_int(4), dsm_out_buf_size)); 1105 1106 /* 1107 * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if 1108 * the Buffer Field <= to the size of an Integer (in bits), it will 1109 * be treated as an integer. Moreover, the integer size depends on 1110 * DSDT tables revision number. If revision number is < 2, integer 1111 * size is 32 bits, otherwise it is 64 bits. 1112 * Because of this CreateField() canot be used if RLEN < Integer Size. 1113 * 1114 * Also please note that APCI ASL operator SizeOf() doesn't support 1115 * Integer and there isn't any other way to figure out the Integer 1116 * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes, 1117 * build dsm_out_buf byte by byte. 1118 */ 1119 ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8))); 1120 offset = aml_local(2); 1121 aml_append(ifctx, aml_store(aml_int(0), offset)); 1122 aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL))); 1123 aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf)); 1124 1125 whilectx = aml_while(aml_lless(offset, dsm_out_buf_size)); 1126 /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */ 1127 aml_append(whilectx, aml_store(aml_derefof(aml_index( 1128 aml_name(NVDIMM_DSM_OUT_BUF), offset)), 1129 aml_index(aml_name("TBUF"), aml_int(0)))); 1130 aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"), 1131 dsm_out_buf)); 1132 aml_append(whilectx, aml_increment(offset)); 1133 aml_append(ifctx, whilectx); 1134 1135 aml_append(ifctx, aml_return(dsm_out_buf)); 1136 aml_append(method, ifctx); 1137 1138 /* If RLEN >= Integer size, just use CreateField() operator */ 1139 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), 1140 dsm_out_buf_size)); 1141 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), 1142 aml_int(0), dsm_out_buf_size, "OBUF")); 1143 aml_append(method, aml_return(aml_name("OBUF"))); 1144 1145 aml_append(dev, method); 1146 } 1147 1148 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) 1149 { 1150 Aml *method; 1151 1152 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 1153 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), 1154 aml_arg(1), aml_arg(2), aml_arg(3), 1155 aml_int(handle)))); 1156 aml_append(dev, method); 1157 } 1158 1159 static void nvdimm_build_fit(Aml *dev) 1160 { 1161 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; 1162 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; 1163 1164 buf = aml_local(0); 1165 buf_size = aml_local(1); 1166 fit = aml_local(2); 1167 1168 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0))); 1169 1170 /* build helper function, RFIT. */ 1171 method = aml_method("RFIT", 1, AML_SERIALIZED); 1172 aml_append(method, aml_name_decl("OFST", aml_int(0))); 1173 1174 /* prepare input package. */ 1175 pkg = aml_package(1); 1176 aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); 1177 aml_append(pkg, aml_name("OFST")); 1178 1179 /* call Read_FIT function. */ 1180 call_result = aml_call5(NVDIMM_COMMON_DSM, 1181 aml_touuid(NVDIMM_QEMU_RSVD_UUID), 1182 aml_int(1) /* Revision 1 */, 1183 aml_int(0x1) /* Read FIT */, 1184 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); 1185 aml_append(method, aml_store(call_result, buf)); 1186 1187 /* handle _DSM result. */ 1188 aml_append(method, aml_create_dword_field(buf, 1189 aml_int(0) /* offset at byte 0 */, "STAU")); 1190 1191 aml_append(method, aml_store(aml_name("STAU"), 1192 aml_name(NVDIMM_DSM_RFIT_STATUS))); 1193 1194 /* if something is wrong during _DSM. */ 1195 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS), 1196 aml_name("STAU")); 1197 ifctx = aml_if(aml_lnot(ifcond)); 1198 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1199 aml_append(method, ifctx); 1200 1201 aml_append(method, aml_store(aml_sizeof(buf), buf_size)); 1202 aml_append(method, aml_subtract(buf_size, 1203 aml_int(4) /* the size of "STAU" */, 1204 buf_size)); 1205 1206 /* if we read the end of fit. */ 1207 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1208 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1209 aml_append(method, ifctx); 1210 1211 aml_append(method, aml_create_field(buf, 1212 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ 1213 aml_shiftleft(buf_size, aml_int(3)), "BUFF")); 1214 aml_append(method, aml_return(aml_name("BUFF"))); 1215 aml_append(dev, method); 1216 1217 /* build _FIT. */ 1218 method = aml_method("_FIT", 0, AML_SERIALIZED); 1219 offset = aml_local(3); 1220 1221 aml_append(method, aml_store(aml_buffer(0, NULL), fit)); 1222 aml_append(method, aml_store(aml_int(0), offset)); 1223 1224 whilectx = aml_while(aml_int(1)); 1225 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); 1226 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); 1227 1228 /* 1229 * if fit buffer was changed during RFIT, read from the beginning 1230 * again. 1231 */ 1232 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), 1233 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED))); 1234 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); 1235 aml_append(ifctx, aml_store(aml_int(0), offset)); 1236 aml_append(whilectx, ifctx); 1237 1238 elsectx = aml_else(); 1239 1240 /* finish fit read if no data is read out. */ 1241 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1242 aml_append(ifctx, aml_return(fit)); 1243 aml_append(elsectx, ifctx); 1244 1245 /* update the offset. */ 1246 aml_append(elsectx, aml_add(offset, buf_size, offset)); 1247 /* append the data we read out to the fit buffer. */ 1248 aml_append(elsectx, aml_concatenate(fit, buf, fit)); 1249 aml_append(whilectx, elsectx); 1250 aml_append(method, whilectx); 1251 1252 aml_append(dev, method); 1253 } 1254 1255 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) 1256 { 1257 uint32_t slot; 1258 1259 for (slot = 0; slot < ram_slots; slot++) { 1260 uint32_t handle = nvdimm_slot_to_handle(slot); 1261 Aml *nvdimm_dev; 1262 1263 nvdimm_dev = aml_device("NV%02X", slot); 1264 1265 /* 1266 * ACPI 6.0: 9.20 NVDIMM Devices: 1267 * 1268 * _ADR object that is used to supply OSPM with unique address 1269 * of the NVDIMM device. This is done by returning the NFIT Device 1270 * handle that is used to identify the associated entries in ACPI 1271 * table NFIT or _FIT. 1272 */ 1273 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); 1274 1275 nvdimm_build_device_dsm(nvdimm_dev, handle); 1276 aml_append(root_dev, nvdimm_dev); 1277 } 1278 } 1279 1280 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, 1281 BIOSLinker *linker, 1282 NVDIMMState *nvdimm_state, 1283 uint32_t ram_slots, const char *oem_id) 1284 { 1285 Aml *ssdt, *sb_scope, *dev; 1286 int mem_addr_offset, nvdimm_ssdt; 1287 1288 acpi_add_table(table_offsets, table_data); 1289 1290 ssdt = init_aml_allocator(); 1291 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); 1292 1293 sb_scope = aml_scope("\\_SB"); 1294 1295 dev = aml_device("NVDR"); 1296 1297 /* 1298 * ACPI 6.0: 9.20 NVDIMM Devices: 1299 * 1300 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root 1301 * NVDIMM interface device. Platform firmware is required to contain one 1302 * such device in _SB scope if NVDIMMs support is exposed by platform to 1303 * OSPM. 1304 * For each NVDIMM present or intended to be supported by platform, 1305 * platform firmware also exposes an ACPI Namespace Device under the 1306 * root device. 1307 */ 1308 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); 1309 1310 nvdimm_build_common_dsm(dev, nvdimm_state); 1311 1312 /* 0 is reserved for root device. */ 1313 nvdimm_build_device_dsm(dev, 0); 1314 nvdimm_build_fit(dev); 1315 1316 nvdimm_build_nvdimm_devices(dev, ram_slots); 1317 1318 aml_append(sb_scope, dev); 1319 aml_append(ssdt, sb_scope); 1320 1321 nvdimm_ssdt = table_data->len; 1322 1323 /* copy AML table into ACPI tables blob and patch header there */ 1324 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); 1325 mem_addr_offset = build_append_named_dword(table_data, 1326 NVDIMM_ACPI_MEM_ADDR); 1327 1328 bios_linker_loader_alloc(linker, 1329 NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem, 1330 sizeof(NvdimmDsmIn), false /* high memory */); 1331 bios_linker_loader_add_pointer(linker, 1332 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), 1333 NVDIMM_DSM_MEM_FILE, 0); 1334 build_header(linker, table_data, 1335 (void *)(table_data->data + nvdimm_ssdt), 1336 "SSDT", table_data->len - nvdimm_ssdt, 1, oem_id, "NVDIMM"); 1337 free_aml_allocator(); 1338 } 1339 1340 void nvdimm_build_srat(GArray *table_data) 1341 { 1342 GSList *device_list = nvdimm_get_device_list(); 1343 1344 for (; device_list; device_list = device_list->next) { 1345 AcpiSratMemoryAffinity *numamem = NULL; 1346 DeviceState *dev = device_list->data; 1347 Object *obj = OBJECT(dev); 1348 uint64_t addr, size; 1349 int node; 1350 1351 node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort); 1352 addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort); 1353 size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort); 1354 1355 numamem = acpi_data_push(table_data, sizeof *numamem); 1356 build_srat_memory(numamem, addr, size, node, 1357 MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE); 1358 } 1359 g_slist_free(device_list); 1360 } 1361 1362 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, 1363 BIOSLinker *linker, NVDIMMState *state, 1364 uint32_t ram_slots, const char *oem_id, 1365 const char *oem_table_id) 1366 { 1367 GSList *device_list; 1368 1369 /* no nvdimm device can be plugged. */ 1370 if (!ram_slots) { 1371 return; 1372 } 1373 1374 nvdimm_build_ssdt(table_offsets, table_data, linker, state, 1375 ram_slots, oem_id); 1376 1377 device_list = nvdimm_get_device_list(); 1378 /* no NVDIMM device is plugged. */ 1379 if (!device_list) { 1380 return; 1381 } 1382 1383 nvdimm_build_nfit(state, table_offsets, table_data, linker, 1384 oem_id, oem_table_id); 1385 g_slist_free(device_list); 1386 } 1387