xref: /openbmc/qemu/hw/acpi/nvdimm.c (revision b14df228)
1 /*
2  * NVDIMM ACPI Implementation
3  *
4  * Copyright(C) 2015 Intel Corporation.
5  *
6  * Author:
7  *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
8  *
9  * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10  * and the DSM specification can be found at:
11  *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
12  *
13  * Currently, it only supports PMEM Virtualization.
14  *
15  * This library is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU Lesser General Public
17  * License as published by the Free Software Foundation; either
18  * version 2.1 of the License, or (at your option) any later version.
19  *
20  * This library is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  * Lesser General Public License for more details.
24  *
25  * You should have received a copy of the GNU Lesser General Public
26  * License along with this library; if not, see <http://www.gnu.org/licenses/>
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/uuid.h"
31 #include "qapi/error.h"
32 #include "hw/acpi/acpi.h"
33 #include "hw/acpi/aml-build.h"
34 #include "hw/acpi/bios-linker-loader.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/mem/nvdimm.h"
37 #include "qemu/nvdimm-utils.h"
38 #include "trace.h"
39 
40 /*
41  * define Byte Addressable Persistent Memory (PM) Region according to
42  * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
43  */
44 static const uint8_t nvdimm_nfit_spa_uuid[] =
45       UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
46               0x18, 0xb7, 0x8c, 0xdb);
47 
48 /*
49  * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
50  * Interface Table (NFIT).
51  */
52 
53 /*
54  * System Physical Address Range Structure
55  *
56  * It describes the system physical address ranges occupied by NVDIMMs and
57  * the types of the regions.
58  */
59 struct NvdimmNfitSpa {
60     uint16_t type;
61     uint16_t length;
62     uint16_t spa_index;
63     uint16_t flags;
64     uint32_t reserved;
65     uint32_t proximity_domain;
66     uint8_t type_guid[16];
67     uint64_t spa_base;
68     uint64_t spa_length;
69     uint64_t mem_attr;
70 } QEMU_PACKED;
71 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
72 
73 /*
74  * Memory Device to System Physical Address Range Mapping Structure
75  *
76  * It enables identifying each NVDIMM region and the corresponding SPA
77  * describing the memory interleave
78  */
79 struct NvdimmNfitMemDev {
80     uint16_t type;
81     uint16_t length;
82     uint32_t nfit_handle;
83     uint16_t phys_id;
84     uint16_t region_id;
85     uint16_t spa_index;
86     uint16_t dcr_index;
87     uint64_t region_len;
88     uint64_t region_offset;
89     uint64_t region_dpa;
90     uint16_t interleave_index;
91     uint16_t interleave_ways;
92     uint16_t flags;
93     uint16_t reserved;
94 } QEMU_PACKED;
95 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
96 
97 #define ACPI_NFIT_MEM_NOT_ARMED     (1 << 3)
98 
99 /*
100  * NVDIMM Control Region Structure
101  *
102  * It describes the NVDIMM and if applicable, Block Control Window.
103  */
104 struct NvdimmNfitControlRegion {
105     uint16_t type;
106     uint16_t length;
107     uint16_t dcr_index;
108     uint16_t vendor_id;
109     uint16_t device_id;
110     uint16_t revision_id;
111     uint16_t sub_vendor_id;
112     uint16_t sub_device_id;
113     uint16_t sub_revision_id;
114     uint8_t reserved[6];
115     uint32_t serial_number;
116     uint16_t fic;
117     uint16_t num_bcw;
118     uint64_t bcw_size;
119     uint64_t cmd_offset;
120     uint64_t cmd_size;
121     uint64_t status_offset;
122     uint64_t status_size;
123     uint16_t flags;
124     uint8_t reserved2[6];
125 } QEMU_PACKED;
126 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
127 
128 /*
129  * NVDIMM Platform Capabilities Structure
130  *
131  * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
132  */
133 struct NvdimmNfitPlatformCaps {
134     uint16_t type;
135     uint16_t length;
136     uint8_t highest_cap;
137     uint8_t reserved[3];
138     uint32_t capabilities;
139     uint8_t reserved2[4];
140 } QEMU_PACKED;
141 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
142 
143 /*
144  * Module serial number is a unique number for each device. We use the
145  * slot id of NVDIMM device to generate this number so that each device
146  * associates with a different number.
147  *
148  * 0x123456 is a magic number we arbitrarily chose.
149  */
150 static uint32_t nvdimm_slot_to_sn(int slot)
151 {
152     return 0x123456 + slot;
153 }
154 
155 /*
156  * handle is used to uniquely associate nfit_memdev structure with NVDIMM
157  * ACPI device - nfit_memdev.nfit_handle matches with the value returned
158  * by ACPI device _ADR method.
159  *
160  * We generate the handle with the slot id of NVDIMM device and reserve
161  * 0 for NVDIMM root device.
162  */
163 static uint32_t nvdimm_slot_to_handle(int slot)
164 {
165     return slot + 1;
166 }
167 
168 /*
169  * index uniquely identifies the structure, 0 is reserved which indicates
170  * that the structure is not valid or the associated structure is not
171  * present.
172  *
173  * Each NVDIMM device needs two indexes, one for nfit_spa and another for
174  * nfit_dc which are generated by the slot id of NVDIMM device.
175  */
176 static uint16_t nvdimm_slot_to_spa_index(int slot)
177 {
178     return (slot + 1) << 1;
179 }
180 
181 /* See the comments of nvdimm_slot_to_spa_index(). */
182 static uint32_t nvdimm_slot_to_dcr_index(int slot)
183 {
184     return nvdimm_slot_to_spa_index(slot) + 1;
185 }
186 
187 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
188 {
189     NVDIMMDevice *nvdimm = NULL;
190     GSList *list, *device_list = nvdimm_get_device_list();
191 
192     for (list = device_list; list; list = list->next) {
193         NVDIMMDevice *nvd = list->data;
194         int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
195                                            NULL);
196 
197         if (nvdimm_slot_to_handle(slot) == handle) {
198             nvdimm = nvd;
199             break;
200         }
201     }
202 
203     g_slist_free(device_list);
204     return nvdimm;
205 }
206 
207 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
208 static void
209 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
210 {
211     NvdimmNfitSpa *nfit_spa;
212     uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
213                                              NULL);
214     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
215                                              NULL);
216     uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
217                                              NULL);
218     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
219                                        NULL);
220 
221     nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
222 
223     nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
224                                       Structure */);
225     nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
226     nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
227 
228     /*
229      * Control region is strict as all the device info, such as SN, index,
230      * is associated with slot id.
231      */
232     nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
233                                        management during hot add/online
234                                        operation */ |
235                                   2 /* Data in Proximity Domain field is
236                                        valid*/);
237 
238     /* NUMA node. */
239     nfit_spa->proximity_domain = cpu_to_le32(node);
240     /* the region reported as PMEM. */
241     memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
242            sizeof(nvdimm_nfit_spa_uuid));
243 
244     nfit_spa->spa_base = cpu_to_le64(addr);
245     nfit_spa->spa_length = cpu_to_le64(size);
246 
247     /* It is the PMEM and can be cached as writeback. */
248     nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
249                                      0x8000ULL /* EFI_MEMORY_NV */);
250 }
251 
252 /*
253  * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
254  * Structure
255  */
256 static void
257 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
258 {
259     NvdimmNfitMemDev *nfit_memdev;
260     NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
261     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
262                                              NULL);
263     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
264                                             NULL);
265     uint32_t handle = nvdimm_slot_to_handle(slot);
266 
267     nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
268 
269     nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
270                                          Range Map Structure*/);
271     nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
272     nfit_memdev->nfit_handle = cpu_to_le32(handle);
273 
274     /*
275      * associate memory device with System Physical Address Range
276      * Structure.
277      */
278     nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
279     /* associate memory device with Control Region Structure. */
280     nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
281 
282     /* The memory region on the device. */
283     nfit_memdev->region_len = cpu_to_le64(size);
284     /* The device address starts from 0. */
285     nfit_memdev->region_dpa = cpu_to_le64(0);
286 
287     /* Only one interleave for PMEM. */
288     nfit_memdev->interleave_ways = cpu_to_le16(1);
289 
290     if (nvdimm->unarmed) {
291         nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
292     }
293 }
294 
295 /*
296  * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
297  */
298 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
299 {
300     NvdimmNfitControlRegion *nfit_dcr;
301     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
302                                        NULL);
303     uint32_t sn = nvdimm_slot_to_sn(slot);
304 
305     nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
306 
307     nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
308     nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
309     nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
310 
311     /* vendor: Intel. */
312     nfit_dcr->vendor_id = cpu_to_le16(0x8086);
313     nfit_dcr->device_id = cpu_to_le16(1);
314 
315     /* The _DSM method is following Intel's DSM specification. */
316     nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
317                                              in ACPI 6.0 is 1. */);
318     nfit_dcr->serial_number = cpu_to_le32(sn);
319     nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
320                                          Byte addressable, no energy backed.
321                                          See ACPI 6.2, sect 5.2.25.6 and
322                                          JEDEC Annex L Release 3. */);
323 }
324 
325 /*
326  * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
327  */
328 static void
329 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
330 {
331     NvdimmNfitPlatformCaps *nfit_caps;
332 
333     nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
334 
335     nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
336     nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
337     nfit_caps->highest_cap = 31 - clz32(capabilities);
338     nfit_caps->capabilities = cpu_to_le32(capabilities);
339 }
340 
341 static GArray *nvdimm_build_device_structure(NVDIMMState *state)
342 {
343     GSList *device_list, *list = nvdimm_get_device_list();
344     GArray *structures = g_array_new(false, true /* clear */, 1);
345 
346     for (device_list = list; device_list; device_list = device_list->next) {
347         DeviceState *dev = device_list->data;
348 
349         /* build System Physical Address Range Structure. */
350         nvdimm_build_structure_spa(structures, dev);
351 
352         /*
353          * build Memory Device to System Physical Address Range Mapping
354          * Structure.
355          */
356         nvdimm_build_structure_memdev(structures, dev);
357 
358         /* build NVDIMM Control Region Structure. */
359         nvdimm_build_structure_dcr(structures, dev);
360     }
361     g_slist_free(list);
362 
363     if (state->persistence) {
364         nvdimm_build_structure_caps(structures, state->persistence);
365     }
366 
367     return structures;
368 }
369 
370 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
371 {
372     fit_buf->fit = g_array_new(false, true /* clear */, 1);
373 }
374 
375 static void nvdimm_build_fit_buffer(NVDIMMState *state)
376 {
377     NvdimmFitBuffer *fit_buf = &state->fit_buf;
378 
379     g_array_free(fit_buf->fit, true);
380     fit_buf->fit = nvdimm_build_device_structure(state);
381     fit_buf->dirty = true;
382 }
383 
384 void nvdimm_plug(NVDIMMState *state)
385 {
386     nvdimm_build_fit_buffer(state);
387 }
388 
389 /*
390  * NVDIMM Firmware Interface Table
391  * @signature: "NFIT"
392  *
393  * It provides information that allows OSPM to enumerate NVDIMM present in
394  * the platform and associate system physical address ranges created by the
395  * NVDIMMs.
396  *
397  * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
398  */
399 
400 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
401                               GArray *table_data, BIOSLinker *linker,
402                               const char *oem_id, const char *oem_table_id)
403 {
404     NvdimmFitBuffer *fit_buf = &state->fit_buf;
405     AcpiTable table = { .sig = "NFIT", .rev = 1,
406                         .oem_id = oem_id, .oem_table_id = oem_table_id };
407 
408     acpi_add_table(table_offsets, table_data);
409 
410     acpi_table_begin(&table, table_data);
411     /* Reserved */
412     build_append_int_noprefix(table_data, 0, 4);
413     /* NVDIMM device structures. */
414     g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
415     acpi_table_end(linker, &table);
416 }
417 
418 #define NVDIMM_DSM_MEMORY_SIZE      4096
419 
420 struct NvdimmDsmIn {
421     uint32_t handle;
422     uint32_t revision;
423     uint32_t function;
424     /* the remaining size in the page is used by arg3. */
425     union {
426         uint8_t arg3[4084];
427     };
428 } QEMU_PACKED;
429 typedef struct NvdimmDsmIn NvdimmDsmIn;
430 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
431 
432 struct NvdimmDsmOut {
433     /* the size of buffer filled by QEMU. */
434     uint32_t len;
435     uint8_t data[4092];
436 } QEMU_PACKED;
437 typedef struct NvdimmDsmOut NvdimmDsmOut;
438 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
439 
440 struct NvdimmDsmFunc0Out {
441     /* the size of buffer filled by QEMU. */
442      uint32_t len;
443      uint32_t supported_func;
444 } QEMU_PACKED;
445 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
446 
447 struct NvdimmDsmFuncNoPayloadOut {
448     /* the size of buffer filled by QEMU. */
449      uint32_t len;
450      uint32_t func_ret_status;
451 } QEMU_PACKED;
452 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
453 
454 struct NvdimmFuncGetLabelSizeOut {
455     /* the size of buffer filled by QEMU. */
456     uint32_t len;
457     uint32_t func_ret_status; /* return status code. */
458     uint32_t label_size; /* the size of label data area. */
459     /*
460      * Maximum size of the namespace label data length supported by
461      * the platform in Get/Set Namespace Label Data functions.
462      */
463     uint32_t max_xfer;
464 } QEMU_PACKED;
465 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
466 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
467 
468 struct NvdimmFuncGetLabelDataIn {
469     uint32_t offset; /* the offset in the namespace label data area. */
470     uint32_t length; /* the size of data is to be read via the function. */
471 } QEMU_PACKED;
472 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
473 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
474                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
475 
476 struct NvdimmFuncGetLabelDataOut {
477     /* the size of buffer filled by QEMU. */
478     uint32_t len;
479     uint32_t func_ret_status; /* return status code. */
480     uint8_t out_buf[]; /* the data got via Get Namespace Label function. */
481 } QEMU_PACKED;
482 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
483 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
484 
485 struct NvdimmFuncSetLabelDataIn {
486     uint32_t offset; /* the offset in the namespace label data area. */
487     uint32_t length; /* the size of data is to be written via the function. */
488     uint8_t in_buf[]; /* the data written to label data area. */
489 } QEMU_PACKED;
490 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
491 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
492                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
493 
494 struct NvdimmFuncReadFITIn {
495     uint32_t offset; /* the offset into FIT buffer. */
496 } QEMU_PACKED;
497 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
498 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
499                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
500 
501 struct NvdimmFuncReadFITOut {
502     /* the size of buffer filled by QEMU. */
503     uint32_t len;
504     uint32_t func_ret_status; /* return status code. */
505     uint8_t fit[]; /* the FIT data. */
506 } QEMU_PACKED;
507 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
508 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
509 
510 static void
511 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
512 {
513     NvdimmDsmFunc0Out func0 = {
514         .len = cpu_to_le32(sizeof(func0)),
515         .supported_func = cpu_to_le32(supported_func),
516     };
517     cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
518 }
519 
520 static void
521 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
522 {
523     NvdimmDsmFuncNoPayloadOut out = {
524         .len = cpu_to_le32(sizeof(out)),
525         .func_ret_status = cpu_to_le32(func_ret_status),
526     };
527     cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
528 }
529 
530 #define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
531 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
532 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
533 #define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
534 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
535 
536 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
537 
538 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
539 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
540                                      hwaddr dsm_mem_addr)
541 {
542     NvdimmFitBuffer *fit_buf = &state->fit_buf;
543     NvdimmFuncReadFITIn *read_fit;
544     NvdimmFuncReadFITOut *read_fit_out;
545     GArray *fit;
546     uint32_t read_len = 0, func_ret_status;
547     int size;
548 
549     read_fit = (NvdimmFuncReadFITIn *)in->arg3;
550     read_fit->offset = le32_to_cpu(read_fit->offset);
551 
552     fit = fit_buf->fit;
553 
554     trace_acpi_nvdimm_read_fit(read_fit->offset, fit->len,
555                                fit_buf->dirty ? "Yes" : "No");
556 
557     if (read_fit->offset > fit->len) {
558         func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
559         goto exit;
560     }
561 
562     /* It is the first time to read FIT. */
563     if (!read_fit->offset) {
564         fit_buf->dirty = false;
565     } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
566         func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
567         goto exit;
568     }
569 
570     func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
571     read_len = MIN(fit->len - read_fit->offset,
572                    NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
573 
574 exit:
575     size = sizeof(NvdimmFuncReadFITOut) + read_len;
576     read_fit_out = g_malloc(size);
577 
578     read_fit_out->len = cpu_to_le32(size);
579     read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
580     memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
581 
582     cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
583 
584     g_free(read_fit_out);
585 }
586 
587 static void
588 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
589                                        NvdimmDsmIn *in, hwaddr dsm_mem_addr)
590 {
591     switch (in->function) {
592     case 0x0:
593         nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
594         return;
595     case 0x1 /* Read FIT */:
596         nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
597         return;
598     }
599 
600     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
601 }
602 
603 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
604 {
605     /*
606      * function 0 is called to inquire which functions are supported by
607      * OSPM
608      */
609     if (!in->function) {
610         nvdimm_dsm_function0(0 /* No function supported other than
611                                   function 0 */, dsm_mem_addr);
612         return;
613     }
614 
615     /* No function except function 0 is supported yet. */
616     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
617 }
618 
619 /*
620  * the max transfer size is the max size transferred by both a
621  * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
622  * function.
623  */
624 static uint32_t nvdimm_get_max_xfer_label_size(void)
625 {
626     uint32_t max_get_size, max_set_size, dsm_memory_size;
627 
628     dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
629 
630     /*
631      * the max data ACPI can read one time which is transferred by
632      * the response of 'Get Namespace Label Data' function.
633      */
634     max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
635 
636     /*
637      * the max data ACPI can write one time which is transferred by
638      * 'Set Namespace Label Data' function.
639      */
640     max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
641                    sizeof(NvdimmFuncSetLabelDataIn);
642 
643     return MIN(max_get_size, max_set_size);
644 }
645 
646 /*
647  * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
648  *
649  * It gets the size of Namespace Label data area and the max data size
650  * that Get/Set Namespace Label Data functions can transfer.
651  */
652 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
653 {
654     NvdimmFuncGetLabelSizeOut label_size_out = {
655         .len = cpu_to_le32(sizeof(label_size_out)),
656     };
657     uint32_t label_size, mxfer;
658 
659     label_size = nvdimm->label_size;
660     mxfer = nvdimm_get_max_xfer_label_size();
661 
662     trace_acpi_nvdimm_label_info(label_size, mxfer);
663 
664     label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
665     label_size_out.label_size = cpu_to_le32(label_size);
666     label_size_out.max_xfer = cpu_to_le32(mxfer);
667 
668     cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
669                               sizeof(label_size_out));
670 }
671 
672 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
673                                            uint32_t offset, uint32_t length)
674 {
675     uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
676 
677     if (offset + length < offset) {
678         trace_acpi_nvdimm_label_overflow(offset, length);
679         return ret;
680     }
681 
682     if (nvdimm->label_size < offset + length) {
683         trace_acpi_nvdimm_label_oversize(offset + length, nvdimm->label_size);
684         return ret;
685     }
686 
687     if (length > nvdimm_get_max_xfer_label_size()) {
688         trace_acpi_nvdimm_label_xfer_exceed(length,
689                                             nvdimm_get_max_xfer_label_size());
690         return ret;
691     }
692 
693     return NVDIMM_DSM_RET_STATUS_SUCCESS;
694 }
695 
696 /*
697  * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
698  */
699 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
700                                       hwaddr dsm_mem_addr)
701 {
702     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
703     NvdimmFuncGetLabelDataIn *get_label_data;
704     NvdimmFuncGetLabelDataOut *get_label_data_out;
705     uint32_t status;
706     int size;
707 
708     get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
709     get_label_data->offset = le32_to_cpu(get_label_data->offset);
710     get_label_data->length = le32_to_cpu(get_label_data->length);
711 
712     trace_acpi_nvdimm_read_label(get_label_data->offset,
713                                  get_label_data->length);
714 
715     status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
716                                         get_label_data->length);
717     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
718         nvdimm_dsm_no_payload(status, dsm_mem_addr);
719         return;
720     }
721 
722     size = sizeof(*get_label_data_out) + get_label_data->length;
723     assert(size <= NVDIMM_DSM_MEMORY_SIZE);
724     get_label_data_out = g_malloc(size);
725 
726     get_label_data_out->len = cpu_to_le32(size);
727     get_label_data_out->func_ret_status =
728                             cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
729     nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
730                          get_label_data->length, get_label_data->offset);
731 
732     cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
733     g_free(get_label_data_out);
734 }
735 
736 /*
737  * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
738  */
739 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
740                                       hwaddr dsm_mem_addr)
741 {
742     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
743     NvdimmFuncSetLabelDataIn *set_label_data;
744     uint32_t status;
745 
746     set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
747 
748     set_label_data->offset = le32_to_cpu(set_label_data->offset);
749     set_label_data->length = le32_to_cpu(set_label_data->length);
750 
751     trace_acpi_nvdimm_write_label(set_label_data->offset,
752                                   set_label_data->length);
753 
754     status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
755                                         set_label_data->length);
756     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
757         nvdimm_dsm_no_payload(status, dsm_mem_addr);
758         return;
759     }
760 
761     assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
762                     set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
763 
764     nvc->write_label_data(nvdimm, set_label_data->in_buf,
765                           set_label_data->length, set_label_data->offset);
766     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
767 }
768 
769 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
770 {
771     NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
772 
773     /* See the comments in nvdimm_dsm_root(). */
774     if (!in->function) {
775         uint32_t supported_func = 0;
776 
777         if (nvdimm && nvdimm->label_size) {
778             supported_func |= 0x1 /* Bit 0 indicates whether there is
779                                      support for any functions other
780                                      than function 0. */ |
781                               1 << 4 /* Get Namespace Label Size */ |
782                               1 << 5 /* Get Namespace Label Data */ |
783                               1 << 6 /* Set Namespace Label Data */;
784         }
785         nvdimm_dsm_function0(supported_func, dsm_mem_addr);
786         return;
787     }
788 
789     if (!nvdimm) {
790         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
791                               dsm_mem_addr);
792         return;
793     }
794 
795     /* Encode DSM function according to DSM Spec Rev1. */
796     switch (in->function) {
797     case 4 /* Get Namespace Label Size */:
798         if (nvdimm->label_size) {
799             nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
800             return;
801         }
802         break;
803     case 5 /* Get Namespace Label Data */:
804         if (nvdimm->label_size) {
805             nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
806             return;
807         }
808         break;
809     case 0x6 /* Set Namespace Label Data */:
810         if (nvdimm->label_size) {
811             nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
812             return;
813         }
814         break;
815     }
816 
817     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
818 }
819 
820 static uint64_t
821 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
822 {
823     trace_acpi_nvdimm_read_io_port();
824     return 0;
825 }
826 
827 static void
828 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
829 {
830     NVDIMMState *state = opaque;
831     NvdimmDsmIn *in;
832     hwaddr dsm_mem_addr = val;
833 
834     trace_acpi_nvdimm_dsm_mem_addr(dsm_mem_addr);
835 
836     /*
837      * The DSM memory is mapped to guest address space so an evil guest
838      * can change its content while we are doing DSM emulation. Avoid
839      * this by copying DSM memory to QEMU local memory.
840      */
841     in = g_new(NvdimmDsmIn, 1);
842     cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
843 
844     in->revision = le32_to_cpu(in->revision);
845     in->function = le32_to_cpu(in->function);
846     in->handle = le32_to_cpu(in->handle);
847 
848     trace_acpi_nvdimm_dsm_info(in->revision, in->handle, in->function);
849 
850     if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
851         trace_acpi_nvdimm_invalid_revision(in->revision);
852         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
853         goto exit;
854     }
855 
856     if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
857         nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
858         goto exit;
859     }
860 
861      /* Handle 0 is reserved for NVDIMM Root Device. */
862     if (!in->handle) {
863         nvdimm_dsm_root(in, dsm_mem_addr);
864         goto exit;
865     }
866 
867     nvdimm_dsm_device(in, dsm_mem_addr);
868 
869 exit:
870     g_free(in);
871 }
872 
873 static const MemoryRegionOps nvdimm_dsm_ops = {
874     .read = nvdimm_dsm_read,
875     .write = nvdimm_dsm_write,
876     .endianness = DEVICE_LITTLE_ENDIAN,
877     .valid = {
878         .min_access_size = 4,
879         .max_access_size = 4,
880     },
881 };
882 
883 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
884 {
885     if (dev->hotplugged) {
886         acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
887     }
888 }
889 
890 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
891                             struct AcpiGenericAddress dsm_io,
892                             FWCfgState *fw_cfg, Object *owner)
893 {
894     state->dsm_io = dsm_io;
895     memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
896                           "nvdimm-acpi-io", dsm_io.bit_width >> 3);
897     memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
898 
899     state->dsm_mem = g_array_new(false, true /* clear */, 1);
900     acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
901     fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
902                     state->dsm_mem->len);
903 
904     nvdimm_init_fit_buffer(&state->fit_buf);
905 }
906 
907 #define NVDIMM_COMMON_DSM       "NCAL"
908 #define NVDIMM_ACPI_MEM_ADDR    "MEMA"
909 
910 #define NVDIMM_DSM_MEMORY       "NRAM"
911 #define NVDIMM_DSM_IOPORT       "NPIO"
912 
913 #define NVDIMM_DSM_NOTIFY       "NTFI"
914 #define NVDIMM_DSM_HANDLE       "HDLE"
915 #define NVDIMM_DSM_REVISION     "REVS"
916 #define NVDIMM_DSM_FUNCTION     "FUNC"
917 #define NVDIMM_DSM_ARG3         "FARG"
918 
919 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
920 #define NVDIMM_DSM_OUT_BUF      "ODAT"
921 
922 #define NVDIMM_DSM_RFIT_STATUS  "RSTA"
923 
924 #define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
925 
926 static void nvdimm_build_common_dsm(Aml *dev,
927                                     NVDIMMState *nvdimm_state)
928 {
929     Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
930     Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
931     Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
932     Aml *whilectx, *offset;
933     uint8_t byte_list[1];
934     AmlRegionSpace rs;
935 
936     method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
937     uuid = aml_arg(0);
938     function = aml_arg(2);
939     handle = aml_arg(4);
940     dsm_mem = aml_local(6);
941     dsm_out_buf = aml_local(7);
942 
943     aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
944 
945     if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
946         rs = AML_SYSTEM_IO;
947     } else {
948         rs = AML_SYSTEM_MEMORY;
949     }
950 
951     /* map DSM memory and IO into ACPI namespace. */
952     aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
953                aml_int(nvdimm_state->dsm_io.address),
954                nvdimm_state->dsm_io.bit_width >> 3));
955     aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
956                AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
957 
958     /*
959      * DSM notifier:
960      * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
961      *                    emulate the access.
962      *
963      * It is the IO port so that accessing them will cause VM-exit, the
964      * control will be transferred to QEMU.
965      */
966     field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
967                       AML_PRESERVE);
968     aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
969                nvdimm_state->dsm_io.bit_width));
970     aml_append(method, field);
971 
972     /*
973      * DSM input:
974      * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
975      *                    happens on NVDIMM Root Device.
976      * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
977      * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
978      * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
979      *                  containing function-specific arguments.
980      *
981      * They are RAM mapping on host so that these accesses never cause
982      * VM-EXIT.
983      */
984     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
985                       AML_PRESERVE);
986     aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
987                sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
988     aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
989                sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
990     aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
991                sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
992     aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
993          (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
994     aml_append(method, field);
995 
996     /*
997      * DSM output:
998      * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
999      * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1000      *
1001      * Since the page is reused by both input and out, the input data
1002      * will be lost after storing new result into ODAT so we should fetch
1003      * all the input data before writing the result.
1004      */
1005     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1006                       AML_PRESERVE);
1007     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1008                sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1009     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1010        (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1011     aml_append(method, field);
1012 
1013     /*
1014      * do not support any method if DSM memory address has not been
1015      * patched.
1016      */
1017     unpatched = aml_equal(dsm_mem, aml_int(0x0));
1018 
1019     expected_uuid = aml_local(0);
1020 
1021     ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1022     aml_append(ifctx, aml_store(
1023                aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1024                /* UUID for NVDIMM Root Device */, expected_uuid));
1025     aml_append(method, ifctx);
1026     elsectx = aml_else();
1027     ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1028     aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1029                /* UUID for QEMU internal use */), expected_uuid));
1030     aml_append(elsectx, ifctx);
1031     elsectx2 = aml_else();
1032     aml_append(elsectx2, aml_store(
1033                aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1034                /* UUID for NVDIMM Devices */, expected_uuid));
1035     aml_append(elsectx, elsectx2);
1036     aml_append(method, elsectx);
1037 
1038     uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1039 
1040     unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1041 
1042     /*
1043      * function 0 is called to inquire what functions are supported by
1044      * OSPM
1045      */
1046     ifctx = aml_if(aml_equal(function, aml_int(0)));
1047     byte_list[0] = 0 /* No function Supported */;
1048     aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1049     aml_append(unsupport, ifctx);
1050 
1051     /* No function is supported yet. */
1052     byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1053     aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1054     aml_append(method, unsupport);
1055 
1056     /*
1057      * The HDLE indicates the DSM function is issued from which device,
1058      * it reserves 0 for root device and is the handle for NVDIMM devices.
1059      * See the comments in nvdimm_slot_to_handle().
1060      */
1061     aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1062     aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1063     aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1064 
1065     /*
1066      * The fourth parameter (Arg3) of _DSM is a package which contains
1067      * a buffer, the layout of the buffer is specified by UUID (Arg0),
1068      * Revision ID (Arg1) and Function Index (Arg2) which are documented
1069      * in the DSM Spec.
1070      */
1071     pckg = aml_arg(3);
1072     ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1073                    aml_int(4 /* Package */)) /* It is a Package? */,
1074                    aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1075                    NULL));
1076 
1077     pckg_index = aml_local(2);
1078     pckg_buf = aml_local(3);
1079     aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1080     aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1081     aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1082     aml_append(method, ifctx);
1083 
1084     /*
1085      * tell QEMU about the real address of DSM memory, then QEMU
1086      * gets the control and fills the result in DSM memory.
1087      */
1088     aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1089 
1090     dsm_out_buf_size = aml_local(1);
1091     /* RLEN is not included in the payload returned to guest. */
1092     aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1093                aml_int(4), dsm_out_buf_size));
1094 
1095     /*
1096      * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1097      * the Buffer Field <= to the size of an Integer (in bits), it will
1098      * be treated as an integer. Moreover, the integer size depends on
1099      * DSDT tables revision number. If revision number is < 2, integer
1100      * size is 32 bits, otherwise it is 64 bits.
1101      * Because of this CreateField() canot be used if RLEN < Integer Size.
1102      *
1103      * Also please note that APCI ASL operator SizeOf() doesn't support
1104      * Integer and there isn't any other way to figure out the Integer
1105      * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1106      * build dsm_out_buf byte by byte.
1107      */
1108     ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
1109     offset = aml_local(2);
1110     aml_append(ifctx, aml_store(aml_int(0), offset));
1111     aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
1112     aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
1113 
1114     whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
1115     /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1116     aml_append(whilectx, aml_store(aml_derefof(aml_index(
1117                                    aml_name(NVDIMM_DSM_OUT_BUF), offset)),
1118                                    aml_index(aml_name("TBUF"), aml_int(0))));
1119     aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
1120                                          dsm_out_buf));
1121     aml_append(whilectx, aml_increment(offset));
1122     aml_append(ifctx, whilectx);
1123 
1124     aml_append(ifctx, aml_return(dsm_out_buf));
1125     aml_append(method, ifctx);
1126 
1127     /* If RLEN >= Integer size, just use CreateField() operator */
1128     aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1129                                  dsm_out_buf_size));
1130     aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1131                aml_int(0), dsm_out_buf_size, "OBUF"));
1132     aml_append(method, aml_return(aml_name("OBUF")));
1133 
1134     aml_append(dev, method);
1135 }
1136 
1137 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1138 {
1139     Aml *method;
1140 
1141     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1142     aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1143                                   aml_arg(1), aml_arg(2), aml_arg(3),
1144                                   aml_int(handle))));
1145     aml_append(dev, method);
1146 }
1147 
1148 static void nvdimm_build_fit(Aml *dev)
1149 {
1150     Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1151     Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1152 
1153     buf = aml_local(0);
1154     buf_size = aml_local(1);
1155     fit = aml_local(2);
1156 
1157     aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1158 
1159     /* build helper function, RFIT. */
1160     method = aml_method("RFIT", 1, AML_SERIALIZED);
1161     aml_append(method, aml_name_decl("OFST", aml_int(0)));
1162 
1163     /* prepare input package. */
1164     pkg = aml_package(1);
1165     aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1166     aml_append(pkg, aml_name("OFST"));
1167 
1168     /* call Read_FIT function. */
1169     call_result = aml_call5(NVDIMM_COMMON_DSM,
1170                             aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1171                             aml_int(1) /* Revision 1 */,
1172                             aml_int(0x1) /* Read FIT */,
1173                             pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1174     aml_append(method, aml_store(call_result, buf));
1175 
1176     /* handle _DSM result. */
1177     aml_append(method, aml_create_dword_field(buf,
1178                aml_int(0) /* offset at byte 0 */, "STAU"));
1179 
1180     aml_append(method, aml_store(aml_name("STAU"),
1181                                  aml_name(NVDIMM_DSM_RFIT_STATUS)));
1182 
1183      /* if something is wrong during _DSM. */
1184     ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1185                        aml_name("STAU"));
1186     ifctx = aml_if(aml_lnot(ifcond));
1187     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1188     aml_append(method, ifctx);
1189 
1190     aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1191     aml_append(method, aml_subtract(buf_size,
1192                                     aml_int(4) /* the size of "STAU" */,
1193                                     buf_size));
1194 
1195     /* if we read the end of fit. */
1196     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1197     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1198     aml_append(method, ifctx);
1199 
1200     aml_append(method, aml_create_field(buf,
1201                             aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1202                             aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1203     aml_append(method, aml_return(aml_name("BUFF")));
1204     aml_append(dev, method);
1205 
1206     /* build _FIT. */
1207     method = aml_method("_FIT", 0, AML_SERIALIZED);
1208     offset = aml_local(3);
1209 
1210     aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1211     aml_append(method, aml_store(aml_int(0), offset));
1212 
1213     whilectx = aml_while(aml_int(1));
1214     aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1215     aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1216 
1217     /*
1218      * if fit buffer was changed during RFIT, read from the beginning
1219      * again.
1220      */
1221     ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1222                              aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1223     aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1224     aml_append(ifctx, aml_store(aml_int(0), offset));
1225     aml_append(whilectx, ifctx);
1226 
1227     elsectx = aml_else();
1228 
1229     /* finish fit read if no data is read out. */
1230     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1231     aml_append(ifctx, aml_return(fit));
1232     aml_append(elsectx, ifctx);
1233 
1234     /* update the offset. */
1235     aml_append(elsectx, aml_add(offset, buf_size, offset));
1236     /* append the data we read out to the fit buffer. */
1237     aml_append(elsectx, aml_concatenate(fit, buf, fit));
1238     aml_append(whilectx, elsectx);
1239     aml_append(method, whilectx);
1240 
1241     aml_append(dev, method);
1242 }
1243 
1244 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1245 {
1246     uint32_t slot;
1247 
1248     for (slot = 0; slot < ram_slots; slot++) {
1249         uint32_t handle = nvdimm_slot_to_handle(slot);
1250         Aml *nvdimm_dev;
1251 
1252         nvdimm_dev = aml_device("NV%02X", slot);
1253 
1254         /*
1255          * ACPI 6.0: 9.20 NVDIMM Devices:
1256          *
1257          * _ADR object that is used to supply OSPM with unique address
1258          * of the NVDIMM device. This is done by returning the NFIT Device
1259          * handle that is used to identify the associated entries in ACPI
1260          * table NFIT or _FIT.
1261          */
1262         aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1263 
1264         nvdimm_build_device_dsm(nvdimm_dev, handle);
1265         aml_append(root_dev, nvdimm_dev);
1266     }
1267 }
1268 
1269 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1270                               BIOSLinker *linker,
1271                               NVDIMMState *nvdimm_state,
1272                               uint32_t ram_slots, const char *oem_id)
1273 {
1274     int mem_addr_offset;
1275     Aml *ssdt, *sb_scope, *dev;
1276     AcpiTable table = { .sig = "SSDT", .rev = 1,
1277                         .oem_id = oem_id, .oem_table_id = "NVDIMM" };
1278 
1279     acpi_add_table(table_offsets, table_data);
1280 
1281     acpi_table_begin(&table, table_data);
1282     ssdt = init_aml_allocator();
1283     sb_scope = aml_scope("\\_SB");
1284 
1285     dev = aml_device("NVDR");
1286 
1287     /*
1288      * ACPI 6.0: 9.20 NVDIMM Devices:
1289      *
1290      * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1291      * NVDIMM interface device. Platform firmware is required to contain one
1292      * such device in _SB scope if NVDIMMs support is exposed by platform to
1293      * OSPM.
1294      * For each NVDIMM present or intended to be supported by platform,
1295      * platform firmware also exposes an ACPI Namespace Device under the
1296      * root device.
1297      */
1298     aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1299 
1300     nvdimm_build_common_dsm(dev, nvdimm_state);
1301 
1302     /* 0 is reserved for root device. */
1303     nvdimm_build_device_dsm(dev, 0);
1304     nvdimm_build_fit(dev);
1305 
1306     nvdimm_build_nvdimm_devices(dev, ram_slots);
1307 
1308     aml_append(sb_scope, dev);
1309     aml_append(ssdt, sb_scope);
1310 
1311     /* copy AML table into ACPI tables blob and patch header there */
1312     g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1313     mem_addr_offset = build_append_named_dword(table_data,
1314                                                NVDIMM_ACPI_MEM_ADDR);
1315 
1316     bios_linker_loader_alloc(linker,
1317                              NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
1318                              sizeof(NvdimmDsmIn), false /* high memory */);
1319     bios_linker_loader_add_pointer(linker,
1320         ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1321         NVDIMM_DSM_MEM_FILE, 0);
1322     free_aml_allocator();
1323     /*
1324      * must be executed as the last so that pointer patching command above
1325      * would be executed by guest before it recalculated checksum which were
1326      * scheduled by acpi_table_end()
1327      */
1328     acpi_table_end(linker, &table);
1329 }
1330 
1331 void nvdimm_build_srat(GArray *table_data)
1332 {
1333     GSList *device_list, *list = nvdimm_get_device_list();
1334 
1335     for (device_list = list; device_list; device_list = device_list->next) {
1336         DeviceState *dev = device_list->data;
1337         Object *obj = OBJECT(dev);
1338         uint64_t addr, size;
1339         int node;
1340 
1341         node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort);
1342         addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort);
1343         size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort);
1344 
1345         build_srat_memory(table_data, addr, size, node,
1346                           MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE);
1347     }
1348     g_slist_free(list);
1349 }
1350 
1351 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1352                        BIOSLinker *linker, NVDIMMState *state,
1353                        uint32_t ram_slots, const char *oem_id,
1354                        const char *oem_table_id)
1355 {
1356     GSList *device_list;
1357 
1358     /* no nvdimm device can be plugged. */
1359     if (!ram_slots) {
1360         return;
1361     }
1362 
1363     nvdimm_build_ssdt(table_offsets, table_data, linker, state,
1364                       ram_slots, oem_id);
1365 
1366     device_list = nvdimm_get_device_list();
1367     /* no NVDIMM device is plugged. */
1368     if (!device_list) {
1369         return;
1370     }
1371 
1372     nvdimm_build_nfit(state, table_offsets, table_data, linker,
1373                       oem_id, oem_table_id);
1374     g_slist_free(device_list);
1375 }
1376