1 /* 2 * NVDIMM ACPI Implementation 3 * 4 * Copyright(C) 2015 Intel Corporation. 5 * 6 * Author: 7 * Xiao Guangrong <guangrong.xiao@linux.intel.com> 8 * 9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 10 * and the DSM specification can be found at: 11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 12 * 13 * Currently, it only supports PMEM Virtualization. 14 * 15 * This library is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU Lesser General Public 17 * License as published by the Free Software Foundation; either 18 * version 2 of the License, or (at your option) any later version. 19 * 20 * This library is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * Lesser General Public License for more details. 24 * 25 * You should have received a copy of the GNU Lesser General Public 26 * License along with this library; if not, see <http://www.gnu.org/licenses/> 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/acpi/acpi.h" 31 #include "hw/acpi/aml-build.h" 32 #include "hw/acpi/bios-linker-loader.h" 33 #include "hw/nvram/fw_cfg.h" 34 #include "hw/mem/nvdimm.h" 35 36 static int nvdimm_plugged_device_list(Object *obj, void *opaque) 37 { 38 GSList **list = opaque; 39 40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) { 41 DeviceState *dev = DEVICE(obj); 42 43 if (dev->realized) { /* only realized NVDIMMs matter */ 44 *list = g_slist_append(*list, DEVICE(obj)); 45 } 46 } 47 48 object_child_foreach(obj, nvdimm_plugged_device_list, opaque); 49 return 0; 50 } 51 52 /* 53 * inquire plugged NVDIMM devices and link them into the list which is 54 * returned to the caller. 55 * 56 * Note: it is the caller's responsibility to free the list to avoid 57 * memory leak. 58 */ 59 static GSList *nvdimm_get_plugged_device_list(void) 60 { 61 GSList *list = NULL; 62 63 object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list, 64 &list); 65 return list; 66 } 67 68 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 69 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \ 70 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \ 71 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) } 72 73 /* 74 * define Byte Addressable Persistent Memory (PM) Region according to 75 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. 76 */ 77 static const uint8_t nvdimm_nfit_spa_uuid[] = 78 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 79 0x18, 0xb7, 0x8c, 0xdb); 80 81 /* 82 * NVDIMM Firmware Interface Table 83 * @signature: "NFIT" 84 * 85 * It provides information that allows OSPM to enumerate NVDIMM present in 86 * the platform and associate system physical address ranges created by the 87 * NVDIMMs. 88 * 89 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 90 */ 91 struct NvdimmNfitHeader { 92 ACPI_TABLE_HEADER_DEF 93 uint32_t reserved; 94 } QEMU_PACKED; 95 typedef struct NvdimmNfitHeader NvdimmNfitHeader; 96 97 /* 98 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware 99 * Interface Table (NFIT). 100 */ 101 102 /* 103 * System Physical Address Range Structure 104 * 105 * It describes the system physical address ranges occupied by NVDIMMs and 106 * the types of the regions. 107 */ 108 struct NvdimmNfitSpa { 109 uint16_t type; 110 uint16_t length; 111 uint16_t spa_index; 112 uint16_t flags; 113 uint32_t reserved; 114 uint32_t proximity_domain; 115 uint8_t type_guid[16]; 116 uint64_t spa_base; 117 uint64_t spa_length; 118 uint64_t mem_attr; 119 } QEMU_PACKED; 120 typedef struct NvdimmNfitSpa NvdimmNfitSpa; 121 122 /* 123 * Memory Device to System Physical Address Range Mapping Structure 124 * 125 * It enables identifying each NVDIMM region and the corresponding SPA 126 * describing the memory interleave 127 */ 128 struct NvdimmNfitMemDev { 129 uint16_t type; 130 uint16_t length; 131 uint32_t nfit_handle; 132 uint16_t phys_id; 133 uint16_t region_id; 134 uint16_t spa_index; 135 uint16_t dcr_index; 136 uint64_t region_len; 137 uint64_t region_offset; 138 uint64_t region_dpa; 139 uint16_t interleave_index; 140 uint16_t interleave_ways; 141 uint16_t flags; 142 uint16_t reserved; 143 } QEMU_PACKED; 144 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; 145 146 /* 147 * NVDIMM Control Region Structure 148 * 149 * It describes the NVDIMM and if applicable, Block Control Window. 150 */ 151 struct NvdimmNfitControlRegion { 152 uint16_t type; 153 uint16_t length; 154 uint16_t dcr_index; 155 uint16_t vendor_id; 156 uint16_t device_id; 157 uint16_t revision_id; 158 uint16_t sub_vendor_id; 159 uint16_t sub_device_id; 160 uint16_t sub_revision_id; 161 uint8_t reserved[6]; 162 uint32_t serial_number; 163 uint16_t fic; 164 uint16_t num_bcw; 165 uint64_t bcw_size; 166 uint64_t cmd_offset; 167 uint64_t cmd_size; 168 uint64_t status_offset; 169 uint64_t status_size; 170 uint16_t flags; 171 uint8_t reserved2[6]; 172 } QEMU_PACKED; 173 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; 174 175 /* 176 * Module serial number is a unique number for each device. We use the 177 * slot id of NVDIMM device to generate this number so that each device 178 * associates with a different number. 179 * 180 * 0x123456 is a magic number we arbitrarily chose. 181 */ 182 static uint32_t nvdimm_slot_to_sn(int slot) 183 { 184 return 0x123456 + slot; 185 } 186 187 /* 188 * handle is used to uniquely associate nfit_memdev structure with NVDIMM 189 * ACPI device - nfit_memdev.nfit_handle matches with the value returned 190 * by ACPI device _ADR method. 191 * 192 * We generate the handle with the slot id of NVDIMM device and reserve 193 * 0 for NVDIMM root device. 194 */ 195 static uint32_t nvdimm_slot_to_handle(int slot) 196 { 197 return slot + 1; 198 } 199 200 /* 201 * index uniquely identifies the structure, 0 is reserved which indicates 202 * that the structure is not valid or the associated structure is not 203 * present. 204 * 205 * Each NVDIMM device needs two indexes, one for nfit_spa and another for 206 * nfit_dc which are generated by the slot id of NVDIMM device. 207 */ 208 static uint16_t nvdimm_slot_to_spa_index(int slot) 209 { 210 return (slot + 1) << 1; 211 } 212 213 /* See the comments of nvdimm_slot_to_spa_index(). */ 214 static uint32_t nvdimm_slot_to_dcr_index(int slot) 215 { 216 return nvdimm_slot_to_spa_index(slot) + 1; 217 } 218 219 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) 220 { 221 NVDIMMDevice *nvdimm = NULL; 222 GSList *list, *device_list = nvdimm_get_plugged_device_list(); 223 224 for (list = device_list; list; list = list->next) { 225 NVDIMMDevice *nvd = list->data; 226 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, 227 NULL); 228 229 if (nvdimm_slot_to_handle(slot) == handle) { 230 nvdimm = nvd; 231 break; 232 } 233 } 234 235 g_slist_free(device_list); 236 return nvdimm; 237 } 238 239 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ 240 static void 241 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) 242 { 243 NvdimmNfitSpa *nfit_spa; 244 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP, 245 NULL); 246 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 247 NULL); 248 uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, 249 NULL); 250 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 251 NULL); 252 253 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); 254 255 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range 256 Structure */); 257 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); 258 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 259 260 /* 261 * Control region is strict as all the device info, such as SN, index, 262 * is associated with slot id. 263 */ 264 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for 265 management during hot add/online 266 operation */ | 267 2 /* Data in Proximity Domain field is 268 valid*/); 269 270 /* NUMA node. */ 271 nfit_spa->proximity_domain = cpu_to_le32(node); 272 /* the region reported as PMEM. */ 273 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, 274 sizeof(nvdimm_nfit_spa_uuid)); 275 276 nfit_spa->spa_base = cpu_to_le64(addr); 277 nfit_spa->spa_length = cpu_to_le64(size); 278 279 /* It is the PMEM and can be cached as writeback. */ 280 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 281 0x8000ULL /* EFI_MEMORY_NV */); 282 } 283 284 /* 285 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping 286 * Structure 287 */ 288 static void 289 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) 290 { 291 NvdimmNfitMemDev *nfit_memdev; 292 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 293 NULL); 294 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 295 NULL); 296 uint32_t handle = nvdimm_slot_to_handle(slot); 297 298 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); 299 300 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address 301 Range Map Structure*/); 302 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); 303 nfit_memdev->nfit_handle = cpu_to_le32(handle); 304 305 /* 306 * associate memory device with System Physical Address Range 307 * Structure. 308 */ 309 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 310 /* associate memory device with Control Region Structure. */ 311 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 312 313 /* The memory region on the device. */ 314 nfit_memdev->region_len = cpu_to_le64(size); 315 /* The device address starts from 0. */ 316 nfit_memdev->region_dpa = cpu_to_le64(0); 317 318 /* Only one interleave for PMEM. */ 319 nfit_memdev->interleave_ways = cpu_to_le16(1); 320 } 321 322 /* 323 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. 324 */ 325 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) 326 { 327 NvdimmNfitControlRegion *nfit_dcr; 328 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 329 NULL); 330 uint32_t sn = nvdimm_slot_to_sn(slot); 331 332 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); 333 334 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); 335 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); 336 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 337 338 /* vendor: Intel. */ 339 nfit_dcr->vendor_id = cpu_to_le16(0x8086); 340 nfit_dcr->device_id = cpu_to_le16(1); 341 342 /* The _DSM method is following Intel's DSM specification. */ 343 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported 344 in ACPI 6.0 is 1. */); 345 nfit_dcr->serial_number = cpu_to_le32(sn); 346 nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter 347 2: NVDIMM Device Specific Method 348 (DSM) in DSM Spec Rev1.*/); 349 } 350 351 static GArray *nvdimm_build_device_structure(void) 352 { 353 GSList *device_list = nvdimm_get_plugged_device_list(); 354 GArray *structures = g_array_new(false, true /* clear */, 1); 355 356 for (; device_list; device_list = device_list->next) { 357 DeviceState *dev = device_list->data; 358 359 /* build System Physical Address Range Structure. */ 360 nvdimm_build_structure_spa(structures, dev); 361 362 /* 363 * build Memory Device to System Physical Address Range Mapping 364 * Structure. 365 */ 366 nvdimm_build_structure_memdev(structures, dev); 367 368 /* build NVDIMM Control Region Structure. */ 369 nvdimm_build_structure_dcr(structures, dev); 370 } 371 g_slist_free(device_list); 372 373 return structures; 374 } 375 376 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) 377 { 378 qemu_mutex_init(&fit_buf->lock); 379 fit_buf->fit = g_array_new(false, true /* clear */, 1); 380 } 381 382 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf) 383 { 384 qemu_mutex_lock(&fit_buf->lock); 385 g_array_free(fit_buf->fit, true); 386 fit_buf->fit = nvdimm_build_device_structure(); 387 fit_buf->dirty = true; 388 qemu_mutex_unlock(&fit_buf->lock); 389 } 390 391 void nvdimm_acpi_hotplug(AcpiNVDIMMState *state) 392 { 393 nvdimm_build_fit_buffer(&state->fit_buf); 394 } 395 396 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets, 397 GArray *table_data, BIOSLinker *linker) 398 { 399 NvdimmFitBuffer *fit_buf = &state->fit_buf; 400 unsigned int header; 401 402 qemu_mutex_lock(&fit_buf->lock); 403 404 /* NVDIMM device is not plugged? */ 405 if (!fit_buf->fit->len) { 406 goto exit; 407 } 408 409 acpi_add_table(table_offsets, table_data); 410 411 /* NFIT header. */ 412 header = table_data->len; 413 acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); 414 /* NVDIMM device structures. */ 415 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); 416 417 build_header(linker, table_data, 418 (void *)(table_data->data + header), "NFIT", 419 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL); 420 421 exit: 422 qemu_mutex_unlock(&fit_buf->lock); 423 } 424 425 struct NvdimmDsmIn { 426 uint32_t handle; 427 uint32_t revision; 428 uint32_t function; 429 /* the remaining size in the page is used by arg3. */ 430 union { 431 uint8_t arg3[4084]; 432 }; 433 } QEMU_PACKED; 434 typedef struct NvdimmDsmIn NvdimmDsmIn; 435 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096); 436 437 struct NvdimmDsmOut { 438 /* the size of buffer filled by QEMU. */ 439 uint32_t len; 440 uint8_t data[4092]; 441 } QEMU_PACKED; 442 typedef struct NvdimmDsmOut NvdimmDsmOut; 443 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096); 444 445 struct NvdimmDsmFunc0Out { 446 /* the size of buffer filled by QEMU. */ 447 uint32_t len; 448 uint32_t supported_func; 449 } QEMU_PACKED; 450 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; 451 452 struct NvdimmDsmFuncNoPayloadOut { 453 /* the size of buffer filled by QEMU. */ 454 uint32_t len; 455 uint32_t func_ret_status; 456 } QEMU_PACKED; 457 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; 458 459 struct NvdimmFuncGetLabelSizeOut { 460 /* the size of buffer filled by QEMU. */ 461 uint32_t len; 462 uint32_t func_ret_status; /* return status code. */ 463 uint32_t label_size; /* the size of label data area. */ 464 /* 465 * Maximum size of the namespace label data length supported by 466 * the platform in Get/Set Namespace Label Data functions. 467 */ 468 uint32_t max_xfer; 469 } QEMU_PACKED; 470 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; 471 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096); 472 473 struct NvdimmFuncGetLabelDataIn { 474 uint32_t offset; /* the offset in the namespace label data area. */ 475 uint32_t length; /* the size of data is to be read via the function. */ 476 } QEMU_PACKED; 477 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; 478 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + 479 offsetof(NvdimmDsmIn, arg3) > 4096); 480 481 struct NvdimmFuncGetLabelDataOut { 482 /* the size of buffer filled by QEMU. */ 483 uint32_t len; 484 uint32_t func_ret_status; /* return status code. */ 485 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */ 486 } QEMU_PACKED; 487 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; 488 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096); 489 490 struct NvdimmFuncSetLabelDataIn { 491 uint32_t offset; /* the offset in the namespace label data area. */ 492 uint32_t length; /* the size of data is to be written via the function. */ 493 uint8_t in_buf[0]; /* the data written to label data area. */ 494 } QEMU_PACKED; 495 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; 496 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + 497 offsetof(NvdimmDsmIn, arg3) > 4096); 498 499 struct NvdimmFuncReadFITIn { 500 uint32_t offset; /* the offset of FIT buffer. */ 501 } QEMU_PACKED; 502 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; 503 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + 504 offsetof(NvdimmDsmIn, arg3) > 4096); 505 506 struct NvdimmFuncReadFITOut { 507 /* the size of buffer filled by QEMU. */ 508 uint32_t len; 509 uint32_t func_ret_status; /* return status code. */ 510 uint8_t fit[0]; /* the FIT data. */ 511 } QEMU_PACKED; 512 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; 513 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > 4096); 514 515 static void 516 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) 517 { 518 NvdimmDsmFunc0Out func0 = { 519 .len = cpu_to_le32(sizeof(func0)), 520 .supported_func = cpu_to_le32(supported_func), 521 }; 522 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); 523 } 524 525 static void 526 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) 527 { 528 NvdimmDsmFuncNoPayloadOut out = { 529 .len = cpu_to_le32(sizeof(out)), 530 .func_ret_status = cpu_to_le32(func_ret_status), 531 }; 532 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); 533 } 534 535 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 536 537 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ 538 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in, 539 hwaddr dsm_mem_addr) 540 { 541 NvdimmFitBuffer *fit_buf = &state->fit_buf; 542 NvdimmFuncReadFITIn *read_fit; 543 NvdimmFuncReadFITOut *read_fit_out; 544 GArray *fit; 545 uint32_t read_len = 0, func_ret_status; 546 int size; 547 548 read_fit = (NvdimmFuncReadFITIn *)in->arg3; 549 le32_to_cpus(&read_fit->offset); 550 551 qemu_mutex_lock(&fit_buf->lock); 552 fit = fit_buf->fit; 553 554 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n", 555 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No"); 556 557 if (read_fit->offset > fit->len) { 558 func_ret_status = 3 /* Invalid Input Parameters */; 559 goto exit; 560 } 561 562 /* It is the first time to read FIT. */ 563 if (!read_fit->offset) { 564 fit_buf->dirty = false; 565 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ 566 func_ret_status = 0x100 /* fit changed */; 567 goto exit; 568 } 569 570 func_ret_status = 0 /* Success */; 571 read_len = MIN(fit->len - read_fit->offset, 572 4096 - sizeof(NvdimmFuncReadFITOut)); 573 574 exit: 575 size = sizeof(NvdimmFuncReadFITOut) + read_len; 576 read_fit_out = g_malloc(size); 577 578 read_fit_out->len = cpu_to_le32(size); 579 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); 580 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); 581 582 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); 583 584 g_free(read_fit_out); 585 qemu_mutex_unlock(&fit_buf->lock); 586 } 587 588 static void nvdimm_dsm_reserved_root(AcpiNVDIMMState *state, NvdimmDsmIn *in, 589 hwaddr dsm_mem_addr) 590 { 591 switch (in->function) { 592 case 0x0: 593 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); 594 return; 595 case 0x1 /*Read FIT */: 596 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); 597 return; 598 } 599 600 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 601 } 602 603 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 604 { 605 /* 606 * function 0 is called to inquire which functions are supported by 607 * OSPM 608 */ 609 if (!in->function) { 610 nvdimm_dsm_function0(0 /* No function supported other than 611 function 0 */, dsm_mem_addr); 612 return; 613 } 614 615 /* No function except function 0 is supported yet. */ 616 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 617 } 618 619 /* 620 * the max transfer size is the max size transferred by both a 621 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' 622 * function. 623 */ 624 static uint32_t nvdimm_get_max_xfer_label_size(void) 625 { 626 uint32_t max_get_size, max_set_size, dsm_memory_size = 4096; 627 628 /* 629 * the max data ACPI can read one time which is transferred by 630 * the response of 'Get Namespace Label Data' function. 631 */ 632 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); 633 634 /* 635 * the max data ACPI can write one time which is transferred by 636 * 'Set Namespace Label Data' function. 637 */ 638 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - 639 sizeof(NvdimmFuncSetLabelDataIn); 640 641 return MIN(max_get_size, max_set_size); 642 } 643 644 /* 645 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). 646 * 647 * It gets the size of Namespace Label data area and the max data size 648 * that Get/Set Namespace Label Data functions can transfer. 649 */ 650 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) 651 { 652 NvdimmFuncGetLabelSizeOut label_size_out = { 653 .len = cpu_to_le32(sizeof(label_size_out)), 654 }; 655 uint32_t label_size, mxfer; 656 657 label_size = nvdimm->label_size; 658 mxfer = nvdimm_get_max_xfer_label_size(); 659 660 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer); 661 662 label_size_out.func_ret_status = cpu_to_le32(0 /* Success */); 663 label_size_out.label_size = cpu_to_le32(label_size); 664 label_size_out.max_xfer = cpu_to_le32(mxfer); 665 666 cpu_physical_memory_write(dsm_mem_addr, &label_size_out, 667 sizeof(label_size_out)); 668 } 669 670 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, 671 uint32_t offset, uint32_t length) 672 { 673 uint32_t ret = 3 /* Invalid Input Parameters */; 674 675 if (offset + length < offset) { 676 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset, 677 length); 678 return ret; 679 } 680 681 if (nvdimm->label_size < offset + length) { 682 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n", 683 offset + length, nvdimm->label_size); 684 return ret; 685 } 686 687 if (length > nvdimm_get_max_xfer_label_size()) { 688 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n", 689 length, nvdimm_get_max_xfer_label_size()); 690 return ret; 691 } 692 693 return 0 /* Success */; 694 } 695 696 /* 697 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). 698 */ 699 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 700 hwaddr dsm_mem_addr) 701 { 702 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 703 NvdimmFuncGetLabelDataIn *get_label_data; 704 NvdimmFuncGetLabelDataOut *get_label_data_out; 705 uint32_t status; 706 int size; 707 708 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; 709 le32_to_cpus(&get_label_data->offset); 710 le32_to_cpus(&get_label_data->length); 711 712 nvdimm_debug("Read Label Data: offset %#x length %#x.\n", 713 get_label_data->offset, get_label_data->length); 714 715 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, 716 get_label_data->length); 717 if (status != 0 /* Success */) { 718 nvdimm_dsm_no_payload(status, dsm_mem_addr); 719 return; 720 } 721 722 size = sizeof(*get_label_data_out) + get_label_data->length; 723 assert(size <= 4096); 724 get_label_data_out = g_malloc(size); 725 726 get_label_data_out->len = cpu_to_le32(size); 727 get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */); 728 nvc->read_label_data(nvdimm, get_label_data_out->out_buf, 729 get_label_data->length, get_label_data->offset); 730 731 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); 732 g_free(get_label_data_out); 733 } 734 735 /* 736 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). 737 */ 738 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 739 hwaddr dsm_mem_addr) 740 { 741 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 742 NvdimmFuncSetLabelDataIn *set_label_data; 743 uint32_t status; 744 745 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; 746 747 le32_to_cpus(&set_label_data->offset); 748 le32_to_cpus(&set_label_data->length); 749 750 nvdimm_debug("Write Label Data: offset %#x length %#x.\n", 751 set_label_data->offset, set_label_data->length); 752 753 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, 754 set_label_data->length); 755 if (status != 0 /* Success */) { 756 nvdimm_dsm_no_payload(status, dsm_mem_addr); 757 return; 758 } 759 760 assert(offsetof(NvdimmDsmIn, arg3) + 761 sizeof(*set_label_data) + set_label_data->length <= 4096); 762 763 nvc->write_label_data(nvdimm, set_label_data->in_buf, 764 set_label_data->length, set_label_data->offset); 765 nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr); 766 } 767 768 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 769 { 770 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); 771 772 /* See the comments in nvdimm_dsm_root(). */ 773 if (!in->function) { 774 uint32_t supported_func = 0; 775 776 if (nvdimm && nvdimm->label_size) { 777 supported_func |= 0x1 /* Bit 0 indicates whether there is 778 support for any functions other 779 than function 0. */ | 780 1 << 4 /* Get Namespace Label Size */ | 781 1 << 5 /* Get Namespace Label Data */ | 782 1 << 6 /* Set Namespace Label Data */; 783 } 784 nvdimm_dsm_function0(supported_func, dsm_mem_addr); 785 return; 786 } 787 788 if (!nvdimm) { 789 nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */, 790 dsm_mem_addr); 791 return; 792 } 793 794 /* Encode DSM function according to DSM Spec Rev1. */ 795 switch (in->function) { 796 case 4 /* Get Namespace Label Size */: 797 if (nvdimm->label_size) { 798 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); 799 return; 800 } 801 break; 802 case 5 /* Get Namespace Label Data */: 803 if (nvdimm->label_size) { 804 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); 805 return; 806 } 807 break; 808 case 0x6 /* Set Namespace Label Data */: 809 if (nvdimm->label_size) { 810 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); 811 return; 812 } 813 break; 814 } 815 816 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 817 } 818 819 static uint64_t 820 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) 821 { 822 nvdimm_debug("BUG: we never read _DSM IO Port.\n"); 823 return 0; 824 } 825 826 static void 827 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 828 { 829 AcpiNVDIMMState *state = opaque; 830 NvdimmDsmIn *in; 831 hwaddr dsm_mem_addr = val; 832 833 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr); 834 835 /* 836 * The DSM memory is mapped to guest address space so an evil guest 837 * can change its content while we are doing DSM emulation. Avoid 838 * this by copying DSM memory to QEMU local memory. 839 */ 840 in = g_new(NvdimmDsmIn, 1); 841 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); 842 843 le32_to_cpus(&in->revision); 844 le32_to_cpus(&in->function); 845 le32_to_cpus(&in->handle); 846 847 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision, 848 in->handle, in->function); 849 850 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { 851 nvdimm_debug("Revision %#x is not supported, expect %#x.\n", 852 in->revision, 0x1); 853 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 854 goto exit; 855 } 856 857 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { 858 nvdimm_dsm_reserved_root(state, in, dsm_mem_addr); 859 goto exit; 860 } 861 862 /* Handle 0 is reserved for NVDIMM Root Device. */ 863 if (!in->handle) { 864 nvdimm_dsm_root(in, dsm_mem_addr); 865 goto exit; 866 } 867 868 nvdimm_dsm_device(in, dsm_mem_addr); 869 870 exit: 871 g_free(in); 872 } 873 874 static const MemoryRegionOps nvdimm_dsm_ops = { 875 .read = nvdimm_dsm_read, 876 .write = nvdimm_dsm_write, 877 .endianness = DEVICE_LITTLE_ENDIAN, 878 .valid = { 879 .min_access_size = 4, 880 .max_access_size = 4, 881 }, 882 }; 883 884 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io, 885 FWCfgState *fw_cfg, Object *owner) 886 { 887 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, 888 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN); 889 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr); 890 891 state->dsm_mem = g_array_new(false, true /* clear */, 1); 892 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); 893 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, 894 state->dsm_mem->len); 895 896 nvdimm_init_fit_buffer(&state->fit_buf); 897 } 898 899 #define NVDIMM_COMMON_DSM "NCAL" 900 #define NVDIMM_ACPI_MEM_ADDR "MEMA" 901 902 #define NVDIMM_DSM_MEMORY "NRAM" 903 #define NVDIMM_DSM_IOPORT "NPIO" 904 905 #define NVDIMM_DSM_NOTIFY "NTFI" 906 #define NVDIMM_DSM_HANDLE "HDLE" 907 #define NVDIMM_DSM_REVISION "REVS" 908 #define NVDIMM_DSM_FUNCTION "FUNC" 909 #define NVDIMM_DSM_ARG3 "FARG" 910 911 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" 912 #define NVDIMM_DSM_OUT_BUF "ODAT" 913 914 #define NVDIMM_DSM_RFIT_STATUS "RSTA" 915 916 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" 917 918 static void nvdimm_build_common_dsm(Aml *dev) 919 { 920 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; 921 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; 922 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; 923 uint8_t byte_list[1]; 924 925 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); 926 uuid = aml_arg(0); 927 function = aml_arg(2); 928 handle = aml_arg(4); 929 dsm_mem = aml_local(6); 930 dsm_out_buf = aml_local(7); 931 932 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); 933 934 /* map DSM memory and IO into ACPI namespace. */ 935 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO, 936 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN)); 937 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, 938 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); 939 940 /* 941 * DSM notifier: 942 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to 943 * emulate the access. 944 * 945 * It is the IO port so that accessing them will cause VM-exit, the 946 * control will be transferred to QEMU. 947 */ 948 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, 949 AML_PRESERVE); 950 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, 951 sizeof(uint32_t) * BITS_PER_BYTE)); 952 aml_append(method, field); 953 954 /* 955 * DSM input: 956 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call 957 * happens on NVDIMM Root Device. 958 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. 959 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. 960 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package 961 * containing function-specific arguments. 962 * 963 * They are RAM mapping on host so that these accesses never cause 964 * VM-EXIT. 965 */ 966 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 967 AML_PRESERVE); 968 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, 969 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); 970 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, 971 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); 972 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, 973 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); 974 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, 975 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); 976 aml_append(method, field); 977 978 /* 979 * DSM output: 980 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. 981 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. 982 * 983 * Since the page is reused by both input and out, the input data 984 * will be lost after storing new result into ODAT so we should fetch 985 * all the input data before writing the result. 986 */ 987 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 988 AML_PRESERVE); 989 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, 990 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); 991 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, 992 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); 993 aml_append(method, field); 994 995 /* 996 * do not support any method if DSM memory address has not been 997 * patched. 998 */ 999 unpatched = aml_equal(dsm_mem, aml_int(0x0)); 1000 1001 expected_uuid = aml_local(0); 1002 1003 ifctx = aml_if(aml_equal(handle, aml_int(0x0))); 1004 aml_append(ifctx, aml_store( 1005 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") 1006 /* UUID for NVDIMM Root Device */, expected_uuid)); 1007 aml_append(method, ifctx); 1008 elsectx = aml_else(); 1009 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); 1010 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID 1011 /* UUID for QEMU internal use */), expected_uuid)); 1012 aml_append(elsectx, ifctx); 1013 elsectx2 = aml_else(); 1014 aml_append(elsectx2, aml_store( 1015 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") 1016 /* UUID for NVDIMM Devices */, expected_uuid)); 1017 aml_append(elsectx, elsectx2); 1018 aml_append(method, elsectx); 1019 1020 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); 1021 1022 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); 1023 1024 /* 1025 * function 0 is called to inquire what functions are supported by 1026 * OSPM 1027 */ 1028 ifctx = aml_if(aml_equal(function, aml_int(0))); 1029 byte_list[0] = 0 /* No function Supported */; 1030 aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); 1031 aml_append(unsupport, ifctx); 1032 1033 /* No function is supported yet. */ 1034 byte_list[0] = 1 /* Not Supported */; 1035 aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); 1036 aml_append(method, unsupport); 1037 1038 /* 1039 * The HDLE indicates the DSM function is issued from which device, 1040 * it reserves 0 for root device and is the handle for NVDIMM devices. 1041 * See the comments in nvdimm_slot_to_handle(). 1042 */ 1043 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); 1044 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); 1045 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION))); 1046 1047 /* 1048 * The fourth parameter (Arg3) of _DSM is a package which contains 1049 * a buffer, the layout of the buffer is specified by UUID (Arg0), 1050 * Revision ID (Arg1) and Function Index (Arg2) which are documented 1051 * in the DSM Spec. 1052 */ 1053 pckg = aml_arg(3); 1054 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), 1055 aml_int(4 /* Package */)) /* It is a Package? */, 1056 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, 1057 NULL)); 1058 1059 pckg_index = aml_local(2); 1060 pckg_buf = aml_local(3); 1061 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); 1062 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); 1063 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); 1064 aml_append(method, ifctx); 1065 1066 /* 1067 * tell QEMU about the real address of DSM memory, then QEMU 1068 * gets the control and fills the result in DSM memory. 1069 */ 1070 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); 1071 1072 dsm_out_buf_size = aml_local(1); 1073 /* RLEN is not included in the payload returned to guest. */ 1074 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), 1075 aml_int(4), dsm_out_buf_size)); 1076 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), 1077 dsm_out_buf_size)); 1078 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), 1079 aml_int(0), dsm_out_buf_size, "OBUF")); 1080 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"), 1081 dsm_out_buf)); 1082 aml_append(method, aml_return(dsm_out_buf)); 1083 aml_append(dev, method); 1084 } 1085 1086 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) 1087 { 1088 Aml *method; 1089 1090 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 1091 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), 1092 aml_arg(1), aml_arg(2), aml_arg(3), 1093 aml_int(handle)))); 1094 aml_append(dev, method); 1095 } 1096 1097 static void nvdimm_build_fit(Aml *dev) 1098 { 1099 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; 1100 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; 1101 1102 buf = aml_local(0); 1103 buf_size = aml_local(1); 1104 fit = aml_local(2); 1105 1106 aml_append(dev, aml_create_dword_field(aml_buffer(4, NULL), 1107 aml_int(0), NVDIMM_DSM_RFIT_STATUS)); 1108 1109 /* build helper function, RFIT. */ 1110 method = aml_method("RFIT", 1, AML_SERIALIZED); 1111 aml_append(method, aml_create_dword_field(aml_buffer(4, NULL), 1112 aml_int(0), "OFST")); 1113 1114 /* prepare input package. */ 1115 pkg = aml_package(1); 1116 aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); 1117 aml_append(pkg, aml_name("OFST")); 1118 1119 /* call Read_FIT function. */ 1120 call_result = aml_call5(NVDIMM_COMMON_DSM, 1121 aml_touuid(NVDIMM_QEMU_RSVD_UUID), 1122 aml_int(1) /* Revision 1 */, 1123 aml_int(0x1) /* Read FIT */, 1124 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); 1125 aml_append(method, aml_store(call_result, buf)); 1126 1127 /* handle _DSM result. */ 1128 aml_append(method, aml_create_dword_field(buf, 1129 aml_int(0) /* offset at byte 0 */, "STAU")); 1130 1131 aml_append(method, aml_store(aml_name("STAU"), 1132 aml_name(NVDIMM_DSM_RFIT_STATUS))); 1133 1134 /* if something is wrong during _DSM. */ 1135 ifcond = aml_equal(aml_int(0 /* Success */), aml_name("STAU")); 1136 ifctx = aml_if(aml_lnot(ifcond)); 1137 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1138 aml_append(method, ifctx); 1139 1140 aml_append(method, aml_store(aml_sizeof(buf), buf_size)); 1141 aml_append(method, aml_subtract(buf_size, 1142 aml_int(4) /* the size of "STAU" */, 1143 buf_size)); 1144 1145 /* if we read the end of fit. */ 1146 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1147 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1148 aml_append(method, ifctx); 1149 1150 aml_append(method, aml_store(aml_shiftleft(buf_size, aml_int(3)), 1151 buf_size)); 1152 aml_append(method, aml_create_field(buf, 1153 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ 1154 buf_size, "BUFF")); 1155 aml_append(method, aml_return(aml_name("BUFF"))); 1156 aml_append(dev, method); 1157 1158 /* build _FIT. */ 1159 method = aml_method("_FIT", 0, AML_SERIALIZED); 1160 offset = aml_local(3); 1161 1162 aml_append(method, aml_store(aml_buffer(0, NULL), fit)); 1163 aml_append(method, aml_store(aml_int(0), offset)); 1164 1165 whilectx = aml_while(aml_int(1)); 1166 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); 1167 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); 1168 1169 /* 1170 * if fit buffer was changed during RFIT, read from the beginning 1171 * again. 1172 */ 1173 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), 1174 aml_int(0x100 /* fit changed */))); 1175 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); 1176 aml_append(ifctx, aml_store(aml_int(0), offset)); 1177 aml_append(whilectx, ifctx); 1178 1179 elsectx = aml_else(); 1180 1181 /* finish fit read if no data is read out. */ 1182 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1183 aml_append(ifctx, aml_return(fit)); 1184 aml_append(elsectx, ifctx); 1185 1186 /* update the offset. */ 1187 aml_append(elsectx, aml_add(offset, buf_size, offset)); 1188 /* append the data we read out to the fit buffer. */ 1189 aml_append(elsectx, aml_concatenate(fit, buf, fit)); 1190 aml_append(whilectx, elsectx); 1191 aml_append(method, whilectx); 1192 1193 aml_append(dev, method); 1194 } 1195 1196 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) 1197 { 1198 uint32_t slot; 1199 1200 for (slot = 0; slot < ram_slots; slot++) { 1201 uint32_t handle = nvdimm_slot_to_handle(slot); 1202 Aml *nvdimm_dev; 1203 1204 nvdimm_dev = aml_device("NV%02X", slot); 1205 1206 /* 1207 * ACPI 6.0: 9.20 NVDIMM Devices: 1208 * 1209 * _ADR object that is used to supply OSPM with unique address 1210 * of the NVDIMM device. This is done by returning the NFIT Device 1211 * handle that is used to identify the associated entries in ACPI 1212 * table NFIT or _FIT. 1213 */ 1214 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); 1215 1216 nvdimm_build_device_dsm(nvdimm_dev, handle); 1217 aml_append(root_dev, nvdimm_dev); 1218 } 1219 } 1220 1221 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, 1222 BIOSLinker *linker, GArray *dsm_dma_arrea, 1223 uint32_t ram_slots) 1224 { 1225 Aml *ssdt, *sb_scope, *dev; 1226 int mem_addr_offset, nvdimm_ssdt; 1227 1228 acpi_add_table(table_offsets, table_data); 1229 1230 ssdt = init_aml_allocator(); 1231 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); 1232 1233 sb_scope = aml_scope("\\_SB"); 1234 1235 dev = aml_device("NVDR"); 1236 1237 /* 1238 * ACPI 6.0: 9.20 NVDIMM Devices: 1239 * 1240 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root 1241 * NVDIMM interface device. Platform firmware is required to contain one 1242 * such device in _SB scope if NVDIMMs support is exposed by platform to 1243 * OSPM. 1244 * For each NVDIMM present or intended to be supported by platform, 1245 * platform firmware also exposes an ACPI Namespace Device under the 1246 * root device. 1247 */ 1248 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); 1249 1250 nvdimm_build_common_dsm(dev); 1251 1252 /* 0 is reserved for root device. */ 1253 nvdimm_build_device_dsm(dev, 0); 1254 nvdimm_build_fit(dev); 1255 1256 nvdimm_build_nvdimm_devices(dev, ram_slots); 1257 1258 aml_append(sb_scope, dev); 1259 aml_append(ssdt, sb_scope); 1260 1261 nvdimm_ssdt = table_data->len; 1262 1263 /* copy AML table into ACPI tables blob and patch header there */ 1264 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); 1265 mem_addr_offset = build_append_named_dword(table_data, 1266 NVDIMM_ACPI_MEM_ADDR); 1267 1268 bios_linker_loader_alloc(linker, 1269 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea, 1270 sizeof(NvdimmDsmIn), false /* high memory */); 1271 bios_linker_loader_add_pointer(linker, 1272 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), 1273 NVDIMM_DSM_MEM_FILE, 0); 1274 build_header(linker, table_data, 1275 (void *)(table_data->data + nvdimm_ssdt), 1276 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM"); 1277 free_aml_allocator(); 1278 } 1279 1280 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, 1281 BIOSLinker *linker, AcpiNVDIMMState *state, 1282 uint32_t ram_slots) 1283 { 1284 nvdimm_build_nfit(state, table_offsets, table_data, linker); 1285 1286 /* 1287 * NVDIMM device is allowed to be plugged only if there is available 1288 * slot. 1289 */ 1290 if (ram_slots) { 1291 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem, 1292 ram_slots); 1293 } 1294 } 1295