1 /* 2 * NVDIMM ACPI Implementation 3 * 4 * Copyright(C) 2015 Intel Corporation. 5 * 6 * Author: 7 * Xiao Guangrong <guangrong.xiao@linux.intel.com> 8 * 9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 10 * and the DSM specification can be found at: 11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 12 * 13 * Currently, it only supports PMEM Virtualization. 14 * 15 * This library is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU Lesser General Public 17 * License as published by the Free Software Foundation; either 18 * version 2 of the License, or (at your option) any later version. 19 * 20 * This library is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * Lesser General Public License for more details. 24 * 25 * You should have received a copy of the GNU Lesser General Public 26 * License along with this library; if not, see <http://www.gnu.org/licenses/> 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/acpi/acpi.h" 31 #include "hw/acpi/aml-build.h" 32 #include "hw/mem/nvdimm.h" 33 34 static int nvdimm_plugged_device_list(Object *obj, void *opaque) 35 { 36 GSList **list = opaque; 37 38 if (object_dynamic_cast(obj, TYPE_NVDIMM)) { 39 DeviceState *dev = DEVICE(obj); 40 41 if (dev->realized) { /* only realized NVDIMMs matter */ 42 *list = g_slist_append(*list, DEVICE(obj)); 43 } 44 } 45 46 object_child_foreach(obj, nvdimm_plugged_device_list, opaque); 47 return 0; 48 } 49 50 /* 51 * inquire plugged NVDIMM devices and link them into the list which is 52 * returned to the caller. 53 * 54 * Note: it is the caller's responsibility to free the list to avoid 55 * memory leak. 56 */ 57 static GSList *nvdimm_get_plugged_device_list(void) 58 { 59 GSList *list = NULL; 60 61 object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list, 62 &list); 63 return list; 64 } 65 66 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 67 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \ 68 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \ 69 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) } 70 71 /* 72 * define Byte Addressable Persistent Memory (PM) Region according to 73 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. 74 */ 75 static const uint8_t nvdimm_nfit_spa_uuid[] = 76 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 77 0x18, 0xb7, 0x8c, 0xdb); 78 79 /* 80 * NVDIMM Firmware Interface Table 81 * @signature: "NFIT" 82 * 83 * It provides information that allows OSPM to enumerate NVDIMM present in 84 * the platform and associate system physical address ranges created by the 85 * NVDIMMs. 86 * 87 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 88 */ 89 struct NvdimmNfitHeader { 90 ACPI_TABLE_HEADER_DEF 91 uint32_t reserved; 92 } QEMU_PACKED; 93 typedef struct NvdimmNfitHeader NvdimmNfitHeader; 94 95 /* 96 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware 97 * Interface Table (NFIT). 98 */ 99 100 /* 101 * System Physical Address Range Structure 102 * 103 * It describes the system physical address ranges occupied by NVDIMMs and 104 * the types of the regions. 105 */ 106 struct NvdimmNfitSpa { 107 uint16_t type; 108 uint16_t length; 109 uint16_t spa_index; 110 uint16_t flags; 111 uint32_t reserved; 112 uint32_t proximity_domain; 113 uint8_t type_guid[16]; 114 uint64_t spa_base; 115 uint64_t spa_length; 116 uint64_t mem_attr; 117 } QEMU_PACKED; 118 typedef struct NvdimmNfitSpa NvdimmNfitSpa; 119 120 /* 121 * Memory Device to System Physical Address Range Mapping Structure 122 * 123 * It enables identifying each NVDIMM region and the corresponding SPA 124 * describing the memory interleave 125 */ 126 struct NvdimmNfitMemDev { 127 uint16_t type; 128 uint16_t length; 129 uint32_t nfit_handle; 130 uint16_t phys_id; 131 uint16_t region_id; 132 uint16_t spa_index; 133 uint16_t dcr_index; 134 uint64_t region_len; 135 uint64_t region_offset; 136 uint64_t region_dpa; 137 uint16_t interleave_index; 138 uint16_t interleave_ways; 139 uint16_t flags; 140 uint16_t reserved; 141 } QEMU_PACKED; 142 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; 143 144 /* 145 * NVDIMM Control Region Structure 146 * 147 * It describes the NVDIMM and if applicable, Block Control Window. 148 */ 149 struct NvdimmNfitControlRegion { 150 uint16_t type; 151 uint16_t length; 152 uint16_t dcr_index; 153 uint16_t vendor_id; 154 uint16_t device_id; 155 uint16_t revision_id; 156 uint16_t sub_vendor_id; 157 uint16_t sub_device_id; 158 uint16_t sub_revision_id; 159 uint8_t reserved[6]; 160 uint32_t serial_number; 161 uint16_t fic; 162 uint16_t num_bcw; 163 uint64_t bcw_size; 164 uint64_t cmd_offset; 165 uint64_t cmd_size; 166 uint64_t status_offset; 167 uint64_t status_size; 168 uint16_t flags; 169 uint8_t reserved2[6]; 170 } QEMU_PACKED; 171 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; 172 173 /* 174 * Module serial number is a unique number for each device. We use the 175 * slot id of NVDIMM device to generate this number so that each device 176 * associates with a different number. 177 * 178 * 0x123456 is a magic number we arbitrarily chose. 179 */ 180 static uint32_t nvdimm_slot_to_sn(int slot) 181 { 182 return 0x123456 + slot; 183 } 184 185 /* 186 * handle is used to uniquely associate nfit_memdev structure with NVDIMM 187 * ACPI device - nfit_memdev.nfit_handle matches with the value returned 188 * by ACPI device _ADR method. 189 * 190 * We generate the handle with the slot id of NVDIMM device and reserve 191 * 0 for NVDIMM root device. 192 */ 193 static uint32_t nvdimm_slot_to_handle(int slot) 194 { 195 return slot + 1; 196 } 197 198 /* 199 * index uniquely identifies the structure, 0 is reserved which indicates 200 * that the structure is not valid or the associated structure is not 201 * present. 202 * 203 * Each NVDIMM device needs two indexes, one for nfit_spa and another for 204 * nfit_dc which are generated by the slot id of NVDIMM device. 205 */ 206 static uint16_t nvdimm_slot_to_spa_index(int slot) 207 { 208 return (slot + 1) << 1; 209 } 210 211 /* See the comments of nvdimm_slot_to_spa_index(). */ 212 static uint32_t nvdimm_slot_to_dcr_index(int slot) 213 { 214 return nvdimm_slot_to_spa_index(slot) + 1; 215 } 216 217 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ 218 static void 219 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) 220 { 221 NvdimmNfitSpa *nfit_spa; 222 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP, 223 NULL); 224 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 225 NULL); 226 uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, 227 NULL); 228 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 229 NULL); 230 231 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); 232 233 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range 234 Structure */); 235 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); 236 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 237 238 /* 239 * Control region is strict as all the device info, such as SN, index, 240 * is associated with slot id. 241 */ 242 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for 243 management during hot add/online 244 operation */ | 245 2 /* Data in Proximity Domain field is 246 valid*/); 247 248 /* NUMA node. */ 249 nfit_spa->proximity_domain = cpu_to_le32(node); 250 /* the region reported as PMEM. */ 251 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, 252 sizeof(nvdimm_nfit_spa_uuid)); 253 254 nfit_spa->spa_base = cpu_to_le64(addr); 255 nfit_spa->spa_length = cpu_to_le64(size); 256 257 /* It is the PMEM and can be cached as writeback. */ 258 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 259 0x8000ULL /* EFI_MEMORY_NV */); 260 } 261 262 /* 263 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping 264 * Structure 265 */ 266 static void 267 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) 268 { 269 NvdimmNfitMemDev *nfit_memdev; 270 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP, 271 NULL); 272 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 273 NULL); 274 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 275 NULL); 276 uint32_t handle = nvdimm_slot_to_handle(slot); 277 278 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); 279 280 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address 281 Range Map Structure*/); 282 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); 283 nfit_memdev->nfit_handle = cpu_to_le32(handle); 284 285 /* 286 * associate memory device with System Physical Address Range 287 * Structure. 288 */ 289 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 290 /* associate memory device with Control Region Structure. */ 291 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 292 293 /* The memory region on the device. */ 294 nfit_memdev->region_len = cpu_to_le64(size); 295 nfit_memdev->region_dpa = cpu_to_le64(addr); 296 297 /* Only one interleave for PMEM. */ 298 nfit_memdev->interleave_ways = cpu_to_le16(1); 299 } 300 301 /* 302 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. 303 */ 304 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) 305 { 306 NvdimmNfitControlRegion *nfit_dcr; 307 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 308 NULL); 309 uint32_t sn = nvdimm_slot_to_sn(slot); 310 311 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); 312 313 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); 314 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); 315 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 316 317 /* vendor: Intel. */ 318 nfit_dcr->vendor_id = cpu_to_le16(0x8086); 319 nfit_dcr->device_id = cpu_to_le16(1); 320 321 /* The _DSM method is following Intel's DSM specification. */ 322 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported 323 in ACPI 6.0 is 1. */); 324 nfit_dcr->serial_number = cpu_to_le32(sn); 325 nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter 326 2: NVDIMM Device Specific Method 327 (DSM) in DSM Spec Rev1.*/); 328 } 329 330 static GArray *nvdimm_build_device_structure(GSList *device_list) 331 { 332 GArray *structures = g_array_new(false, true /* clear */, 1); 333 334 for (; device_list; device_list = device_list->next) { 335 DeviceState *dev = device_list->data; 336 337 /* build System Physical Address Range Structure. */ 338 nvdimm_build_structure_spa(structures, dev); 339 340 /* 341 * build Memory Device to System Physical Address Range Mapping 342 * Structure. 343 */ 344 nvdimm_build_structure_memdev(structures, dev); 345 346 /* build NVDIMM Control Region Structure. */ 347 nvdimm_build_structure_dcr(structures, dev); 348 } 349 350 return structures; 351 } 352 353 static void nvdimm_build_nfit(GSList *device_list, GArray *table_offsets, 354 GArray *table_data, GArray *linker) 355 { 356 GArray *structures = nvdimm_build_device_structure(device_list); 357 unsigned int header; 358 359 acpi_add_table(table_offsets, table_data); 360 361 /* NFIT header. */ 362 header = table_data->len; 363 acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); 364 /* NVDIMM device structures. */ 365 g_array_append_vals(table_data, structures->data, structures->len); 366 367 build_header(linker, table_data, 368 (void *)(table_data->data + header), "NFIT", 369 sizeof(NvdimmNfitHeader) + structures->len, 1, NULL, NULL); 370 g_array_free(structures, true); 371 } 372 373 #define NVDIMM_COMMON_DSM "NCAL" 374 375 static void nvdimm_build_common_dsm(Aml *dev) 376 { 377 Aml *method, *ifctx, *function; 378 uint8_t byte_list[1]; 379 380 method = aml_method(NVDIMM_COMMON_DSM, 4, AML_NOTSERIALIZED); 381 function = aml_arg(2); 382 383 /* 384 * function 0 is called to inquire what functions are supported by 385 * OSPM 386 */ 387 ifctx = aml_if(aml_equal(function, aml_int(0))); 388 byte_list[0] = 0 /* No function Supported */; 389 aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); 390 aml_append(method, ifctx); 391 392 /* No function is supported yet. */ 393 byte_list[0] = 1 /* Not Supported */; 394 aml_append(method, aml_return(aml_buffer(1, byte_list))); 395 396 aml_append(dev, method); 397 } 398 399 static void nvdimm_build_device_dsm(Aml *dev) 400 { 401 Aml *method; 402 403 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 404 aml_append(method, aml_return(aml_call4(NVDIMM_COMMON_DSM, aml_arg(0), 405 aml_arg(1), aml_arg(2), aml_arg(3)))); 406 aml_append(dev, method); 407 } 408 409 static void nvdimm_build_nvdimm_devices(GSList *device_list, Aml *root_dev) 410 { 411 for (; device_list; device_list = device_list->next) { 412 DeviceState *dev = device_list->data; 413 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 414 NULL); 415 uint32_t handle = nvdimm_slot_to_handle(slot); 416 Aml *nvdimm_dev; 417 418 nvdimm_dev = aml_device("NV%02X", slot); 419 420 /* 421 * ACPI 6.0: 9.20 NVDIMM Devices: 422 * 423 * _ADR object that is used to supply OSPM with unique address 424 * of the NVDIMM device. This is done by returning the NFIT Device 425 * handle that is used to identify the associated entries in ACPI 426 * table NFIT or _FIT. 427 */ 428 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); 429 430 nvdimm_build_device_dsm(nvdimm_dev); 431 aml_append(root_dev, nvdimm_dev); 432 } 433 } 434 435 static void nvdimm_build_ssdt(GSList *device_list, GArray *table_offsets, 436 GArray *table_data, GArray *linker) 437 { 438 Aml *ssdt, *sb_scope, *dev; 439 440 acpi_add_table(table_offsets, table_data); 441 442 ssdt = init_aml_allocator(); 443 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); 444 445 sb_scope = aml_scope("\\_SB"); 446 447 dev = aml_device("NVDR"); 448 449 /* 450 * ACPI 6.0: 9.20 NVDIMM Devices: 451 * 452 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root 453 * NVDIMM interface device. Platform firmware is required to contain one 454 * such device in _SB scope if NVDIMMs support is exposed by platform to 455 * OSPM. 456 * For each NVDIMM present or intended to be supported by platform, 457 * platform firmware also exposes an ACPI Namespace Device under the 458 * root device. 459 */ 460 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); 461 462 nvdimm_build_common_dsm(dev); 463 nvdimm_build_device_dsm(dev); 464 465 nvdimm_build_nvdimm_devices(device_list, dev); 466 467 aml_append(sb_scope, dev); 468 469 aml_append(ssdt, sb_scope); 470 /* copy AML table into ACPI tables blob and patch header there */ 471 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); 472 build_header(linker, table_data, 473 (void *)(table_data->data + table_data->len - ssdt->buf->len), 474 "SSDT", ssdt->buf->len, 1, NULL, "NVDIMM"); 475 free_aml_allocator(); 476 } 477 478 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, 479 GArray *linker) 480 { 481 GSList *device_list; 482 483 /* no NVDIMM device is plugged. */ 484 device_list = nvdimm_get_plugged_device_list(); 485 if (!device_list) { 486 return; 487 } 488 nvdimm_build_nfit(device_list, table_offsets, table_data, linker); 489 nvdimm_build_ssdt(device_list, table_offsets, table_data, linker); 490 g_slist_free(device_list); 491 } 492