1 /* 2 * NVDIMM ACPI Implementation 3 * 4 * Copyright(C) 2015 Intel Corporation. 5 * 6 * Author: 7 * Xiao Guangrong <guangrong.xiao@linux.intel.com> 8 * 9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 10 * and the DSM specification can be found at: 11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 12 * 13 * Currently, it only supports PMEM Virtualization. 14 * 15 * This library is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU Lesser General Public 17 * License as published by the Free Software Foundation; either 18 * version 2.1 of the License, or (at your option) any later version. 19 * 20 * This library is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * Lesser General Public License for more details. 24 * 25 * You should have received a copy of the GNU Lesser General Public 26 * License along with this library; if not, see <http://www.gnu.org/licenses/> 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/uuid.h" 31 #include "qapi/error.h" 32 #include "hw/acpi/acpi.h" 33 #include "hw/acpi/aml-build.h" 34 #include "hw/acpi/bios-linker-loader.h" 35 #include "hw/nvram/fw_cfg.h" 36 #include "hw/mem/nvdimm.h" 37 #include "qemu/nvdimm-utils.h" 38 39 /* 40 * define Byte Addressable Persistent Memory (PM) Region according to 41 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. 42 */ 43 static const uint8_t nvdimm_nfit_spa_uuid[] = 44 UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 45 0x18, 0xb7, 0x8c, 0xdb); 46 47 /* 48 * NVDIMM Firmware Interface Table 49 * @signature: "NFIT" 50 * 51 * It provides information that allows OSPM to enumerate NVDIMM present in 52 * the platform and associate system physical address ranges created by the 53 * NVDIMMs. 54 * 55 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 56 */ 57 struct NvdimmNfitHeader { 58 ACPI_TABLE_HEADER_DEF 59 uint32_t reserved; 60 } QEMU_PACKED; 61 typedef struct NvdimmNfitHeader NvdimmNfitHeader; 62 63 /* 64 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware 65 * Interface Table (NFIT). 66 */ 67 68 /* 69 * System Physical Address Range Structure 70 * 71 * It describes the system physical address ranges occupied by NVDIMMs and 72 * the types of the regions. 73 */ 74 struct NvdimmNfitSpa { 75 uint16_t type; 76 uint16_t length; 77 uint16_t spa_index; 78 uint16_t flags; 79 uint32_t reserved; 80 uint32_t proximity_domain; 81 uint8_t type_guid[16]; 82 uint64_t spa_base; 83 uint64_t spa_length; 84 uint64_t mem_attr; 85 } QEMU_PACKED; 86 typedef struct NvdimmNfitSpa NvdimmNfitSpa; 87 88 /* 89 * Memory Device to System Physical Address Range Mapping Structure 90 * 91 * It enables identifying each NVDIMM region and the corresponding SPA 92 * describing the memory interleave 93 */ 94 struct NvdimmNfitMemDev { 95 uint16_t type; 96 uint16_t length; 97 uint32_t nfit_handle; 98 uint16_t phys_id; 99 uint16_t region_id; 100 uint16_t spa_index; 101 uint16_t dcr_index; 102 uint64_t region_len; 103 uint64_t region_offset; 104 uint64_t region_dpa; 105 uint16_t interleave_index; 106 uint16_t interleave_ways; 107 uint16_t flags; 108 uint16_t reserved; 109 } QEMU_PACKED; 110 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; 111 112 #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3) 113 114 /* 115 * NVDIMM Control Region Structure 116 * 117 * It describes the NVDIMM and if applicable, Block Control Window. 118 */ 119 struct NvdimmNfitControlRegion { 120 uint16_t type; 121 uint16_t length; 122 uint16_t dcr_index; 123 uint16_t vendor_id; 124 uint16_t device_id; 125 uint16_t revision_id; 126 uint16_t sub_vendor_id; 127 uint16_t sub_device_id; 128 uint16_t sub_revision_id; 129 uint8_t reserved[6]; 130 uint32_t serial_number; 131 uint16_t fic; 132 uint16_t num_bcw; 133 uint64_t bcw_size; 134 uint64_t cmd_offset; 135 uint64_t cmd_size; 136 uint64_t status_offset; 137 uint64_t status_size; 138 uint16_t flags; 139 uint8_t reserved2[6]; 140 } QEMU_PACKED; 141 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; 142 143 /* 144 * NVDIMM Platform Capabilities Structure 145 * 146 * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017 147 */ 148 struct NvdimmNfitPlatformCaps { 149 uint16_t type; 150 uint16_t length; 151 uint8_t highest_cap; 152 uint8_t reserved[3]; 153 uint32_t capabilities; 154 uint8_t reserved2[4]; 155 } QEMU_PACKED; 156 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps; 157 158 /* 159 * Module serial number is a unique number for each device. We use the 160 * slot id of NVDIMM device to generate this number so that each device 161 * associates with a different number. 162 * 163 * 0x123456 is a magic number we arbitrarily chose. 164 */ 165 static uint32_t nvdimm_slot_to_sn(int slot) 166 { 167 return 0x123456 + slot; 168 } 169 170 /* 171 * handle is used to uniquely associate nfit_memdev structure with NVDIMM 172 * ACPI device - nfit_memdev.nfit_handle matches with the value returned 173 * by ACPI device _ADR method. 174 * 175 * We generate the handle with the slot id of NVDIMM device and reserve 176 * 0 for NVDIMM root device. 177 */ 178 static uint32_t nvdimm_slot_to_handle(int slot) 179 { 180 return slot + 1; 181 } 182 183 /* 184 * index uniquely identifies the structure, 0 is reserved which indicates 185 * that the structure is not valid or the associated structure is not 186 * present. 187 * 188 * Each NVDIMM device needs two indexes, one for nfit_spa and another for 189 * nfit_dc which are generated by the slot id of NVDIMM device. 190 */ 191 static uint16_t nvdimm_slot_to_spa_index(int slot) 192 { 193 return (slot + 1) << 1; 194 } 195 196 /* See the comments of nvdimm_slot_to_spa_index(). */ 197 static uint32_t nvdimm_slot_to_dcr_index(int slot) 198 { 199 return nvdimm_slot_to_spa_index(slot) + 1; 200 } 201 202 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) 203 { 204 NVDIMMDevice *nvdimm = NULL; 205 GSList *list, *device_list = nvdimm_get_device_list(); 206 207 for (list = device_list; list; list = list->next) { 208 NVDIMMDevice *nvd = list->data; 209 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, 210 NULL); 211 212 if (nvdimm_slot_to_handle(slot) == handle) { 213 nvdimm = nvd; 214 break; 215 } 216 } 217 218 g_slist_free(device_list); 219 return nvdimm; 220 } 221 222 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ 223 static void 224 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) 225 { 226 NvdimmNfitSpa *nfit_spa; 227 uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP, 228 NULL); 229 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, 230 NULL); 231 uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, 232 NULL); 233 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 234 NULL); 235 236 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); 237 238 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range 239 Structure */); 240 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); 241 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 242 243 /* 244 * Control region is strict as all the device info, such as SN, index, 245 * is associated with slot id. 246 */ 247 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for 248 management during hot add/online 249 operation */ | 250 2 /* Data in Proximity Domain field is 251 valid*/); 252 253 /* NUMA node. */ 254 nfit_spa->proximity_domain = cpu_to_le32(node); 255 /* the region reported as PMEM. */ 256 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, 257 sizeof(nvdimm_nfit_spa_uuid)); 258 259 nfit_spa->spa_base = cpu_to_le64(addr); 260 nfit_spa->spa_length = cpu_to_le64(size); 261 262 /* It is the PMEM and can be cached as writeback. */ 263 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 264 0x8000ULL /* EFI_MEMORY_NV */); 265 } 266 267 /* 268 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping 269 * Structure 270 */ 271 static void 272 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) 273 { 274 NvdimmNfitMemDev *nfit_memdev; 275 NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev)); 276 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, 277 NULL); 278 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 279 NULL); 280 uint32_t handle = nvdimm_slot_to_handle(slot); 281 282 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); 283 284 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address 285 Range Map Structure*/); 286 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); 287 nfit_memdev->nfit_handle = cpu_to_le32(handle); 288 289 /* 290 * associate memory device with System Physical Address Range 291 * Structure. 292 */ 293 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 294 /* associate memory device with Control Region Structure. */ 295 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 296 297 /* The memory region on the device. */ 298 nfit_memdev->region_len = cpu_to_le64(size); 299 /* The device address starts from 0. */ 300 nfit_memdev->region_dpa = cpu_to_le64(0); 301 302 /* Only one interleave for PMEM. */ 303 nfit_memdev->interleave_ways = cpu_to_le16(1); 304 305 if (nvdimm->unarmed) { 306 nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED); 307 } 308 } 309 310 /* 311 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. 312 */ 313 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) 314 { 315 NvdimmNfitControlRegion *nfit_dcr; 316 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 317 NULL); 318 uint32_t sn = nvdimm_slot_to_sn(slot); 319 320 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); 321 322 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); 323 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); 324 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 325 326 /* vendor: Intel. */ 327 nfit_dcr->vendor_id = cpu_to_le16(0x8086); 328 nfit_dcr->device_id = cpu_to_le16(1); 329 330 /* The _DSM method is following Intel's DSM specification. */ 331 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported 332 in ACPI 6.0 is 1. */); 333 nfit_dcr->serial_number = cpu_to_le32(sn); 334 nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code: 335 Byte addressable, no energy backed. 336 See ACPI 6.2, sect 5.2.25.6 and 337 JEDEC Annex L Release 3. */); 338 } 339 340 /* 341 * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure 342 */ 343 static void 344 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities) 345 { 346 NvdimmNfitPlatformCaps *nfit_caps; 347 348 nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps)); 349 350 nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */); 351 nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps)); 352 nfit_caps->highest_cap = 31 - clz32(capabilities); 353 nfit_caps->capabilities = cpu_to_le32(capabilities); 354 } 355 356 static GArray *nvdimm_build_device_structure(NVDIMMState *state) 357 { 358 GSList *device_list = nvdimm_get_device_list(); 359 GArray *structures = g_array_new(false, true /* clear */, 1); 360 361 for (; device_list; device_list = device_list->next) { 362 DeviceState *dev = device_list->data; 363 364 /* build System Physical Address Range Structure. */ 365 nvdimm_build_structure_spa(structures, dev); 366 367 /* 368 * build Memory Device to System Physical Address Range Mapping 369 * Structure. 370 */ 371 nvdimm_build_structure_memdev(structures, dev); 372 373 /* build NVDIMM Control Region Structure. */ 374 nvdimm_build_structure_dcr(structures, dev); 375 } 376 g_slist_free(device_list); 377 378 if (state->persistence) { 379 nvdimm_build_structure_caps(structures, state->persistence); 380 } 381 382 return structures; 383 } 384 385 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) 386 { 387 fit_buf->fit = g_array_new(false, true /* clear */, 1); 388 } 389 390 static void nvdimm_build_fit_buffer(NVDIMMState *state) 391 { 392 NvdimmFitBuffer *fit_buf = &state->fit_buf; 393 394 g_array_free(fit_buf->fit, true); 395 fit_buf->fit = nvdimm_build_device_structure(state); 396 fit_buf->dirty = true; 397 } 398 399 void nvdimm_plug(NVDIMMState *state) 400 { 401 nvdimm_build_fit_buffer(state); 402 } 403 404 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets, 405 GArray *table_data, BIOSLinker *linker) 406 { 407 NvdimmFitBuffer *fit_buf = &state->fit_buf; 408 unsigned int header; 409 410 acpi_add_table(table_offsets, table_data); 411 412 /* NFIT header. */ 413 header = table_data->len; 414 acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); 415 /* NVDIMM device structures. */ 416 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); 417 418 build_header(linker, table_data, 419 (void *)(table_data->data + header), "NFIT", 420 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL); 421 } 422 423 #define NVDIMM_DSM_MEMORY_SIZE 4096 424 425 struct NvdimmDsmIn { 426 uint32_t handle; 427 uint32_t revision; 428 uint32_t function; 429 /* the remaining size in the page is used by arg3. */ 430 union { 431 uint8_t arg3[4084]; 432 }; 433 } QEMU_PACKED; 434 typedef struct NvdimmDsmIn NvdimmDsmIn; 435 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE); 436 437 struct NvdimmDsmOut { 438 /* the size of buffer filled by QEMU. */ 439 uint32_t len; 440 uint8_t data[4092]; 441 } QEMU_PACKED; 442 typedef struct NvdimmDsmOut NvdimmDsmOut; 443 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE); 444 445 struct NvdimmDsmFunc0Out { 446 /* the size of buffer filled by QEMU. */ 447 uint32_t len; 448 uint32_t supported_func; 449 } QEMU_PACKED; 450 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; 451 452 struct NvdimmDsmFuncNoPayloadOut { 453 /* the size of buffer filled by QEMU. */ 454 uint32_t len; 455 uint32_t func_ret_status; 456 } QEMU_PACKED; 457 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; 458 459 struct NvdimmFuncGetLabelSizeOut { 460 /* the size of buffer filled by QEMU. */ 461 uint32_t len; 462 uint32_t func_ret_status; /* return status code. */ 463 uint32_t label_size; /* the size of label data area. */ 464 /* 465 * Maximum size of the namespace label data length supported by 466 * the platform in Get/Set Namespace Label Data functions. 467 */ 468 uint32_t max_xfer; 469 } QEMU_PACKED; 470 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; 471 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE); 472 473 struct NvdimmFuncGetLabelDataIn { 474 uint32_t offset; /* the offset in the namespace label data area. */ 475 uint32_t length; /* the size of data is to be read via the function. */ 476 } QEMU_PACKED; 477 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; 478 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + 479 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 480 481 struct NvdimmFuncGetLabelDataOut { 482 /* the size of buffer filled by QEMU. */ 483 uint32_t len; 484 uint32_t func_ret_status; /* return status code. */ 485 uint8_t out_buf[]; /* the data got via Get Namesapce Label function. */ 486 } QEMU_PACKED; 487 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; 488 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE); 489 490 struct NvdimmFuncSetLabelDataIn { 491 uint32_t offset; /* the offset in the namespace label data area. */ 492 uint32_t length; /* the size of data is to be written via the function. */ 493 uint8_t in_buf[]; /* the data written to label data area. */ 494 } QEMU_PACKED; 495 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; 496 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + 497 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 498 499 struct NvdimmFuncReadFITIn { 500 uint32_t offset; /* the offset into FIT buffer. */ 501 } QEMU_PACKED; 502 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; 503 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + 504 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 505 506 struct NvdimmFuncReadFITOut { 507 /* the size of buffer filled by QEMU. */ 508 uint32_t len; 509 uint32_t func_ret_status; /* return status code. */ 510 uint8_t fit[]; /* the FIT data. */ 511 } QEMU_PACKED; 512 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; 513 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE); 514 515 static void 516 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) 517 { 518 NvdimmDsmFunc0Out func0 = { 519 .len = cpu_to_le32(sizeof(func0)), 520 .supported_func = cpu_to_le32(supported_func), 521 }; 522 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); 523 } 524 525 static void 526 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) 527 { 528 NvdimmDsmFuncNoPayloadOut out = { 529 .len = cpu_to_le32(sizeof(out)), 530 .func_ret_status = cpu_to_le32(func_ret_status), 531 }; 532 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); 533 } 534 535 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */ 536 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */ 537 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */ 538 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */ 539 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */ 540 541 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 542 543 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ 544 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in, 545 hwaddr dsm_mem_addr) 546 { 547 NvdimmFitBuffer *fit_buf = &state->fit_buf; 548 NvdimmFuncReadFITIn *read_fit; 549 NvdimmFuncReadFITOut *read_fit_out; 550 GArray *fit; 551 uint32_t read_len = 0, func_ret_status; 552 int size; 553 554 read_fit = (NvdimmFuncReadFITIn *)in->arg3; 555 read_fit->offset = le32_to_cpu(read_fit->offset); 556 557 fit = fit_buf->fit; 558 559 nvdimm_debug("Read FIT: offset 0x%x FIT size 0x%x Dirty %s.\n", 560 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No"); 561 562 if (read_fit->offset > fit->len) { 563 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID; 564 goto exit; 565 } 566 567 /* It is the first time to read FIT. */ 568 if (!read_fit->offset) { 569 fit_buf->dirty = false; 570 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ 571 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED; 572 goto exit; 573 } 574 575 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS; 576 read_len = MIN(fit->len - read_fit->offset, 577 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut)); 578 579 exit: 580 size = sizeof(NvdimmFuncReadFITOut) + read_len; 581 read_fit_out = g_malloc(size); 582 583 read_fit_out->len = cpu_to_le32(size); 584 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); 585 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); 586 587 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); 588 589 g_free(read_fit_out); 590 } 591 592 static void 593 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state, 594 NvdimmDsmIn *in, hwaddr dsm_mem_addr) 595 { 596 switch (in->function) { 597 case 0x0: 598 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); 599 return; 600 case 0x1 /* Read FIT */: 601 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); 602 return; 603 } 604 605 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 606 } 607 608 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 609 { 610 /* 611 * function 0 is called to inquire which functions are supported by 612 * OSPM 613 */ 614 if (!in->function) { 615 nvdimm_dsm_function0(0 /* No function supported other than 616 function 0 */, dsm_mem_addr); 617 return; 618 } 619 620 /* No function except function 0 is supported yet. */ 621 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 622 } 623 624 /* 625 * the max transfer size is the max size transferred by both a 626 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' 627 * function. 628 */ 629 static uint32_t nvdimm_get_max_xfer_label_size(void) 630 { 631 uint32_t max_get_size, max_set_size, dsm_memory_size; 632 633 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE; 634 635 /* 636 * the max data ACPI can read one time which is transferred by 637 * the response of 'Get Namespace Label Data' function. 638 */ 639 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); 640 641 /* 642 * the max data ACPI can write one time which is transferred by 643 * 'Set Namespace Label Data' function. 644 */ 645 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - 646 sizeof(NvdimmFuncSetLabelDataIn); 647 648 return MIN(max_get_size, max_set_size); 649 } 650 651 /* 652 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). 653 * 654 * It gets the size of Namespace Label data area and the max data size 655 * that Get/Set Namespace Label Data functions can transfer. 656 */ 657 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) 658 { 659 NvdimmFuncGetLabelSizeOut label_size_out = { 660 .len = cpu_to_le32(sizeof(label_size_out)), 661 }; 662 uint32_t label_size, mxfer; 663 664 label_size = nvdimm->label_size; 665 mxfer = nvdimm_get_max_xfer_label_size(); 666 667 nvdimm_debug("label_size 0x%x, max_xfer 0x%x.\n", label_size, mxfer); 668 669 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); 670 label_size_out.label_size = cpu_to_le32(label_size); 671 label_size_out.max_xfer = cpu_to_le32(mxfer); 672 673 cpu_physical_memory_write(dsm_mem_addr, &label_size_out, 674 sizeof(label_size_out)); 675 } 676 677 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, 678 uint32_t offset, uint32_t length) 679 { 680 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID; 681 682 if (offset + length < offset) { 683 nvdimm_debug("offset 0x%x + length 0x%x is overflow.\n", offset, 684 length); 685 return ret; 686 } 687 688 if (nvdimm->label_size < offset + length) { 689 nvdimm_debug("position 0x%x is beyond label data (len = %" PRIx64 ").\n", 690 offset + length, nvdimm->label_size); 691 return ret; 692 } 693 694 if (length > nvdimm_get_max_xfer_label_size()) { 695 nvdimm_debug("length (0x%x) is larger than max_xfer (0x%x).\n", 696 length, nvdimm_get_max_xfer_label_size()); 697 return ret; 698 } 699 700 return NVDIMM_DSM_RET_STATUS_SUCCESS; 701 } 702 703 /* 704 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). 705 */ 706 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 707 hwaddr dsm_mem_addr) 708 { 709 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 710 NvdimmFuncGetLabelDataIn *get_label_data; 711 NvdimmFuncGetLabelDataOut *get_label_data_out; 712 uint32_t status; 713 int size; 714 715 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; 716 get_label_data->offset = le32_to_cpu(get_label_data->offset); 717 get_label_data->length = le32_to_cpu(get_label_data->length); 718 719 nvdimm_debug("Read Label Data: offset 0x%x length 0x%x.\n", 720 get_label_data->offset, get_label_data->length); 721 722 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, 723 get_label_data->length); 724 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { 725 nvdimm_dsm_no_payload(status, dsm_mem_addr); 726 return; 727 } 728 729 size = sizeof(*get_label_data_out) + get_label_data->length; 730 assert(size <= NVDIMM_DSM_MEMORY_SIZE); 731 get_label_data_out = g_malloc(size); 732 733 get_label_data_out->len = cpu_to_le32(size); 734 get_label_data_out->func_ret_status = 735 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); 736 nvc->read_label_data(nvdimm, get_label_data_out->out_buf, 737 get_label_data->length, get_label_data->offset); 738 739 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); 740 g_free(get_label_data_out); 741 } 742 743 /* 744 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). 745 */ 746 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 747 hwaddr dsm_mem_addr) 748 { 749 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 750 NvdimmFuncSetLabelDataIn *set_label_data; 751 uint32_t status; 752 753 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; 754 755 set_label_data->offset = le32_to_cpu(set_label_data->offset); 756 set_label_data->length = le32_to_cpu(set_label_data->length); 757 758 nvdimm_debug("Write Label Data: offset 0x%x length 0x%x.\n", 759 set_label_data->offset, set_label_data->length); 760 761 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, 762 set_label_data->length); 763 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { 764 nvdimm_dsm_no_payload(status, dsm_mem_addr); 765 return; 766 } 767 768 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) + 769 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE); 770 771 nvc->write_label_data(nvdimm, set_label_data->in_buf, 772 set_label_data->length, set_label_data->offset); 773 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr); 774 } 775 776 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 777 { 778 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); 779 780 /* See the comments in nvdimm_dsm_root(). */ 781 if (!in->function) { 782 uint32_t supported_func = 0; 783 784 if (nvdimm && nvdimm->label_size) { 785 supported_func |= 0x1 /* Bit 0 indicates whether there is 786 support for any functions other 787 than function 0. */ | 788 1 << 4 /* Get Namespace Label Size */ | 789 1 << 5 /* Get Namespace Label Data */ | 790 1 << 6 /* Set Namespace Label Data */; 791 } 792 nvdimm_dsm_function0(supported_func, dsm_mem_addr); 793 return; 794 } 795 796 if (!nvdimm) { 797 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV, 798 dsm_mem_addr); 799 return; 800 } 801 802 /* Encode DSM function according to DSM Spec Rev1. */ 803 switch (in->function) { 804 case 4 /* Get Namespace Label Size */: 805 if (nvdimm->label_size) { 806 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); 807 return; 808 } 809 break; 810 case 5 /* Get Namespace Label Data */: 811 if (nvdimm->label_size) { 812 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); 813 return; 814 } 815 break; 816 case 0x6 /* Set Namespace Label Data */: 817 if (nvdimm->label_size) { 818 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); 819 return; 820 } 821 break; 822 } 823 824 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 825 } 826 827 static uint64_t 828 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) 829 { 830 nvdimm_debug("BUG: we never read _DSM IO Port.\n"); 831 return 0; 832 } 833 834 static void 835 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 836 { 837 NVDIMMState *state = opaque; 838 NvdimmDsmIn *in; 839 hwaddr dsm_mem_addr = val; 840 841 nvdimm_debug("dsm memory address 0x%" HWADDR_PRIx ".\n", dsm_mem_addr); 842 843 /* 844 * The DSM memory is mapped to guest address space so an evil guest 845 * can change its content while we are doing DSM emulation. Avoid 846 * this by copying DSM memory to QEMU local memory. 847 */ 848 in = g_new(NvdimmDsmIn, 1); 849 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); 850 851 in->revision = le32_to_cpu(in->revision); 852 in->function = le32_to_cpu(in->function); 853 in->handle = le32_to_cpu(in->handle); 854 855 nvdimm_debug("Revision 0x%x Handler 0x%x Function 0x%x.\n", in->revision, 856 in->handle, in->function); 857 858 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { 859 nvdimm_debug("Revision 0x%x is not supported, expect 0x%x.\n", 860 in->revision, 0x1); 861 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 862 goto exit; 863 } 864 865 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { 866 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr); 867 goto exit; 868 } 869 870 /* Handle 0 is reserved for NVDIMM Root Device. */ 871 if (!in->handle) { 872 nvdimm_dsm_root(in, dsm_mem_addr); 873 goto exit; 874 } 875 876 nvdimm_dsm_device(in, dsm_mem_addr); 877 878 exit: 879 g_free(in); 880 } 881 882 static const MemoryRegionOps nvdimm_dsm_ops = { 883 .read = nvdimm_dsm_read, 884 .write = nvdimm_dsm_write, 885 .endianness = DEVICE_LITTLE_ENDIAN, 886 .valid = { 887 .min_access_size = 4, 888 .max_access_size = 4, 889 }, 890 }; 891 892 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) 893 { 894 if (dev->hotplugged) { 895 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); 896 } 897 } 898 899 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io, 900 struct AcpiGenericAddress dsm_io, 901 FWCfgState *fw_cfg, Object *owner) 902 { 903 state->dsm_io = dsm_io; 904 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, 905 "nvdimm-acpi-io", dsm_io.bit_width >> 3); 906 memory_region_add_subregion(io, dsm_io.address, &state->io_mr); 907 908 state->dsm_mem = g_array_new(false, true /* clear */, 1); 909 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); 910 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, 911 state->dsm_mem->len); 912 913 nvdimm_init_fit_buffer(&state->fit_buf); 914 } 915 916 #define NVDIMM_COMMON_DSM "NCAL" 917 #define NVDIMM_ACPI_MEM_ADDR "MEMA" 918 919 #define NVDIMM_DSM_MEMORY "NRAM" 920 #define NVDIMM_DSM_IOPORT "NPIO" 921 922 #define NVDIMM_DSM_NOTIFY "NTFI" 923 #define NVDIMM_DSM_HANDLE "HDLE" 924 #define NVDIMM_DSM_REVISION "REVS" 925 #define NVDIMM_DSM_FUNCTION "FUNC" 926 #define NVDIMM_DSM_ARG3 "FARG" 927 928 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" 929 #define NVDIMM_DSM_OUT_BUF "ODAT" 930 931 #define NVDIMM_DSM_RFIT_STATUS "RSTA" 932 933 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" 934 935 static void nvdimm_build_common_dsm(Aml *dev, 936 NVDIMMState *nvdimm_state) 937 { 938 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; 939 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; 940 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; 941 Aml *whilectx, *offset; 942 uint8_t byte_list[1]; 943 AmlRegionSpace rs; 944 945 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); 946 uuid = aml_arg(0); 947 function = aml_arg(2); 948 handle = aml_arg(4); 949 dsm_mem = aml_local(6); 950 dsm_out_buf = aml_local(7); 951 952 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); 953 954 if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) { 955 rs = AML_SYSTEM_IO; 956 } else { 957 rs = AML_SYSTEM_MEMORY; 958 } 959 960 /* map DSM memory and IO into ACPI namespace. */ 961 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs, 962 aml_int(nvdimm_state->dsm_io.address), 963 nvdimm_state->dsm_io.bit_width >> 3)); 964 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, 965 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); 966 967 /* 968 * DSM notifier: 969 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to 970 * emulate the access. 971 * 972 * It is the IO port so that accessing them will cause VM-exit, the 973 * control will be transferred to QEMU. 974 */ 975 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, 976 AML_PRESERVE); 977 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, 978 nvdimm_state->dsm_io.bit_width)); 979 aml_append(method, field); 980 981 /* 982 * DSM input: 983 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call 984 * happens on NVDIMM Root Device. 985 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. 986 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. 987 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package 988 * containing function-specific arguments. 989 * 990 * They are RAM mapping on host so that these accesses never cause 991 * VM-EXIT. 992 */ 993 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 994 AML_PRESERVE); 995 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, 996 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); 997 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, 998 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); 999 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, 1000 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); 1001 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, 1002 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); 1003 aml_append(method, field); 1004 1005 /* 1006 * DSM output: 1007 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. 1008 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. 1009 * 1010 * Since the page is reused by both input and out, the input data 1011 * will be lost after storing new result into ODAT so we should fetch 1012 * all the input data before writing the result. 1013 */ 1014 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 1015 AML_PRESERVE); 1016 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, 1017 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); 1018 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, 1019 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); 1020 aml_append(method, field); 1021 1022 /* 1023 * do not support any method if DSM memory address has not been 1024 * patched. 1025 */ 1026 unpatched = aml_equal(dsm_mem, aml_int(0x0)); 1027 1028 expected_uuid = aml_local(0); 1029 1030 ifctx = aml_if(aml_equal(handle, aml_int(0x0))); 1031 aml_append(ifctx, aml_store( 1032 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") 1033 /* UUID for NVDIMM Root Device */, expected_uuid)); 1034 aml_append(method, ifctx); 1035 elsectx = aml_else(); 1036 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); 1037 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID 1038 /* UUID for QEMU internal use */), expected_uuid)); 1039 aml_append(elsectx, ifctx); 1040 elsectx2 = aml_else(); 1041 aml_append(elsectx2, aml_store( 1042 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") 1043 /* UUID for NVDIMM Devices */, expected_uuid)); 1044 aml_append(elsectx, elsectx2); 1045 aml_append(method, elsectx); 1046 1047 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); 1048 1049 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); 1050 1051 /* 1052 * function 0 is called to inquire what functions are supported by 1053 * OSPM 1054 */ 1055 ifctx = aml_if(aml_equal(function, aml_int(0))); 1056 byte_list[0] = 0 /* No function Supported */; 1057 aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); 1058 aml_append(unsupport, ifctx); 1059 1060 /* No function is supported yet. */ 1061 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT; 1062 aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); 1063 aml_append(method, unsupport); 1064 1065 /* 1066 * The HDLE indicates the DSM function is issued from which device, 1067 * it reserves 0 for root device and is the handle for NVDIMM devices. 1068 * See the comments in nvdimm_slot_to_handle(). 1069 */ 1070 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); 1071 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); 1072 aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION))); 1073 1074 /* 1075 * The fourth parameter (Arg3) of _DSM is a package which contains 1076 * a buffer, the layout of the buffer is specified by UUID (Arg0), 1077 * Revision ID (Arg1) and Function Index (Arg2) which are documented 1078 * in the DSM Spec. 1079 */ 1080 pckg = aml_arg(3); 1081 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), 1082 aml_int(4 /* Package */)) /* It is a Package? */, 1083 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, 1084 NULL)); 1085 1086 pckg_index = aml_local(2); 1087 pckg_buf = aml_local(3); 1088 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); 1089 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); 1090 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); 1091 aml_append(method, ifctx); 1092 1093 /* 1094 * tell QEMU about the real address of DSM memory, then QEMU 1095 * gets the control and fills the result in DSM memory. 1096 */ 1097 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); 1098 1099 dsm_out_buf_size = aml_local(1); 1100 /* RLEN is not included in the payload returned to guest. */ 1101 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), 1102 aml_int(4), dsm_out_buf_size)); 1103 1104 /* 1105 * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if 1106 * the Buffer Field <= to the size of an Integer (in bits), it will 1107 * be treated as an integer. Moreover, the integer size depends on 1108 * DSDT tables revision number. If revision number is < 2, integer 1109 * size is 32 bits, otherwise it is 64 bits. 1110 * Because of this CreateField() canot be used if RLEN < Integer Size. 1111 * 1112 * Also please note that APCI ASL operator SizeOf() doesn't support 1113 * Integer and there isn't any other way to figure out the Integer 1114 * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes, 1115 * build dsm_out_buf byte by byte. 1116 */ 1117 ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8))); 1118 offset = aml_local(2); 1119 aml_append(ifctx, aml_store(aml_int(0), offset)); 1120 aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL))); 1121 aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf)); 1122 1123 whilectx = aml_while(aml_lless(offset, dsm_out_buf_size)); 1124 /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */ 1125 aml_append(whilectx, aml_store(aml_derefof(aml_index( 1126 aml_name(NVDIMM_DSM_OUT_BUF), offset)), 1127 aml_index(aml_name("TBUF"), aml_int(0)))); 1128 aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"), 1129 dsm_out_buf)); 1130 aml_append(whilectx, aml_increment(offset)); 1131 aml_append(ifctx, whilectx); 1132 1133 aml_append(ifctx, aml_return(dsm_out_buf)); 1134 aml_append(method, ifctx); 1135 1136 /* If RLEN >= Integer size, just use CreateField() operator */ 1137 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), 1138 dsm_out_buf_size)); 1139 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), 1140 aml_int(0), dsm_out_buf_size, "OBUF")); 1141 aml_append(method, aml_return(aml_name("OBUF"))); 1142 1143 aml_append(dev, method); 1144 } 1145 1146 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) 1147 { 1148 Aml *method; 1149 1150 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 1151 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), 1152 aml_arg(1), aml_arg(2), aml_arg(3), 1153 aml_int(handle)))); 1154 aml_append(dev, method); 1155 } 1156 1157 static void nvdimm_build_fit(Aml *dev) 1158 { 1159 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; 1160 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; 1161 1162 buf = aml_local(0); 1163 buf_size = aml_local(1); 1164 fit = aml_local(2); 1165 1166 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0))); 1167 1168 /* build helper function, RFIT. */ 1169 method = aml_method("RFIT", 1, AML_SERIALIZED); 1170 aml_append(method, aml_name_decl("OFST", aml_int(0))); 1171 1172 /* prepare input package. */ 1173 pkg = aml_package(1); 1174 aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); 1175 aml_append(pkg, aml_name("OFST")); 1176 1177 /* call Read_FIT function. */ 1178 call_result = aml_call5(NVDIMM_COMMON_DSM, 1179 aml_touuid(NVDIMM_QEMU_RSVD_UUID), 1180 aml_int(1) /* Revision 1 */, 1181 aml_int(0x1) /* Read FIT */, 1182 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); 1183 aml_append(method, aml_store(call_result, buf)); 1184 1185 /* handle _DSM result. */ 1186 aml_append(method, aml_create_dword_field(buf, 1187 aml_int(0) /* offset at byte 0 */, "STAU")); 1188 1189 aml_append(method, aml_store(aml_name("STAU"), 1190 aml_name(NVDIMM_DSM_RFIT_STATUS))); 1191 1192 /* if something is wrong during _DSM. */ 1193 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS), 1194 aml_name("STAU")); 1195 ifctx = aml_if(aml_lnot(ifcond)); 1196 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1197 aml_append(method, ifctx); 1198 1199 aml_append(method, aml_store(aml_sizeof(buf), buf_size)); 1200 aml_append(method, aml_subtract(buf_size, 1201 aml_int(4) /* the size of "STAU" */, 1202 buf_size)); 1203 1204 /* if we read the end of fit. */ 1205 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1206 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1207 aml_append(method, ifctx); 1208 1209 aml_append(method, aml_create_field(buf, 1210 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ 1211 aml_shiftleft(buf_size, aml_int(3)), "BUFF")); 1212 aml_append(method, aml_return(aml_name("BUFF"))); 1213 aml_append(dev, method); 1214 1215 /* build _FIT. */ 1216 method = aml_method("_FIT", 0, AML_SERIALIZED); 1217 offset = aml_local(3); 1218 1219 aml_append(method, aml_store(aml_buffer(0, NULL), fit)); 1220 aml_append(method, aml_store(aml_int(0), offset)); 1221 1222 whilectx = aml_while(aml_int(1)); 1223 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); 1224 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); 1225 1226 /* 1227 * if fit buffer was changed during RFIT, read from the beginning 1228 * again. 1229 */ 1230 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), 1231 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED))); 1232 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); 1233 aml_append(ifctx, aml_store(aml_int(0), offset)); 1234 aml_append(whilectx, ifctx); 1235 1236 elsectx = aml_else(); 1237 1238 /* finish fit read if no data is read out. */ 1239 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1240 aml_append(ifctx, aml_return(fit)); 1241 aml_append(elsectx, ifctx); 1242 1243 /* update the offset. */ 1244 aml_append(elsectx, aml_add(offset, buf_size, offset)); 1245 /* append the data we read out to the fit buffer. */ 1246 aml_append(elsectx, aml_concatenate(fit, buf, fit)); 1247 aml_append(whilectx, elsectx); 1248 aml_append(method, whilectx); 1249 1250 aml_append(dev, method); 1251 } 1252 1253 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) 1254 { 1255 uint32_t slot; 1256 1257 for (slot = 0; slot < ram_slots; slot++) { 1258 uint32_t handle = nvdimm_slot_to_handle(slot); 1259 Aml *nvdimm_dev; 1260 1261 nvdimm_dev = aml_device("NV%02X", slot); 1262 1263 /* 1264 * ACPI 6.0: 9.20 NVDIMM Devices: 1265 * 1266 * _ADR object that is used to supply OSPM with unique address 1267 * of the NVDIMM device. This is done by returning the NFIT Device 1268 * handle that is used to identify the associated entries in ACPI 1269 * table NFIT or _FIT. 1270 */ 1271 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); 1272 1273 nvdimm_build_device_dsm(nvdimm_dev, handle); 1274 aml_append(root_dev, nvdimm_dev); 1275 } 1276 } 1277 1278 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, 1279 BIOSLinker *linker, 1280 NVDIMMState *nvdimm_state, 1281 uint32_t ram_slots) 1282 { 1283 Aml *ssdt, *sb_scope, *dev; 1284 int mem_addr_offset, nvdimm_ssdt; 1285 1286 acpi_add_table(table_offsets, table_data); 1287 1288 ssdt = init_aml_allocator(); 1289 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); 1290 1291 sb_scope = aml_scope("\\_SB"); 1292 1293 dev = aml_device("NVDR"); 1294 1295 /* 1296 * ACPI 6.0: 9.20 NVDIMM Devices: 1297 * 1298 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root 1299 * NVDIMM interface device. Platform firmware is required to contain one 1300 * such device in _SB scope if NVDIMMs support is exposed by platform to 1301 * OSPM. 1302 * For each NVDIMM present or intended to be supported by platform, 1303 * platform firmware also exposes an ACPI Namespace Device under the 1304 * root device. 1305 */ 1306 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); 1307 1308 nvdimm_build_common_dsm(dev, nvdimm_state); 1309 1310 /* 0 is reserved for root device. */ 1311 nvdimm_build_device_dsm(dev, 0); 1312 nvdimm_build_fit(dev); 1313 1314 nvdimm_build_nvdimm_devices(dev, ram_slots); 1315 1316 aml_append(sb_scope, dev); 1317 aml_append(ssdt, sb_scope); 1318 1319 nvdimm_ssdt = table_data->len; 1320 1321 /* copy AML table into ACPI tables blob and patch header there */ 1322 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); 1323 mem_addr_offset = build_append_named_dword(table_data, 1324 NVDIMM_ACPI_MEM_ADDR); 1325 1326 bios_linker_loader_alloc(linker, 1327 NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem, 1328 sizeof(NvdimmDsmIn), false /* high memory */); 1329 bios_linker_loader_add_pointer(linker, 1330 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), 1331 NVDIMM_DSM_MEM_FILE, 0); 1332 build_header(linker, table_data, 1333 (void *)(table_data->data + nvdimm_ssdt), 1334 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM"); 1335 free_aml_allocator(); 1336 } 1337 1338 void nvdimm_build_srat(GArray *table_data) 1339 { 1340 GSList *device_list = nvdimm_get_device_list(); 1341 1342 for (; device_list; device_list = device_list->next) { 1343 AcpiSratMemoryAffinity *numamem = NULL; 1344 DeviceState *dev = device_list->data; 1345 Object *obj = OBJECT(dev); 1346 uint64_t addr, size; 1347 int node; 1348 1349 node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort); 1350 addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort); 1351 size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort); 1352 1353 numamem = acpi_data_push(table_data, sizeof *numamem); 1354 build_srat_memory(numamem, addr, size, node, 1355 MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE); 1356 } 1357 g_slist_free(device_list); 1358 } 1359 1360 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, 1361 BIOSLinker *linker, NVDIMMState *state, 1362 uint32_t ram_slots) 1363 { 1364 GSList *device_list; 1365 1366 /* no nvdimm device can be plugged. */ 1367 if (!ram_slots) { 1368 return; 1369 } 1370 1371 nvdimm_build_ssdt(table_offsets, table_data, linker, state, 1372 ram_slots); 1373 1374 device_list = nvdimm_get_device_list(); 1375 /* no NVDIMM device is plugged. */ 1376 if (!device_list) { 1377 return; 1378 } 1379 1380 nvdimm_build_nfit(state, table_offsets, table_data, linker); 1381 g_slist_free(device_list); 1382 } 1383