xref: /openbmc/qemu/hw/acpi/nvdimm.c (revision 8eeb6f36)
1 /*
2  * NVDIMM ACPI Implementation
3  *
4  * Copyright(C) 2015 Intel Corporation.
5  *
6  * Author:
7  *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
8  *
9  * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10  * and the DSM specification can be found at:
11  *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
12  *
13  * Currently, it only supports PMEM Virtualization.
14  *
15  * This library is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU Lesser General Public
17  * License as published by the Free Software Foundation; either
18  * version 2 of the License, or (at your option) any later version.
19  *
20  * This library is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  * Lesser General Public License for more details.
24  *
25  * You should have received a copy of the GNU Lesser General Public
26  * License along with this library; if not, see <http://www.gnu.org/licenses/>
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/uuid.h"
31 #include "qapi/error.h"
32 #include "hw/acpi/acpi.h"
33 #include "hw/acpi/aml-build.h"
34 #include "hw/acpi/bios-linker-loader.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/mem/nvdimm.h"
37 #include "qemu/nvdimm-utils.h"
38 
39 /*
40  * define Byte Addressable Persistent Memory (PM) Region according to
41  * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
42  */
43 static const uint8_t nvdimm_nfit_spa_uuid[] =
44       UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
45               0x18, 0xb7, 0x8c, 0xdb);
46 
47 /*
48  * NVDIMM Firmware Interface Table
49  * @signature: "NFIT"
50  *
51  * It provides information that allows OSPM to enumerate NVDIMM present in
52  * the platform and associate system physical address ranges created by the
53  * NVDIMMs.
54  *
55  * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
56  */
57 struct NvdimmNfitHeader {
58     ACPI_TABLE_HEADER_DEF
59     uint32_t reserved;
60 } QEMU_PACKED;
61 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
62 
63 /*
64  * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
65  * Interface Table (NFIT).
66  */
67 
68 /*
69  * System Physical Address Range Structure
70  *
71  * It describes the system physical address ranges occupied by NVDIMMs and
72  * the types of the regions.
73  */
74 struct NvdimmNfitSpa {
75     uint16_t type;
76     uint16_t length;
77     uint16_t spa_index;
78     uint16_t flags;
79     uint32_t reserved;
80     uint32_t proximity_domain;
81     uint8_t type_guid[16];
82     uint64_t spa_base;
83     uint64_t spa_length;
84     uint64_t mem_attr;
85 } QEMU_PACKED;
86 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
87 
88 /*
89  * Memory Device to System Physical Address Range Mapping Structure
90  *
91  * It enables identifying each NVDIMM region and the corresponding SPA
92  * describing the memory interleave
93  */
94 struct NvdimmNfitMemDev {
95     uint16_t type;
96     uint16_t length;
97     uint32_t nfit_handle;
98     uint16_t phys_id;
99     uint16_t region_id;
100     uint16_t spa_index;
101     uint16_t dcr_index;
102     uint64_t region_len;
103     uint64_t region_offset;
104     uint64_t region_dpa;
105     uint16_t interleave_index;
106     uint16_t interleave_ways;
107     uint16_t flags;
108     uint16_t reserved;
109 } QEMU_PACKED;
110 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
111 
112 #define ACPI_NFIT_MEM_NOT_ARMED     (1 << 3)
113 
114 /*
115  * NVDIMM Control Region Structure
116  *
117  * It describes the NVDIMM and if applicable, Block Control Window.
118  */
119 struct NvdimmNfitControlRegion {
120     uint16_t type;
121     uint16_t length;
122     uint16_t dcr_index;
123     uint16_t vendor_id;
124     uint16_t device_id;
125     uint16_t revision_id;
126     uint16_t sub_vendor_id;
127     uint16_t sub_device_id;
128     uint16_t sub_revision_id;
129     uint8_t reserved[6];
130     uint32_t serial_number;
131     uint16_t fic;
132     uint16_t num_bcw;
133     uint64_t bcw_size;
134     uint64_t cmd_offset;
135     uint64_t cmd_size;
136     uint64_t status_offset;
137     uint64_t status_size;
138     uint16_t flags;
139     uint8_t reserved2[6];
140 } QEMU_PACKED;
141 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
142 
143 /*
144  * NVDIMM Platform Capabilities Structure
145  *
146  * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
147  */
148 struct NvdimmNfitPlatformCaps {
149     uint16_t type;
150     uint16_t length;
151     uint8_t highest_cap;
152     uint8_t reserved[3];
153     uint32_t capabilities;
154     uint8_t reserved2[4];
155 } QEMU_PACKED;
156 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
157 
158 /*
159  * Module serial number is a unique number for each device. We use the
160  * slot id of NVDIMM device to generate this number so that each device
161  * associates with a different number.
162  *
163  * 0x123456 is a magic number we arbitrarily chose.
164  */
165 static uint32_t nvdimm_slot_to_sn(int slot)
166 {
167     return 0x123456 + slot;
168 }
169 
170 /*
171  * handle is used to uniquely associate nfit_memdev structure with NVDIMM
172  * ACPI device - nfit_memdev.nfit_handle matches with the value returned
173  * by ACPI device _ADR method.
174  *
175  * We generate the handle with the slot id of NVDIMM device and reserve
176  * 0 for NVDIMM root device.
177  */
178 static uint32_t nvdimm_slot_to_handle(int slot)
179 {
180     return slot + 1;
181 }
182 
183 /*
184  * index uniquely identifies the structure, 0 is reserved which indicates
185  * that the structure is not valid or the associated structure is not
186  * present.
187  *
188  * Each NVDIMM device needs two indexes, one for nfit_spa and another for
189  * nfit_dc which are generated by the slot id of NVDIMM device.
190  */
191 static uint16_t nvdimm_slot_to_spa_index(int slot)
192 {
193     return (slot + 1) << 1;
194 }
195 
196 /* See the comments of nvdimm_slot_to_spa_index(). */
197 static uint32_t nvdimm_slot_to_dcr_index(int slot)
198 {
199     return nvdimm_slot_to_spa_index(slot) + 1;
200 }
201 
202 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
203 {
204     NVDIMMDevice *nvdimm = NULL;
205     GSList *list, *device_list = nvdimm_get_device_list();
206 
207     for (list = device_list; list; list = list->next) {
208         NVDIMMDevice *nvd = list->data;
209         int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
210                                            NULL);
211 
212         if (nvdimm_slot_to_handle(slot) == handle) {
213             nvdimm = nvd;
214             break;
215         }
216     }
217 
218     g_slist_free(device_list);
219     return nvdimm;
220 }
221 
222 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
223 static void
224 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
225 {
226     NvdimmNfitSpa *nfit_spa;
227     uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
228                                              NULL);
229     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
230                                              NULL);
231     uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
232                                              NULL);
233     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
234                                        NULL);
235 
236     nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
237 
238     nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
239                                       Structure */);
240     nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
241     nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
242 
243     /*
244      * Control region is strict as all the device info, such as SN, index,
245      * is associated with slot id.
246      */
247     nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
248                                        management during hot add/online
249                                        operation */ |
250                                   2 /* Data in Proximity Domain field is
251                                        valid*/);
252 
253     /* NUMA node. */
254     nfit_spa->proximity_domain = cpu_to_le32(node);
255     /* the region reported as PMEM. */
256     memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
257            sizeof(nvdimm_nfit_spa_uuid));
258 
259     nfit_spa->spa_base = cpu_to_le64(addr);
260     nfit_spa->spa_length = cpu_to_le64(size);
261 
262     /* It is the PMEM and can be cached as writeback. */
263     nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
264                                      0x8000ULL /* EFI_MEMORY_NV */);
265 }
266 
267 /*
268  * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
269  * Structure
270  */
271 static void
272 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
273 {
274     NvdimmNfitMemDev *nfit_memdev;
275     NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
276     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
277                                              NULL);
278     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
279                                             NULL);
280     uint32_t handle = nvdimm_slot_to_handle(slot);
281 
282     nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
283 
284     nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
285                                          Range Map Structure*/);
286     nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
287     nfit_memdev->nfit_handle = cpu_to_le32(handle);
288 
289     /*
290      * associate memory device with System Physical Address Range
291      * Structure.
292      */
293     nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
294     /* associate memory device with Control Region Structure. */
295     nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
296 
297     /* The memory region on the device. */
298     nfit_memdev->region_len = cpu_to_le64(size);
299     /* The device address starts from 0. */
300     nfit_memdev->region_dpa = cpu_to_le64(0);
301 
302     /* Only one interleave for PMEM. */
303     nfit_memdev->interleave_ways = cpu_to_le16(1);
304 
305     if (nvdimm->unarmed) {
306         nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
307     }
308 }
309 
310 /*
311  * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
312  */
313 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
314 {
315     NvdimmNfitControlRegion *nfit_dcr;
316     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
317                                        NULL);
318     uint32_t sn = nvdimm_slot_to_sn(slot);
319 
320     nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
321 
322     nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
323     nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
324     nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
325 
326     /* vendor: Intel. */
327     nfit_dcr->vendor_id = cpu_to_le16(0x8086);
328     nfit_dcr->device_id = cpu_to_le16(1);
329 
330     /* The _DSM method is following Intel's DSM specification. */
331     nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
332                                              in ACPI 6.0 is 1. */);
333     nfit_dcr->serial_number = cpu_to_le32(sn);
334     nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
335                                          Byte addressable, no energy backed.
336                                          See ACPI 6.2, sect 5.2.25.6 and
337                                          JEDEC Annex L Release 3. */);
338 }
339 
340 /*
341  * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
342  */
343 static void
344 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
345 {
346     NvdimmNfitPlatformCaps *nfit_caps;
347 
348     nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
349 
350     nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
351     nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
352     nfit_caps->highest_cap = 31 - clz32(capabilities);
353     nfit_caps->capabilities = cpu_to_le32(capabilities);
354 }
355 
356 static GArray *nvdimm_build_device_structure(NVDIMMState *state)
357 {
358     GSList *device_list = nvdimm_get_device_list();
359     GArray *structures = g_array_new(false, true /* clear */, 1);
360 
361     for (; device_list; device_list = device_list->next) {
362         DeviceState *dev = device_list->data;
363 
364         /* build System Physical Address Range Structure. */
365         nvdimm_build_structure_spa(structures, dev);
366 
367         /*
368          * build Memory Device to System Physical Address Range Mapping
369          * Structure.
370          */
371         nvdimm_build_structure_memdev(structures, dev);
372 
373         /* build NVDIMM Control Region Structure. */
374         nvdimm_build_structure_dcr(structures, dev);
375     }
376     g_slist_free(device_list);
377 
378     if (state->persistence) {
379         nvdimm_build_structure_caps(structures, state->persistence);
380     }
381 
382     return structures;
383 }
384 
385 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
386 {
387     fit_buf->fit = g_array_new(false, true /* clear */, 1);
388 }
389 
390 static void nvdimm_build_fit_buffer(NVDIMMState *state)
391 {
392     NvdimmFitBuffer *fit_buf = &state->fit_buf;
393 
394     g_array_free(fit_buf->fit, true);
395     fit_buf->fit = nvdimm_build_device_structure(state);
396     fit_buf->dirty = true;
397 }
398 
399 void nvdimm_plug(NVDIMMState *state)
400 {
401     nvdimm_build_fit_buffer(state);
402 }
403 
404 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
405                               GArray *table_data, BIOSLinker *linker)
406 {
407     NvdimmFitBuffer *fit_buf = &state->fit_buf;
408     unsigned int header;
409 
410     acpi_add_table(table_offsets, table_data);
411 
412     /* NFIT header. */
413     header = table_data->len;
414     acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
415     /* NVDIMM device structures. */
416     g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
417 
418     build_header(linker, table_data,
419                  (void *)(table_data->data + header), "NFIT",
420                  sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
421 }
422 
423 #define NVDIMM_DSM_MEMORY_SIZE      4096
424 
425 struct NvdimmDsmIn {
426     uint32_t handle;
427     uint32_t revision;
428     uint32_t function;
429     /* the remaining size in the page is used by arg3. */
430     union {
431         uint8_t arg3[4084];
432     };
433 } QEMU_PACKED;
434 typedef struct NvdimmDsmIn NvdimmDsmIn;
435 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
436 
437 struct NvdimmDsmOut {
438     /* the size of buffer filled by QEMU. */
439     uint32_t len;
440     uint8_t data[4092];
441 } QEMU_PACKED;
442 typedef struct NvdimmDsmOut NvdimmDsmOut;
443 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
444 
445 struct NvdimmDsmFunc0Out {
446     /* the size of buffer filled by QEMU. */
447      uint32_t len;
448      uint32_t supported_func;
449 } QEMU_PACKED;
450 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
451 
452 struct NvdimmDsmFuncNoPayloadOut {
453     /* the size of buffer filled by QEMU. */
454      uint32_t len;
455      uint32_t func_ret_status;
456 } QEMU_PACKED;
457 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
458 
459 struct NvdimmFuncGetLabelSizeOut {
460     /* the size of buffer filled by QEMU. */
461     uint32_t len;
462     uint32_t func_ret_status; /* return status code. */
463     uint32_t label_size; /* the size of label data area. */
464     /*
465      * Maximum size of the namespace label data length supported by
466      * the platform in Get/Set Namespace Label Data functions.
467      */
468     uint32_t max_xfer;
469 } QEMU_PACKED;
470 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
471 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
472 
473 struct NvdimmFuncGetLabelDataIn {
474     uint32_t offset; /* the offset in the namespace label data area. */
475     uint32_t length; /* the size of data is to be read via the function. */
476 } QEMU_PACKED;
477 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
478 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
479                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
480 
481 struct NvdimmFuncGetLabelDataOut {
482     /* the size of buffer filled by QEMU. */
483     uint32_t len;
484     uint32_t func_ret_status; /* return status code. */
485     uint8_t out_buf[]; /* the data got via Get Namesapce Label function. */
486 } QEMU_PACKED;
487 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
488 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
489 
490 struct NvdimmFuncSetLabelDataIn {
491     uint32_t offset; /* the offset in the namespace label data area. */
492     uint32_t length; /* the size of data is to be written via the function. */
493     uint8_t in_buf[]; /* the data written to label data area. */
494 } QEMU_PACKED;
495 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
496 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
497                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
498 
499 struct NvdimmFuncReadFITIn {
500     uint32_t offset; /* the offset into FIT buffer. */
501 } QEMU_PACKED;
502 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
503 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
504                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
505 
506 struct NvdimmFuncReadFITOut {
507     /* the size of buffer filled by QEMU. */
508     uint32_t len;
509     uint32_t func_ret_status; /* return status code. */
510     uint8_t fit[]; /* the FIT data. */
511 } QEMU_PACKED;
512 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
513 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
514 
515 static void
516 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
517 {
518     NvdimmDsmFunc0Out func0 = {
519         .len = cpu_to_le32(sizeof(func0)),
520         .supported_func = cpu_to_le32(supported_func),
521     };
522     cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
523 }
524 
525 static void
526 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
527 {
528     NvdimmDsmFuncNoPayloadOut out = {
529         .len = cpu_to_le32(sizeof(out)),
530         .func_ret_status = cpu_to_le32(func_ret_status),
531     };
532     cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
533 }
534 
535 #define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
536 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
537 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
538 #define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
539 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
540 
541 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
542 
543 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
544 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
545                                      hwaddr dsm_mem_addr)
546 {
547     NvdimmFitBuffer *fit_buf = &state->fit_buf;
548     NvdimmFuncReadFITIn *read_fit;
549     NvdimmFuncReadFITOut *read_fit_out;
550     GArray *fit;
551     uint32_t read_len = 0, func_ret_status;
552     int size;
553 
554     read_fit = (NvdimmFuncReadFITIn *)in->arg3;
555     read_fit->offset = le32_to_cpu(read_fit->offset);
556 
557     fit = fit_buf->fit;
558 
559     nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
560                  read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
561 
562     if (read_fit->offset > fit->len) {
563         func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
564         goto exit;
565     }
566 
567     /* It is the first time to read FIT. */
568     if (!read_fit->offset) {
569         fit_buf->dirty = false;
570     } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
571         func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
572         goto exit;
573     }
574 
575     func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
576     read_len = MIN(fit->len - read_fit->offset,
577                    NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
578 
579 exit:
580     size = sizeof(NvdimmFuncReadFITOut) + read_len;
581     read_fit_out = g_malloc(size);
582 
583     read_fit_out->len = cpu_to_le32(size);
584     read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
585     memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
586 
587     cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
588 
589     g_free(read_fit_out);
590 }
591 
592 static void
593 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
594                                        NvdimmDsmIn *in, hwaddr dsm_mem_addr)
595 {
596     switch (in->function) {
597     case 0x0:
598         nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
599         return;
600     case 0x1 /* Read FIT */:
601         nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
602         return;
603     }
604 
605     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
606 }
607 
608 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
609 {
610     /*
611      * function 0 is called to inquire which functions are supported by
612      * OSPM
613      */
614     if (!in->function) {
615         nvdimm_dsm_function0(0 /* No function supported other than
616                                   function 0 */, dsm_mem_addr);
617         return;
618     }
619 
620     /* No function except function 0 is supported yet. */
621     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
622 }
623 
624 /*
625  * the max transfer size is the max size transferred by both a
626  * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
627  * function.
628  */
629 static uint32_t nvdimm_get_max_xfer_label_size(void)
630 {
631     uint32_t max_get_size, max_set_size, dsm_memory_size;
632 
633     dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
634 
635     /*
636      * the max data ACPI can read one time which is transferred by
637      * the response of 'Get Namespace Label Data' function.
638      */
639     max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
640 
641     /*
642      * the max data ACPI can write one time which is transferred by
643      * 'Set Namespace Label Data' function.
644      */
645     max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
646                    sizeof(NvdimmFuncSetLabelDataIn);
647 
648     return MIN(max_get_size, max_set_size);
649 }
650 
651 /*
652  * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
653  *
654  * It gets the size of Namespace Label data area and the max data size
655  * that Get/Set Namespace Label Data functions can transfer.
656  */
657 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
658 {
659     NvdimmFuncGetLabelSizeOut label_size_out = {
660         .len = cpu_to_le32(sizeof(label_size_out)),
661     };
662     uint32_t label_size, mxfer;
663 
664     label_size = nvdimm->label_size;
665     mxfer = nvdimm_get_max_xfer_label_size();
666 
667     nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
668 
669     label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
670     label_size_out.label_size = cpu_to_le32(label_size);
671     label_size_out.max_xfer = cpu_to_le32(mxfer);
672 
673     cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
674                               sizeof(label_size_out));
675 }
676 
677 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
678                                            uint32_t offset, uint32_t length)
679 {
680     uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
681 
682     if (offset + length < offset) {
683         nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
684                      length);
685         return ret;
686     }
687 
688     if (nvdimm->label_size < offset + length) {
689         nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
690                      offset + length, nvdimm->label_size);
691         return ret;
692     }
693 
694     if (length > nvdimm_get_max_xfer_label_size()) {
695         nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
696                      length, nvdimm_get_max_xfer_label_size());
697         return ret;
698     }
699 
700     return NVDIMM_DSM_RET_STATUS_SUCCESS;
701 }
702 
703 /*
704  * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
705  */
706 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
707                                       hwaddr dsm_mem_addr)
708 {
709     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
710     NvdimmFuncGetLabelDataIn *get_label_data;
711     NvdimmFuncGetLabelDataOut *get_label_data_out;
712     uint32_t status;
713     int size;
714 
715     get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
716     get_label_data->offset = le32_to_cpu(get_label_data->offset);
717     get_label_data->length = le32_to_cpu(get_label_data->length);
718 
719     nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
720                  get_label_data->offset, get_label_data->length);
721 
722     status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
723                                         get_label_data->length);
724     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
725         nvdimm_dsm_no_payload(status, dsm_mem_addr);
726         return;
727     }
728 
729     size = sizeof(*get_label_data_out) + get_label_data->length;
730     assert(size <= NVDIMM_DSM_MEMORY_SIZE);
731     get_label_data_out = g_malloc(size);
732 
733     get_label_data_out->len = cpu_to_le32(size);
734     get_label_data_out->func_ret_status =
735                             cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
736     nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
737                          get_label_data->length, get_label_data->offset);
738 
739     cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
740     g_free(get_label_data_out);
741 }
742 
743 /*
744  * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
745  */
746 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
747                                       hwaddr dsm_mem_addr)
748 {
749     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
750     NvdimmFuncSetLabelDataIn *set_label_data;
751     uint32_t status;
752 
753     set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
754 
755     set_label_data->offset = le32_to_cpu(set_label_data->offset);
756     set_label_data->length = le32_to_cpu(set_label_data->length);
757 
758     nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
759                  set_label_data->offset, set_label_data->length);
760 
761     status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
762                                         set_label_data->length);
763     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
764         nvdimm_dsm_no_payload(status, dsm_mem_addr);
765         return;
766     }
767 
768     assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
769                     set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
770 
771     nvc->write_label_data(nvdimm, set_label_data->in_buf,
772                           set_label_data->length, set_label_data->offset);
773     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
774 }
775 
776 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
777 {
778     NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
779 
780     /* See the comments in nvdimm_dsm_root(). */
781     if (!in->function) {
782         uint32_t supported_func = 0;
783 
784         if (nvdimm && nvdimm->label_size) {
785             supported_func |= 0x1 /* Bit 0 indicates whether there is
786                                      support for any functions other
787                                      than function 0. */ |
788                               1 << 4 /* Get Namespace Label Size */ |
789                               1 << 5 /* Get Namespace Label Data */ |
790                               1 << 6 /* Set Namespace Label Data */;
791         }
792         nvdimm_dsm_function0(supported_func, dsm_mem_addr);
793         return;
794     }
795 
796     if (!nvdimm) {
797         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
798                               dsm_mem_addr);
799         return;
800     }
801 
802     /* Encode DSM function according to DSM Spec Rev1. */
803     switch (in->function) {
804     case 4 /* Get Namespace Label Size */:
805         if (nvdimm->label_size) {
806             nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
807             return;
808         }
809         break;
810     case 5 /* Get Namespace Label Data */:
811         if (nvdimm->label_size) {
812             nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
813             return;
814         }
815         break;
816     case 0x6 /* Set Namespace Label Data */:
817         if (nvdimm->label_size) {
818             nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
819             return;
820         }
821         break;
822     }
823 
824     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
825 }
826 
827 static uint64_t
828 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
829 {
830     nvdimm_debug("BUG: we never read _DSM IO Port.\n");
831     return 0;
832 }
833 
834 static void
835 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
836 {
837     NVDIMMState *state = opaque;
838     NvdimmDsmIn *in;
839     hwaddr dsm_mem_addr = val;
840 
841     nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
842 
843     /*
844      * The DSM memory is mapped to guest address space so an evil guest
845      * can change its content while we are doing DSM emulation. Avoid
846      * this by copying DSM memory to QEMU local memory.
847      */
848     in = g_new(NvdimmDsmIn, 1);
849     cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
850 
851     in->revision = le32_to_cpu(in->revision);
852     in->function = le32_to_cpu(in->function);
853     in->handle = le32_to_cpu(in->handle);
854 
855     nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
856                  in->handle, in->function);
857 
858     if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
859         nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
860                      in->revision, 0x1);
861         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
862         goto exit;
863     }
864 
865     if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
866         nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
867         goto exit;
868     }
869 
870      /* Handle 0 is reserved for NVDIMM Root Device. */
871     if (!in->handle) {
872         nvdimm_dsm_root(in, dsm_mem_addr);
873         goto exit;
874     }
875 
876     nvdimm_dsm_device(in, dsm_mem_addr);
877 
878 exit:
879     g_free(in);
880 }
881 
882 static const MemoryRegionOps nvdimm_dsm_ops = {
883     .read = nvdimm_dsm_read,
884     .write = nvdimm_dsm_write,
885     .endianness = DEVICE_LITTLE_ENDIAN,
886     .valid = {
887         .min_access_size = 4,
888         .max_access_size = 4,
889     },
890 };
891 
892 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
893 {
894     if (dev->hotplugged) {
895         acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
896     }
897 }
898 
899 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
900                             struct AcpiGenericAddress dsm_io,
901                             FWCfgState *fw_cfg, Object *owner)
902 {
903     state->dsm_io = dsm_io;
904     memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
905                           "nvdimm-acpi-io", dsm_io.bit_width >> 3);
906     memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
907 
908     state->dsm_mem = g_array_new(false, true /* clear */, 1);
909     acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
910     fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
911                     state->dsm_mem->len);
912 
913     nvdimm_init_fit_buffer(&state->fit_buf);
914 }
915 
916 #define NVDIMM_COMMON_DSM       "NCAL"
917 #define NVDIMM_ACPI_MEM_ADDR    "MEMA"
918 
919 #define NVDIMM_DSM_MEMORY       "NRAM"
920 #define NVDIMM_DSM_IOPORT       "NPIO"
921 
922 #define NVDIMM_DSM_NOTIFY       "NTFI"
923 #define NVDIMM_DSM_HANDLE       "HDLE"
924 #define NVDIMM_DSM_REVISION     "REVS"
925 #define NVDIMM_DSM_FUNCTION     "FUNC"
926 #define NVDIMM_DSM_ARG3         "FARG"
927 
928 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
929 #define NVDIMM_DSM_OUT_BUF      "ODAT"
930 
931 #define NVDIMM_DSM_RFIT_STATUS  "RSTA"
932 
933 #define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
934 
935 static void nvdimm_build_common_dsm(Aml *dev,
936                                     NVDIMMState *nvdimm_state)
937 {
938     Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
939     Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
940     Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
941     Aml *whilectx, *offset;
942     uint8_t byte_list[1];
943     AmlRegionSpace rs;
944 
945     method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
946     uuid = aml_arg(0);
947     function = aml_arg(2);
948     handle = aml_arg(4);
949     dsm_mem = aml_local(6);
950     dsm_out_buf = aml_local(7);
951 
952     aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
953 
954     if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
955         rs = AML_SYSTEM_IO;
956     } else {
957         rs = AML_SYSTEM_MEMORY;
958     }
959 
960     /* map DSM memory and IO into ACPI namespace. */
961     aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
962                aml_int(nvdimm_state->dsm_io.address),
963                nvdimm_state->dsm_io.bit_width >> 3));
964     aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
965                AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
966 
967     /*
968      * DSM notifier:
969      * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
970      *                    emulate the access.
971      *
972      * It is the IO port so that accessing them will cause VM-exit, the
973      * control will be transferred to QEMU.
974      */
975     field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
976                       AML_PRESERVE);
977     aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
978                nvdimm_state->dsm_io.bit_width));
979     aml_append(method, field);
980 
981     /*
982      * DSM input:
983      * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
984      *                    happens on NVDIMM Root Device.
985      * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
986      * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
987      * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
988      *                  containing function-specific arguments.
989      *
990      * They are RAM mapping on host so that these accesses never cause
991      * VM-EXIT.
992      */
993     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
994                       AML_PRESERVE);
995     aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
996                sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
997     aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
998                sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
999     aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
1000                sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
1001     aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
1002          (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
1003     aml_append(method, field);
1004 
1005     /*
1006      * DSM output:
1007      * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
1008      * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1009      *
1010      * Since the page is reused by both input and out, the input data
1011      * will be lost after storing new result into ODAT so we should fetch
1012      * all the input data before writing the result.
1013      */
1014     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1015                       AML_PRESERVE);
1016     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1017                sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1018     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1019        (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1020     aml_append(method, field);
1021 
1022     /*
1023      * do not support any method if DSM memory address has not been
1024      * patched.
1025      */
1026     unpatched = aml_equal(dsm_mem, aml_int(0x0));
1027 
1028     expected_uuid = aml_local(0);
1029 
1030     ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1031     aml_append(ifctx, aml_store(
1032                aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1033                /* UUID for NVDIMM Root Device */, expected_uuid));
1034     aml_append(method, ifctx);
1035     elsectx = aml_else();
1036     ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1037     aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1038                /* UUID for QEMU internal use */), expected_uuid));
1039     aml_append(elsectx, ifctx);
1040     elsectx2 = aml_else();
1041     aml_append(elsectx2, aml_store(
1042                aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1043                /* UUID for NVDIMM Devices */, expected_uuid));
1044     aml_append(elsectx, elsectx2);
1045     aml_append(method, elsectx);
1046 
1047     uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1048 
1049     unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1050 
1051     /*
1052      * function 0 is called to inquire what functions are supported by
1053      * OSPM
1054      */
1055     ifctx = aml_if(aml_equal(function, aml_int(0)));
1056     byte_list[0] = 0 /* No function Supported */;
1057     aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1058     aml_append(unsupport, ifctx);
1059 
1060     /* No function is supported yet. */
1061     byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1062     aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1063     aml_append(method, unsupport);
1064 
1065     /*
1066      * The HDLE indicates the DSM function is issued from which device,
1067      * it reserves 0 for root device and is the handle for NVDIMM devices.
1068      * See the comments in nvdimm_slot_to_handle().
1069      */
1070     aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1071     aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1072     aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1073 
1074     /*
1075      * The fourth parameter (Arg3) of _DSM is a package which contains
1076      * a buffer, the layout of the buffer is specified by UUID (Arg0),
1077      * Revision ID (Arg1) and Function Index (Arg2) which are documented
1078      * in the DSM Spec.
1079      */
1080     pckg = aml_arg(3);
1081     ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1082                    aml_int(4 /* Package */)) /* It is a Package? */,
1083                    aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1084                    NULL));
1085 
1086     pckg_index = aml_local(2);
1087     pckg_buf = aml_local(3);
1088     aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1089     aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1090     aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1091     aml_append(method, ifctx);
1092 
1093     /*
1094      * tell QEMU about the real address of DSM memory, then QEMU
1095      * gets the control and fills the result in DSM memory.
1096      */
1097     aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1098 
1099     dsm_out_buf_size = aml_local(1);
1100     /* RLEN is not included in the payload returned to guest. */
1101     aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1102                aml_int(4), dsm_out_buf_size));
1103 
1104     /*
1105      * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1106      * the Buffer Field <= to the size of an Integer (in bits), it will
1107      * be treated as an integer. Moreover, the integer size depends on
1108      * DSDT tables revision number. If revision number is < 2, integer
1109      * size is 32 bits, otherwise it is 64 bits.
1110      * Because of this CreateField() canot be used if RLEN < Integer Size.
1111      *
1112      * Also please note that APCI ASL operator SizeOf() doesn't support
1113      * Integer and there isn't any other way to figure out the Integer
1114      * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1115      * build dsm_out_buf byte by byte.
1116      */
1117     ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
1118     offset = aml_local(2);
1119     aml_append(ifctx, aml_store(aml_int(0), offset));
1120     aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
1121     aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
1122 
1123     whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
1124     /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1125     aml_append(whilectx, aml_store(aml_derefof(aml_index(
1126                                    aml_name(NVDIMM_DSM_OUT_BUF), offset)),
1127                                    aml_index(aml_name("TBUF"), aml_int(0))));
1128     aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
1129                                          dsm_out_buf));
1130     aml_append(whilectx, aml_increment(offset));
1131     aml_append(ifctx, whilectx);
1132 
1133     aml_append(ifctx, aml_return(dsm_out_buf));
1134     aml_append(method, ifctx);
1135 
1136     /* If RLEN >= Integer size, just use CreateField() operator */
1137     aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1138                                  dsm_out_buf_size));
1139     aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1140                aml_int(0), dsm_out_buf_size, "OBUF"));
1141     aml_append(method, aml_return(aml_name("OBUF")));
1142 
1143     aml_append(dev, method);
1144 }
1145 
1146 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1147 {
1148     Aml *method;
1149 
1150     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1151     aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1152                                   aml_arg(1), aml_arg(2), aml_arg(3),
1153                                   aml_int(handle))));
1154     aml_append(dev, method);
1155 }
1156 
1157 static void nvdimm_build_fit(Aml *dev)
1158 {
1159     Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1160     Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1161 
1162     buf = aml_local(0);
1163     buf_size = aml_local(1);
1164     fit = aml_local(2);
1165 
1166     aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1167 
1168     /* build helper function, RFIT. */
1169     method = aml_method("RFIT", 1, AML_SERIALIZED);
1170     aml_append(method, aml_name_decl("OFST", aml_int(0)));
1171 
1172     /* prepare input package. */
1173     pkg = aml_package(1);
1174     aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1175     aml_append(pkg, aml_name("OFST"));
1176 
1177     /* call Read_FIT function. */
1178     call_result = aml_call5(NVDIMM_COMMON_DSM,
1179                             aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1180                             aml_int(1) /* Revision 1 */,
1181                             aml_int(0x1) /* Read FIT */,
1182                             pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1183     aml_append(method, aml_store(call_result, buf));
1184 
1185     /* handle _DSM result. */
1186     aml_append(method, aml_create_dword_field(buf,
1187                aml_int(0) /* offset at byte 0 */, "STAU"));
1188 
1189     aml_append(method, aml_store(aml_name("STAU"),
1190                                  aml_name(NVDIMM_DSM_RFIT_STATUS)));
1191 
1192      /* if something is wrong during _DSM. */
1193     ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1194                        aml_name("STAU"));
1195     ifctx = aml_if(aml_lnot(ifcond));
1196     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1197     aml_append(method, ifctx);
1198 
1199     aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1200     aml_append(method, aml_subtract(buf_size,
1201                                     aml_int(4) /* the size of "STAU" */,
1202                                     buf_size));
1203 
1204     /* if we read the end of fit. */
1205     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1206     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1207     aml_append(method, ifctx);
1208 
1209     aml_append(method, aml_create_field(buf,
1210                             aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1211                             aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1212     aml_append(method, aml_return(aml_name("BUFF")));
1213     aml_append(dev, method);
1214 
1215     /* build _FIT. */
1216     method = aml_method("_FIT", 0, AML_SERIALIZED);
1217     offset = aml_local(3);
1218 
1219     aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1220     aml_append(method, aml_store(aml_int(0), offset));
1221 
1222     whilectx = aml_while(aml_int(1));
1223     aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1224     aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1225 
1226     /*
1227      * if fit buffer was changed during RFIT, read from the beginning
1228      * again.
1229      */
1230     ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1231                              aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1232     aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1233     aml_append(ifctx, aml_store(aml_int(0), offset));
1234     aml_append(whilectx, ifctx);
1235 
1236     elsectx = aml_else();
1237 
1238     /* finish fit read if no data is read out. */
1239     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1240     aml_append(ifctx, aml_return(fit));
1241     aml_append(elsectx, ifctx);
1242 
1243     /* update the offset. */
1244     aml_append(elsectx, aml_add(offset, buf_size, offset));
1245     /* append the data we read out to the fit buffer. */
1246     aml_append(elsectx, aml_concatenate(fit, buf, fit));
1247     aml_append(whilectx, elsectx);
1248     aml_append(method, whilectx);
1249 
1250     aml_append(dev, method);
1251 }
1252 
1253 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1254 {
1255     uint32_t slot;
1256 
1257     for (slot = 0; slot < ram_slots; slot++) {
1258         uint32_t handle = nvdimm_slot_to_handle(slot);
1259         Aml *nvdimm_dev;
1260 
1261         nvdimm_dev = aml_device("NV%02X", slot);
1262 
1263         /*
1264          * ACPI 6.0: 9.20 NVDIMM Devices:
1265          *
1266          * _ADR object that is used to supply OSPM with unique address
1267          * of the NVDIMM device. This is done by returning the NFIT Device
1268          * handle that is used to identify the associated entries in ACPI
1269          * table NFIT or _FIT.
1270          */
1271         aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1272 
1273         nvdimm_build_device_dsm(nvdimm_dev, handle);
1274         aml_append(root_dev, nvdimm_dev);
1275     }
1276 }
1277 
1278 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1279                               BIOSLinker *linker,
1280                               NVDIMMState *nvdimm_state,
1281                               uint32_t ram_slots)
1282 {
1283     Aml *ssdt, *sb_scope, *dev;
1284     int mem_addr_offset, nvdimm_ssdt;
1285 
1286     acpi_add_table(table_offsets, table_data);
1287 
1288     ssdt = init_aml_allocator();
1289     acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1290 
1291     sb_scope = aml_scope("\\_SB");
1292 
1293     dev = aml_device("NVDR");
1294 
1295     /*
1296      * ACPI 6.0: 9.20 NVDIMM Devices:
1297      *
1298      * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1299      * NVDIMM interface device. Platform firmware is required to contain one
1300      * such device in _SB scope if NVDIMMs support is exposed by platform to
1301      * OSPM.
1302      * For each NVDIMM present or intended to be supported by platform,
1303      * platform firmware also exposes an ACPI Namespace Device under the
1304      * root device.
1305      */
1306     aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1307 
1308     nvdimm_build_common_dsm(dev, nvdimm_state);
1309 
1310     /* 0 is reserved for root device. */
1311     nvdimm_build_device_dsm(dev, 0);
1312     nvdimm_build_fit(dev);
1313 
1314     nvdimm_build_nvdimm_devices(dev, ram_slots);
1315 
1316     aml_append(sb_scope, dev);
1317     aml_append(ssdt, sb_scope);
1318 
1319     nvdimm_ssdt = table_data->len;
1320 
1321     /* copy AML table into ACPI tables blob and patch header there */
1322     g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1323     mem_addr_offset = build_append_named_dword(table_data,
1324                                                NVDIMM_ACPI_MEM_ADDR);
1325 
1326     bios_linker_loader_alloc(linker,
1327                              NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
1328                              sizeof(NvdimmDsmIn), false /* high memory */);
1329     bios_linker_loader_add_pointer(linker,
1330         ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1331         NVDIMM_DSM_MEM_FILE, 0);
1332     build_header(linker, table_data,
1333         (void *)(table_data->data + nvdimm_ssdt),
1334         "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1335     free_aml_allocator();
1336 }
1337 
1338 void nvdimm_build_srat(GArray *table_data)
1339 {
1340     GSList *device_list = nvdimm_get_device_list();
1341 
1342     for (; device_list; device_list = device_list->next) {
1343         AcpiSratMemoryAffinity *numamem = NULL;
1344         DeviceState *dev = device_list->data;
1345         Object *obj = OBJECT(dev);
1346         uint64_t addr, size;
1347         int node;
1348 
1349         node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort);
1350         addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort);
1351         size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort);
1352 
1353         numamem = acpi_data_push(table_data, sizeof *numamem);
1354         build_srat_memory(numamem, addr, size, node,
1355                           MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE);
1356     }
1357     g_slist_free(device_list);
1358 }
1359 
1360 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1361                        BIOSLinker *linker, NVDIMMState *state,
1362                        uint32_t ram_slots)
1363 {
1364     GSList *device_list;
1365 
1366     /* no nvdimm device can be plugged. */
1367     if (!ram_slots) {
1368         return;
1369     }
1370 
1371     nvdimm_build_ssdt(table_offsets, table_data, linker, state,
1372                       ram_slots);
1373 
1374     device_list = nvdimm_get_device_list();
1375     /* no NVDIMM device is plugged. */
1376     if (!device_list) {
1377         return;
1378     }
1379 
1380     nvdimm_build_nfit(state, table_offsets, table_data, linker);
1381     g_slist_free(device_list);
1382 }
1383