1 /* 2 * NVDIMM ACPI Implementation 3 * 4 * Copyright(C) 2015 Intel Corporation. 5 * 6 * Author: 7 * Xiao Guangrong <guangrong.xiao@linux.intel.com> 8 * 9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 10 * and the DSM specification can be found at: 11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 12 * 13 * Currently, it only supports PMEM Virtualization. 14 * 15 * This library is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU Lesser General Public 17 * License as published by the Free Software Foundation; either 18 * version 2 of the License, or (at your option) any later version. 19 * 20 * This library is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * Lesser General Public License for more details. 24 * 25 * You should have received a copy of the GNU Lesser General Public 26 * License along with this library; if not, see <http://www.gnu.org/licenses/> 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/acpi/acpi.h" 31 #include "hw/acpi/aml-build.h" 32 #include "hw/acpi/bios-linker-loader.h" 33 #include "hw/nvram/fw_cfg.h" 34 #include "hw/mem/nvdimm.h" 35 36 static int nvdimm_device_list(Object *obj, void *opaque) 37 { 38 GSList **list = opaque; 39 40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) { 41 *list = g_slist_append(*list, DEVICE(obj)); 42 } 43 44 object_child_foreach(obj, nvdimm_device_list, opaque); 45 return 0; 46 } 47 48 /* 49 * inquire NVDIMM devices and link them into the list which is 50 * returned to the caller. 51 * 52 * Note: it is the caller's responsibility to free the list to avoid 53 * memory leak. 54 */ 55 static GSList *nvdimm_get_device_list(void) 56 { 57 GSList *list = NULL; 58 59 object_child_foreach(qdev_get_machine(), nvdimm_device_list, &list); 60 return list; 61 } 62 63 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 64 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \ 65 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \ 66 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) } 67 68 /* 69 * define Byte Addressable Persistent Memory (PM) Region according to 70 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. 71 */ 72 static const uint8_t nvdimm_nfit_spa_uuid[] = 73 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 74 0x18, 0xb7, 0x8c, 0xdb); 75 76 /* 77 * NVDIMM Firmware Interface Table 78 * @signature: "NFIT" 79 * 80 * It provides information that allows OSPM to enumerate NVDIMM present in 81 * the platform and associate system physical address ranges created by the 82 * NVDIMMs. 83 * 84 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 85 */ 86 struct NvdimmNfitHeader { 87 ACPI_TABLE_HEADER_DEF 88 uint32_t reserved; 89 } QEMU_PACKED; 90 typedef struct NvdimmNfitHeader NvdimmNfitHeader; 91 92 /* 93 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware 94 * Interface Table (NFIT). 95 */ 96 97 /* 98 * System Physical Address Range Structure 99 * 100 * It describes the system physical address ranges occupied by NVDIMMs and 101 * the types of the regions. 102 */ 103 struct NvdimmNfitSpa { 104 uint16_t type; 105 uint16_t length; 106 uint16_t spa_index; 107 uint16_t flags; 108 uint32_t reserved; 109 uint32_t proximity_domain; 110 uint8_t type_guid[16]; 111 uint64_t spa_base; 112 uint64_t spa_length; 113 uint64_t mem_attr; 114 } QEMU_PACKED; 115 typedef struct NvdimmNfitSpa NvdimmNfitSpa; 116 117 /* 118 * Memory Device to System Physical Address Range Mapping Structure 119 * 120 * It enables identifying each NVDIMM region and the corresponding SPA 121 * describing the memory interleave 122 */ 123 struct NvdimmNfitMemDev { 124 uint16_t type; 125 uint16_t length; 126 uint32_t nfit_handle; 127 uint16_t phys_id; 128 uint16_t region_id; 129 uint16_t spa_index; 130 uint16_t dcr_index; 131 uint64_t region_len; 132 uint64_t region_offset; 133 uint64_t region_dpa; 134 uint16_t interleave_index; 135 uint16_t interleave_ways; 136 uint16_t flags; 137 uint16_t reserved; 138 } QEMU_PACKED; 139 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; 140 141 #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3) 142 143 /* 144 * NVDIMM Control Region Structure 145 * 146 * It describes the NVDIMM and if applicable, Block Control Window. 147 */ 148 struct NvdimmNfitControlRegion { 149 uint16_t type; 150 uint16_t length; 151 uint16_t dcr_index; 152 uint16_t vendor_id; 153 uint16_t device_id; 154 uint16_t revision_id; 155 uint16_t sub_vendor_id; 156 uint16_t sub_device_id; 157 uint16_t sub_revision_id; 158 uint8_t reserved[6]; 159 uint32_t serial_number; 160 uint16_t fic; 161 uint16_t num_bcw; 162 uint64_t bcw_size; 163 uint64_t cmd_offset; 164 uint64_t cmd_size; 165 uint64_t status_offset; 166 uint64_t status_size; 167 uint16_t flags; 168 uint8_t reserved2[6]; 169 } QEMU_PACKED; 170 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; 171 172 /* 173 * Module serial number is a unique number for each device. We use the 174 * slot id of NVDIMM device to generate this number so that each device 175 * associates with a different number. 176 * 177 * 0x123456 is a magic number we arbitrarily chose. 178 */ 179 static uint32_t nvdimm_slot_to_sn(int slot) 180 { 181 return 0x123456 + slot; 182 } 183 184 /* 185 * handle is used to uniquely associate nfit_memdev structure with NVDIMM 186 * ACPI device - nfit_memdev.nfit_handle matches with the value returned 187 * by ACPI device _ADR method. 188 * 189 * We generate the handle with the slot id of NVDIMM device and reserve 190 * 0 for NVDIMM root device. 191 */ 192 static uint32_t nvdimm_slot_to_handle(int slot) 193 { 194 return slot + 1; 195 } 196 197 /* 198 * index uniquely identifies the structure, 0 is reserved which indicates 199 * that the structure is not valid or the associated structure is not 200 * present. 201 * 202 * Each NVDIMM device needs two indexes, one for nfit_spa and another for 203 * nfit_dc which are generated by the slot id of NVDIMM device. 204 */ 205 static uint16_t nvdimm_slot_to_spa_index(int slot) 206 { 207 return (slot + 1) << 1; 208 } 209 210 /* See the comments of nvdimm_slot_to_spa_index(). */ 211 static uint32_t nvdimm_slot_to_dcr_index(int slot) 212 { 213 return nvdimm_slot_to_spa_index(slot) + 1; 214 } 215 216 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) 217 { 218 NVDIMMDevice *nvdimm = NULL; 219 GSList *list, *device_list = nvdimm_get_device_list(); 220 221 for (list = device_list; list; list = list->next) { 222 NVDIMMDevice *nvd = list->data; 223 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, 224 NULL); 225 226 if (nvdimm_slot_to_handle(slot) == handle) { 227 nvdimm = nvd; 228 break; 229 } 230 } 231 232 g_slist_free(device_list); 233 return nvdimm; 234 } 235 236 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ 237 static void 238 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) 239 { 240 NvdimmNfitSpa *nfit_spa; 241 uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP, 242 NULL); 243 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, 244 NULL); 245 uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, 246 NULL); 247 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 248 NULL); 249 250 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); 251 252 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range 253 Structure */); 254 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); 255 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 256 257 /* 258 * Control region is strict as all the device info, such as SN, index, 259 * is associated with slot id. 260 */ 261 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for 262 management during hot add/online 263 operation */ | 264 2 /* Data in Proximity Domain field is 265 valid*/); 266 267 /* NUMA node. */ 268 nfit_spa->proximity_domain = cpu_to_le32(node); 269 /* the region reported as PMEM. */ 270 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, 271 sizeof(nvdimm_nfit_spa_uuid)); 272 273 nfit_spa->spa_base = cpu_to_le64(addr); 274 nfit_spa->spa_length = cpu_to_le64(size); 275 276 /* It is the PMEM and can be cached as writeback. */ 277 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 278 0x8000ULL /* EFI_MEMORY_NV */); 279 } 280 281 /* 282 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping 283 * Structure 284 */ 285 static void 286 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) 287 { 288 NvdimmNfitMemDev *nfit_memdev; 289 NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev)); 290 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, 291 NULL); 292 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 293 NULL); 294 uint32_t handle = nvdimm_slot_to_handle(slot); 295 296 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); 297 298 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address 299 Range Map Structure*/); 300 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); 301 nfit_memdev->nfit_handle = cpu_to_le32(handle); 302 303 /* 304 * associate memory device with System Physical Address Range 305 * Structure. 306 */ 307 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 308 /* associate memory device with Control Region Structure. */ 309 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 310 311 /* The memory region on the device. */ 312 nfit_memdev->region_len = cpu_to_le64(size); 313 /* The device address starts from 0. */ 314 nfit_memdev->region_dpa = cpu_to_le64(0); 315 316 /* Only one interleave for PMEM. */ 317 nfit_memdev->interleave_ways = cpu_to_le16(1); 318 319 if (nvdimm->unarmed) { 320 nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED); 321 } 322 } 323 324 /* 325 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. 326 */ 327 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) 328 { 329 NvdimmNfitControlRegion *nfit_dcr; 330 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 331 NULL); 332 uint32_t sn = nvdimm_slot_to_sn(slot); 333 334 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); 335 336 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); 337 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); 338 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 339 340 /* vendor: Intel. */ 341 nfit_dcr->vendor_id = cpu_to_le16(0x8086); 342 nfit_dcr->device_id = cpu_to_le16(1); 343 344 /* The _DSM method is following Intel's DSM specification. */ 345 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported 346 in ACPI 6.0 is 1. */); 347 nfit_dcr->serial_number = cpu_to_le32(sn); 348 nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code: 349 Byte addressable, no energy backed. 350 See ACPI 6.2, sect 5.2.25.6 and 351 JEDEC Annex L Release 3. */); 352 } 353 354 static GArray *nvdimm_build_device_structure(void) 355 { 356 GSList *device_list = nvdimm_get_device_list(); 357 GArray *structures = g_array_new(false, true /* clear */, 1); 358 359 for (; device_list; device_list = device_list->next) { 360 DeviceState *dev = device_list->data; 361 362 /* build System Physical Address Range Structure. */ 363 nvdimm_build_structure_spa(structures, dev); 364 365 /* 366 * build Memory Device to System Physical Address Range Mapping 367 * Structure. 368 */ 369 nvdimm_build_structure_memdev(structures, dev); 370 371 /* build NVDIMM Control Region Structure. */ 372 nvdimm_build_structure_dcr(structures, dev); 373 } 374 g_slist_free(device_list); 375 376 return structures; 377 } 378 379 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) 380 { 381 fit_buf->fit = g_array_new(false, true /* clear */, 1); 382 } 383 384 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf) 385 { 386 g_array_free(fit_buf->fit, true); 387 fit_buf->fit = nvdimm_build_device_structure(); 388 fit_buf->dirty = true; 389 } 390 391 void nvdimm_plug(AcpiNVDIMMState *state) 392 { 393 nvdimm_build_fit_buffer(&state->fit_buf); 394 } 395 396 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets, 397 GArray *table_data, BIOSLinker *linker) 398 { 399 NvdimmFitBuffer *fit_buf = &state->fit_buf; 400 unsigned int header; 401 402 acpi_add_table(table_offsets, table_data); 403 404 /* NFIT header. */ 405 header = table_data->len; 406 acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); 407 /* NVDIMM device structures. */ 408 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); 409 410 build_header(linker, table_data, 411 (void *)(table_data->data + header), "NFIT", 412 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL); 413 } 414 415 #define NVDIMM_DSM_MEMORY_SIZE 4096 416 417 struct NvdimmDsmIn { 418 uint32_t handle; 419 uint32_t revision; 420 uint32_t function; 421 /* the remaining size in the page is used by arg3. */ 422 union { 423 uint8_t arg3[4084]; 424 }; 425 } QEMU_PACKED; 426 typedef struct NvdimmDsmIn NvdimmDsmIn; 427 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE); 428 429 struct NvdimmDsmOut { 430 /* the size of buffer filled by QEMU. */ 431 uint32_t len; 432 uint8_t data[4092]; 433 } QEMU_PACKED; 434 typedef struct NvdimmDsmOut NvdimmDsmOut; 435 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE); 436 437 struct NvdimmDsmFunc0Out { 438 /* the size of buffer filled by QEMU. */ 439 uint32_t len; 440 uint32_t supported_func; 441 } QEMU_PACKED; 442 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; 443 444 struct NvdimmDsmFuncNoPayloadOut { 445 /* the size of buffer filled by QEMU. */ 446 uint32_t len; 447 uint32_t func_ret_status; 448 } QEMU_PACKED; 449 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; 450 451 struct NvdimmFuncGetLabelSizeOut { 452 /* the size of buffer filled by QEMU. */ 453 uint32_t len; 454 uint32_t func_ret_status; /* return status code. */ 455 uint32_t label_size; /* the size of label data area. */ 456 /* 457 * Maximum size of the namespace label data length supported by 458 * the platform in Get/Set Namespace Label Data functions. 459 */ 460 uint32_t max_xfer; 461 } QEMU_PACKED; 462 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; 463 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE); 464 465 struct NvdimmFuncGetLabelDataIn { 466 uint32_t offset; /* the offset in the namespace label data area. */ 467 uint32_t length; /* the size of data is to be read via the function. */ 468 } QEMU_PACKED; 469 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; 470 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + 471 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 472 473 struct NvdimmFuncGetLabelDataOut { 474 /* the size of buffer filled by QEMU. */ 475 uint32_t len; 476 uint32_t func_ret_status; /* return status code. */ 477 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */ 478 } QEMU_PACKED; 479 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; 480 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE); 481 482 struct NvdimmFuncSetLabelDataIn { 483 uint32_t offset; /* the offset in the namespace label data area. */ 484 uint32_t length; /* the size of data is to be written via the function. */ 485 uint8_t in_buf[0]; /* the data written to label data area. */ 486 } QEMU_PACKED; 487 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; 488 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + 489 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 490 491 struct NvdimmFuncReadFITIn { 492 uint32_t offset; /* the offset into FIT buffer. */ 493 } QEMU_PACKED; 494 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; 495 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + 496 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 497 498 struct NvdimmFuncReadFITOut { 499 /* the size of buffer filled by QEMU. */ 500 uint32_t len; 501 uint32_t func_ret_status; /* return status code. */ 502 uint8_t fit[0]; /* the FIT data. */ 503 } QEMU_PACKED; 504 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; 505 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE); 506 507 static void 508 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) 509 { 510 NvdimmDsmFunc0Out func0 = { 511 .len = cpu_to_le32(sizeof(func0)), 512 .supported_func = cpu_to_le32(supported_func), 513 }; 514 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); 515 } 516 517 static void 518 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) 519 { 520 NvdimmDsmFuncNoPayloadOut out = { 521 .len = cpu_to_le32(sizeof(out)), 522 .func_ret_status = cpu_to_le32(func_ret_status), 523 }; 524 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); 525 } 526 527 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */ 528 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */ 529 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */ 530 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */ 531 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */ 532 533 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 534 535 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ 536 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in, 537 hwaddr dsm_mem_addr) 538 { 539 NvdimmFitBuffer *fit_buf = &state->fit_buf; 540 NvdimmFuncReadFITIn *read_fit; 541 NvdimmFuncReadFITOut *read_fit_out; 542 GArray *fit; 543 uint32_t read_len = 0, func_ret_status; 544 int size; 545 546 read_fit = (NvdimmFuncReadFITIn *)in->arg3; 547 le32_to_cpus(&read_fit->offset); 548 549 fit = fit_buf->fit; 550 551 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n", 552 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No"); 553 554 if (read_fit->offset > fit->len) { 555 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID; 556 goto exit; 557 } 558 559 /* It is the first time to read FIT. */ 560 if (!read_fit->offset) { 561 fit_buf->dirty = false; 562 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ 563 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED; 564 goto exit; 565 } 566 567 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS; 568 read_len = MIN(fit->len - read_fit->offset, 569 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut)); 570 571 exit: 572 size = sizeof(NvdimmFuncReadFITOut) + read_len; 573 read_fit_out = g_malloc(size); 574 575 read_fit_out->len = cpu_to_le32(size); 576 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); 577 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); 578 579 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); 580 581 g_free(read_fit_out); 582 } 583 584 static void 585 nvdimm_dsm_handle_reserved_root_method(AcpiNVDIMMState *state, 586 NvdimmDsmIn *in, hwaddr dsm_mem_addr) 587 { 588 switch (in->function) { 589 case 0x0: 590 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); 591 return; 592 case 0x1 /* Read FIT */: 593 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); 594 return; 595 } 596 597 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 598 } 599 600 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 601 { 602 /* 603 * function 0 is called to inquire which functions are supported by 604 * OSPM 605 */ 606 if (!in->function) { 607 nvdimm_dsm_function0(0 /* No function supported other than 608 function 0 */, dsm_mem_addr); 609 return; 610 } 611 612 /* No function except function 0 is supported yet. */ 613 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 614 } 615 616 /* 617 * the max transfer size is the max size transferred by both a 618 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' 619 * function. 620 */ 621 static uint32_t nvdimm_get_max_xfer_label_size(void) 622 { 623 uint32_t max_get_size, max_set_size, dsm_memory_size; 624 625 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE; 626 627 /* 628 * the max data ACPI can read one time which is transferred by 629 * the response of 'Get Namespace Label Data' function. 630 */ 631 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); 632 633 /* 634 * the max data ACPI can write one time which is transferred by 635 * 'Set Namespace Label Data' function. 636 */ 637 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - 638 sizeof(NvdimmFuncSetLabelDataIn); 639 640 return MIN(max_get_size, max_set_size); 641 } 642 643 /* 644 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). 645 * 646 * It gets the size of Namespace Label data area and the max data size 647 * that Get/Set Namespace Label Data functions can transfer. 648 */ 649 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) 650 { 651 NvdimmFuncGetLabelSizeOut label_size_out = { 652 .len = cpu_to_le32(sizeof(label_size_out)), 653 }; 654 uint32_t label_size, mxfer; 655 656 label_size = nvdimm->label_size; 657 mxfer = nvdimm_get_max_xfer_label_size(); 658 659 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer); 660 661 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); 662 label_size_out.label_size = cpu_to_le32(label_size); 663 label_size_out.max_xfer = cpu_to_le32(mxfer); 664 665 cpu_physical_memory_write(dsm_mem_addr, &label_size_out, 666 sizeof(label_size_out)); 667 } 668 669 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, 670 uint32_t offset, uint32_t length) 671 { 672 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID; 673 674 if (offset + length < offset) { 675 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset, 676 length); 677 return ret; 678 } 679 680 if (nvdimm->label_size < offset + length) { 681 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n", 682 offset + length, nvdimm->label_size); 683 return ret; 684 } 685 686 if (length > nvdimm_get_max_xfer_label_size()) { 687 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n", 688 length, nvdimm_get_max_xfer_label_size()); 689 return ret; 690 } 691 692 return NVDIMM_DSM_RET_STATUS_SUCCESS; 693 } 694 695 /* 696 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). 697 */ 698 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 699 hwaddr dsm_mem_addr) 700 { 701 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 702 NvdimmFuncGetLabelDataIn *get_label_data; 703 NvdimmFuncGetLabelDataOut *get_label_data_out; 704 uint32_t status; 705 int size; 706 707 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; 708 le32_to_cpus(&get_label_data->offset); 709 le32_to_cpus(&get_label_data->length); 710 711 nvdimm_debug("Read Label Data: offset %#x length %#x.\n", 712 get_label_data->offset, get_label_data->length); 713 714 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, 715 get_label_data->length); 716 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { 717 nvdimm_dsm_no_payload(status, dsm_mem_addr); 718 return; 719 } 720 721 size = sizeof(*get_label_data_out) + get_label_data->length; 722 assert(size <= NVDIMM_DSM_MEMORY_SIZE); 723 get_label_data_out = g_malloc(size); 724 725 get_label_data_out->len = cpu_to_le32(size); 726 get_label_data_out->func_ret_status = 727 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); 728 nvc->read_label_data(nvdimm, get_label_data_out->out_buf, 729 get_label_data->length, get_label_data->offset); 730 731 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); 732 g_free(get_label_data_out); 733 } 734 735 /* 736 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). 737 */ 738 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 739 hwaddr dsm_mem_addr) 740 { 741 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 742 NvdimmFuncSetLabelDataIn *set_label_data; 743 uint32_t status; 744 745 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; 746 747 le32_to_cpus(&set_label_data->offset); 748 le32_to_cpus(&set_label_data->length); 749 750 nvdimm_debug("Write Label Data: offset %#x length %#x.\n", 751 set_label_data->offset, set_label_data->length); 752 753 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, 754 set_label_data->length); 755 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { 756 nvdimm_dsm_no_payload(status, dsm_mem_addr); 757 return; 758 } 759 760 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) + 761 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE); 762 763 nvc->write_label_data(nvdimm, set_label_data->in_buf, 764 set_label_data->length, set_label_data->offset); 765 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr); 766 } 767 768 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 769 { 770 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); 771 772 /* See the comments in nvdimm_dsm_root(). */ 773 if (!in->function) { 774 uint32_t supported_func = 0; 775 776 if (nvdimm && nvdimm->label_size) { 777 supported_func |= 0x1 /* Bit 0 indicates whether there is 778 support for any functions other 779 than function 0. */ | 780 1 << 4 /* Get Namespace Label Size */ | 781 1 << 5 /* Get Namespace Label Data */ | 782 1 << 6 /* Set Namespace Label Data */; 783 } 784 nvdimm_dsm_function0(supported_func, dsm_mem_addr); 785 return; 786 } 787 788 if (!nvdimm) { 789 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV, 790 dsm_mem_addr); 791 return; 792 } 793 794 /* Encode DSM function according to DSM Spec Rev1. */ 795 switch (in->function) { 796 case 4 /* Get Namespace Label Size */: 797 if (nvdimm->label_size) { 798 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); 799 return; 800 } 801 break; 802 case 5 /* Get Namespace Label Data */: 803 if (nvdimm->label_size) { 804 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); 805 return; 806 } 807 break; 808 case 0x6 /* Set Namespace Label Data */: 809 if (nvdimm->label_size) { 810 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); 811 return; 812 } 813 break; 814 } 815 816 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 817 } 818 819 static uint64_t 820 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) 821 { 822 nvdimm_debug("BUG: we never read _DSM IO Port.\n"); 823 return 0; 824 } 825 826 static void 827 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 828 { 829 AcpiNVDIMMState *state = opaque; 830 NvdimmDsmIn *in; 831 hwaddr dsm_mem_addr = val; 832 833 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr); 834 835 /* 836 * The DSM memory is mapped to guest address space so an evil guest 837 * can change its content while we are doing DSM emulation. Avoid 838 * this by copying DSM memory to QEMU local memory. 839 */ 840 in = g_new(NvdimmDsmIn, 1); 841 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); 842 843 le32_to_cpus(&in->revision); 844 le32_to_cpus(&in->function); 845 le32_to_cpus(&in->handle); 846 847 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision, 848 in->handle, in->function); 849 850 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { 851 nvdimm_debug("Revision %#x is not supported, expect %#x.\n", 852 in->revision, 0x1); 853 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 854 goto exit; 855 } 856 857 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { 858 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr); 859 goto exit; 860 } 861 862 /* Handle 0 is reserved for NVDIMM Root Device. */ 863 if (!in->handle) { 864 nvdimm_dsm_root(in, dsm_mem_addr); 865 goto exit; 866 } 867 868 nvdimm_dsm_device(in, dsm_mem_addr); 869 870 exit: 871 g_free(in); 872 } 873 874 static const MemoryRegionOps nvdimm_dsm_ops = { 875 .read = nvdimm_dsm_read, 876 .write = nvdimm_dsm_write, 877 .endianness = DEVICE_LITTLE_ENDIAN, 878 .valid = { 879 .min_access_size = 4, 880 .max_access_size = 4, 881 }, 882 }; 883 884 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) 885 { 886 if (dev->hotplugged) { 887 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); 888 } 889 } 890 891 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io, 892 FWCfgState *fw_cfg, Object *owner) 893 { 894 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, 895 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN); 896 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr); 897 898 state->dsm_mem = g_array_new(false, true /* clear */, 1); 899 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); 900 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, 901 state->dsm_mem->len); 902 903 nvdimm_init_fit_buffer(&state->fit_buf); 904 } 905 906 #define NVDIMM_COMMON_DSM "NCAL" 907 #define NVDIMM_ACPI_MEM_ADDR "MEMA" 908 909 #define NVDIMM_DSM_MEMORY "NRAM" 910 #define NVDIMM_DSM_IOPORT "NPIO" 911 912 #define NVDIMM_DSM_NOTIFY "NTFI" 913 #define NVDIMM_DSM_HANDLE "HDLE" 914 #define NVDIMM_DSM_REVISION "REVS" 915 #define NVDIMM_DSM_FUNCTION "FUNC" 916 #define NVDIMM_DSM_ARG3 "FARG" 917 918 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" 919 #define NVDIMM_DSM_OUT_BUF "ODAT" 920 921 #define NVDIMM_DSM_RFIT_STATUS "RSTA" 922 923 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" 924 925 static void nvdimm_build_common_dsm(Aml *dev) 926 { 927 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; 928 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; 929 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; 930 uint8_t byte_list[1]; 931 932 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); 933 uuid = aml_arg(0); 934 function = aml_arg(2); 935 handle = aml_arg(4); 936 dsm_mem = aml_local(6); 937 dsm_out_buf = aml_local(7); 938 939 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); 940 941 /* map DSM memory and IO into ACPI namespace. */ 942 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO, 943 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN)); 944 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, 945 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); 946 947 /* 948 * DSM notifier: 949 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to 950 * emulate the access. 951 * 952 * It is the IO port so that accessing them will cause VM-exit, the 953 * control will be transferred to QEMU. 954 */ 955 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, 956 AML_PRESERVE); 957 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, 958 sizeof(uint32_t) * BITS_PER_BYTE)); 959 aml_append(method, field); 960 961 /* 962 * DSM input: 963 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call 964 * happens on NVDIMM Root Device. 965 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. 966 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. 967 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package 968 * containing function-specific arguments. 969 * 970 * They are RAM mapping on host so that these accesses never cause 971 * VM-EXIT. 972 */ 973 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 974 AML_PRESERVE); 975 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, 976 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); 977 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, 978 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); 979 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, 980 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); 981 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, 982 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); 983 aml_append(method, field); 984 985 /* 986 * DSM output: 987 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. 988 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. 989 * 990 * Since the page is reused by both input and out, the input data 991 * will be lost after storing new result into ODAT so we should fetch 992 * all the input data before writing the result. 993 */ 994 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 995 AML_PRESERVE); 996 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, 997 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); 998 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, 999 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); 1000 aml_append(method, field); 1001 1002 /* 1003 * do not support any method if DSM memory address has not been 1004 * patched. 1005 */ 1006 unpatched = aml_equal(dsm_mem, aml_int(0x0)); 1007 1008 expected_uuid = aml_local(0); 1009 1010 ifctx = aml_if(aml_equal(handle, aml_int(0x0))); 1011 aml_append(ifctx, aml_store( 1012 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") 1013 /* UUID for NVDIMM Root Device */, expected_uuid)); 1014 aml_append(method, ifctx); 1015 elsectx = aml_else(); 1016 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); 1017 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID 1018 /* UUID for QEMU internal use */), expected_uuid)); 1019 aml_append(elsectx, ifctx); 1020 elsectx2 = aml_else(); 1021 aml_append(elsectx2, aml_store( 1022 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") 1023 /* UUID for NVDIMM Devices */, expected_uuid)); 1024 aml_append(elsectx, elsectx2); 1025 aml_append(method, elsectx); 1026 1027 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); 1028 1029 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); 1030 1031 /* 1032 * function 0 is called to inquire what functions are supported by 1033 * OSPM 1034 */ 1035 ifctx = aml_if(aml_equal(function, aml_int(0))); 1036 byte_list[0] = 0 /* No function Supported */; 1037 aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); 1038 aml_append(unsupport, ifctx); 1039 1040 /* No function is supported yet. */ 1041 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT; 1042 aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); 1043 aml_append(method, unsupport); 1044 1045 /* 1046 * The HDLE indicates the DSM function is issued from which device, 1047 * it reserves 0 for root device and is the handle for NVDIMM devices. 1048 * See the comments in nvdimm_slot_to_handle(). 1049 */ 1050 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); 1051 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); 1052 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION))); 1053 1054 /* 1055 * The fourth parameter (Arg3) of _DSM is a package which contains 1056 * a buffer, the layout of the buffer is specified by UUID (Arg0), 1057 * Revision ID (Arg1) and Function Index (Arg2) which are documented 1058 * in the DSM Spec. 1059 */ 1060 pckg = aml_arg(3); 1061 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), 1062 aml_int(4 /* Package */)) /* It is a Package? */, 1063 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, 1064 NULL)); 1065 1066 pckg_index = aml_local(2); 1067 pckg_buf = aml_local(3); 1068 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); 1069 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); 1070 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); 1071 aml_append(method, ifctx); 1072 1073 /* 1074 * tell QEMU about the real address of DSM memory, then QEMU 1075 * gets the control and fills the result in DSM memory. 1076 */ 1077 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); 1078 1079 dsm_out_buf_size = aml_local(1); 1080 /* RLEN is not included in the payload returned to guest. */ 1081 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), 1082 aml_int(4), dsm_out_buf_size)); 1083 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), 1084 dsm_out_buf_size)); 1085 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), 1086 aml_int(0), dsm_out_buf_size, "OBUF")); 1087 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"), 1088 dsm_out_buf)); 1089 aml_append(method, aml_return(dsm_out_buf)); 1090 aml_append(dev, method); 1091 } 1092 1093 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) 1094 { 1095 Aml *method; 1096 1097 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 1098 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), 1099 aml_arg(1), aml_arg(2), aml_arg(3), 1100 aml_int(handle)))); 1101 aml_append(dev, method); 1102 } 1103 1104 static void nvdimm_build_fit(Aml *dev) 1105 { 1106 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; 1107 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; 1108 1109 buf = aml_local(0); 1110 buf_size = aml_local(1); 1111 fit = aml_local(2); 1112 1113 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0))); 1114 1115 /* build helper function, RFIT. */ 1116 method = aml_method("RFIT", 1, AML_SERIALIZED); 1117 aml_append(method, aml_name_decl("OFST", aml_int(0))); 1118 1119 /* prepare input package. */ 1120 pkg = aml_package(1); 1121 aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); 1122 aml_append(pkg, aml_name("OFST")); 1123 1124 /* call Read_FIT function. */ 1125 call_result = aml_call5(NVDIMM_COMMON_DSM, 1126 aml_touuid(NVDIMM_QEMU_RSVD_UUID), 1127 aml_int(1) /* Revision 1 */, 1128 aml_int(0x1) /* Read FIT */, 1129 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); 1130 aml_append(method, aml_store(call_result, buf)); 1131 1132 /* handle _DSM result. */ 1133 aml_append(method, aml_create_dword_field(buf, 1134 aml_int(0) /* offset at byte 0 */, "STAU")); 1135 1136 aml_append(method, aml_store(aml_name("STAU"), 1137 aml_name(NVDIMM_DSM_RFIT_STATUS))); 1138 1139 /* if something is wrong during _DSM. */ 1140 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS), 1141 aml_name("STAU")); 1142 ifctx = aml_if(aml_lnot(ifcond)); 1143 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1144 aml_append(method, ifctx); 1145 1146 aml_append(method, aml_store(aml_sizeof(buf), buf_size)); 1147 aml_append(method, aml_subtract(buf_size, 1148 aml_int(4) /* the size of "STAU" */, 1149 buf_size)); 1150 1151 /* if we read the end of fit. */ 1152 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1153 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1154 aml_append(method, ifctx); 1155 1156 aml_append(method, aml_create_field(buf, 1157 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ 1158 aml_shiftleft(buf_size, aml_int(3)), "BUFF")); 1159 aml_append(method, aml_return(aml_name("BUFF"))); 1160 aml_append(dev, method); 1161 1162 /* build _FIT. */ 1163 method = aml_method("_FIT", 0, AML_SERIALIZED); 1164 offset = aml_local(3); 1165 1166 aml_append(method, aml_store(aml_buffer(0, NULL), fit)); 1167 aml_append(method, aml_store(aml_int(0), offset)); 1168 1169 whilectx = aml_while(aml_int(1)); 1170 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); 1171 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); 1172 1173 /* 1174 * if fit buffer was changed during RFIT, read from the beginning 1175 * again. 1176 */ 1177 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), 1178 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED))); 1179 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); 1180 aml_append(ifctx, aml_store(aml_int(0), offset)); 1181 aml_append(whilectx, ifctx); 1182 1183 elsectx = aml_else(); 1184 1185 /* finish fit read if no data is read out. */ 1186 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1187 aml_append(ifctx, aml_return(fit)); 1188 aml_append(elsectx, ifctx); 1189 1190 /* update the offset. */ 1191 aml_append(elsectx, aml_add(offset, buf_size, offset)); 1192 /* append the data we read out to the fit buffer. */ 1193 aml_append(elsectx, aml_concatenate(fit, buf, fit)); 1194 aml_append(whilectx, elsectx); 1195 aml_append(method, whilectx); 1196 1197 aml_append(dev, method); 1198 } 1199 1200 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) 1201 { 1202 uint32_t slot; 1203 1204 for (slot = 0; slot < ram_slots; slot++) { 1205 uint32_t handle = nvdimm_slot_to_handle(slot); 1206 Aml *nvdimm_dev; 1207 1208 nvdimm_dev = aml_device("NV%02X", slot); 1209 1210 /* 1211 * ACPI 6.0: 9.20 NVDIMM Devices: 1212 * 1213 * _ADR object that is used to supply OSPM with unique address 1214 * of the NVDIMM device. This is done by returning the NFIT Device 1215 * handle that is used to identify the associated entries in ACPI 1216 * table NFIT or _FIT. 1217 */ 1218 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); 1219 1220 nvdimm_build_device_dsm(nvdimm_dev, handle); 1221 aml_append(root_dev, nvdimm_dev); 1222 } 1223 } 1224 1225 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, 1226 BIOSLinker *linker, GArray *dsm_dma_arrea, 1227 uint32_t ram_slots) 1228 { 1229 Aml *ssdt, *sb_scope, *dev; 1230 int mem_addr_offset, nvdimm_ssdt; 1231 1232 acpi_add_table(table_offsets, table_data); 1233 1234 ssdt = init_aml_allocator(); 1235 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); 1236 1237 sb_scope = aml_scope("\\_SB"); 1238 1239 dev = aml_device("NVDR"); 1240 1241 /* 1242 * ACPI 6.0: 9.20 NVDIMM Devices: 1243 * 1244 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root 1245 * NVDIMM interface device. Platform firmware is required to contain one 1246 * such device in _SB scope if NVDIMMs support is exposed by platform to 1247 * OSPM. 1248 * For each NVDIMM present or intended to be supported by platform, 1249 * platform firmware also exposes an ACPI Namespace Device under the 1250 * root device. 1251 */ 1252 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); 1253 1254 nvdimm_build_common_dsm(dev); 1255 1256 /* 0 is reserved for root device. */ 1257 nvdimm_build_device_dsm(dev, 0); 1258 nvdimm_build_fit(dev); 1259 1260 nvdimm_build_nvdimm_devices(dev, ram_slots); 1261 1262 aml_append(sb_scope, dev); 1263 aml_append(ssdt, sb_scope); 1264 1265 nvdimm_ssdt = table_data->len; 1266 1267 /* copy AML table into ACPI tables blob and patch header there */ 1268 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); 1269 mem_addr_offset = build_append_named_dword(table_data, 1270 NVDIMM_ACPI_MEM_ADDR); 1271 1272 bios_linker_loader_alloc(linker, 1273 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea, 1274 sizeof(NvdimmDsmIn), false /* high memory */); 1275 bios_linker_loader_add_pointer(linker, 1276 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), 1277 NVDIMM_DSM_MEM_FILE, 0); 1278 build_header(linker, table_data, 1279 (void *)(table_data->data + nvdimm_ssdt), 1280 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM"); 1281 free_aml_allocator(); 1282 } 1283 1284 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, 1285 BIOSLinker *linker, AcpiNVDIMMState *state, 1286 uint32_t ram_slots) 1287 { 1288 GSList *device_list; 1289 1290 /* no nvdimm device can be plugged. */ 1291 if (!ram_slots) { 1292 return; 1293 } 1294 1295 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem, 1296 ram_slots); 1297 1298 device_list = nvdimm_get_device_list(); 1299 /* no NVDIMM device is plugged. */ 1300 if (!device_list) { 1301 return; 1302 } 1303 1304 nvdimm_build_nfit(state, table_offsets, table_data, linker); 1305 g_slist_free(device_list); 1306 } 1307