1 /* 2 * NVDIMM ACPI Implementation 3 * 4 * Copyright(C) 2015 Intel Corporation. 5 * 6 * Author: 7 * Xiao Guangrong <guangrong.xiao@linux.intel.com> 8 * 9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 10 * and the DSM specification can be found at: 11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 12 * 13 * Currently, it only supports PMEM Virtualization. 14 * 15 * This library is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU Lesser General Public 17 * License as published by the Free Software Foundation; either 18 * version 2 of the License, or (at your option) any later version. 19 * 20 * This library is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * Lesser General Public License for more details. 24 * 25 * You should have received a copy of the GNU Lesser General Public 26 * License along with this library; if not, see <http://www.gnu.org/licenses/> 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/acpi/acpi.h" 31 #include "hw/acpi/aml-build.h" 32 #include "hw/acpi/bios-linker-loader.h" 33 #include "hw/nvram/fw_cfg.h" 34 #include "hw/mem/nvdimm.h" 35 36 static int nvdimm_device_list(Object *obj, void *opaque) 37 { 38 GSList **list = opaque; 39 40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) { 41 *list = g_slist_append(*list, DEVICE(obj)); 42 } 43 44 object_child_foreach(obj, nvdimm_device_list, opaque); 45 return 0; 46 } 47 48 /* 49 * inquire NVDIMM devices and link them into the list which is 50 * returned to the caller. 51 * 52 * Note: it is the caller's responsibility to free the list to avoid 53 * memory leak. 54 */ 55 static GSList *nvdimm_get_device_list(void) 56 { 57 GSList *list = NULL; 58 59 object_child_foreach(qdev_get_machine(), nvdimm_device_list, &list); 60 return list; 61 } 62 63 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 64 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \ 65 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \ 66 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) } 67 68 /* 69 * define Byte Addressable Persistent Memory (PM) Region according to 70 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. 71 */ 72 static const uint8_t nvdimm_nfit_spa_uuid[] = 73 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 74 0x18, 0xb7, 0x8c, 0xdb); 75 76 /* 77 * NVDIMM Firmware Interface Table 78 * @signature: "NFIT" 79 * 80 * It provides information that allows OSPM to enumerate NVDIMM present in 81 * the platform and associate system physical address ranges created by the 82 * NVDIMMs. 83 * 84 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 85 */ 86 struct NvdimmNfitHeader { 87 ACPI_TABLE_HEADER_DEF 88 uint32_t reserved; 89 } QEMU_PACKED; 90 typedef struct NvdimmNfitHeader NvdimmNfitHeader; 91 92 /* 93 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware 94 * Interface Table (NFIT). 95 */ 96 97 /* 98 * System Physical Address Range Structure 99 * 100 * It describes the system physical address ranges occupied by NVDIMMs and 101 * the types of the regions. 102 */ 103 struct NvdimmNfitSpa { 104 uint16_t type; 105 uint16_t length; 106 uint16_t spa_index; 107 uint16_t flags; 108 uint32_t reserved; 109 uint32_t proximity_domain; 110 uint8_t type_guid[16]; 111 uint64_t spa_base; 112 uint64_t spa_length; 113 uint64_t mem_attr; 114 } QEMU_PACKED; 115 typedef struct NvdimmNfitSpa NvdimmNfitSpa; 116 117 /* 118 * Memory Device to System Physical Address Range Mapping Structure 119 * 120 * It enables identifying each NVDIMM region and the corresponding SPA 121 * describing the memory interleave 122 */ 123 struct NvdimmNfitMemDev { 124 uint16_t type; 125 uint16_t length; 126 uint32_t nfit_handle; 127 uint16_t phys_id; 128 uint16_t region_id; 129 uint16_t spa_index; 130 uint16_t dcr_index; 131 uint64_t region_len; 132 uint64_t region_offset; 133 uint64_t region_dpa; 134 uint16_t interleave_index; 135 uint16_t interleave_ways; 136 uint16_t flags; 137 uint16_t reserved; 138 } QEMU_PACKED; 139 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; 140 141 /* 142 * NVDIMM Control Region Structure 143 * 144 * It describes the NVDIMM and if applicable, Block Control Window. 145 */ 146 struct NvdimmNfitControlRegion { 147 uint16_t type; 148 uint16_t length; 149 uint16_t dcr_index; 150 uint16_t vendor_id; 151 uint16_t device_id; 152 uint16_t revision_id; 153 uint16_t sub_vendor_id; 154 uint16_t sub_device_id; 155 uint16_t sub_revision_id; 156 uint8_t reserved[6]; 157 uint32_t serial_number; 158 uint16_t fic; 159 uint16_t num_bcw; 160 uint64_t bcw_size; 161 uint64_t cmd_offset; 162 uint64_t cmd_size; 163 uint64_t status_offset; 164 uint64_t status_size; 165 uint16_t flags; 166 uint8_t reserved2[6]; 167 } QEMU_PACKED; 168 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; 169 170 /* 171 * Module serial number is a unique number for each device. We use the 172 * slot id of NVDIMM device to generate this number so that each device 173 * associates with a different number. 174 * 175 * 0x123456 is a magic number we arbitrarily chose. 176 */ 177 static uint32_t nvdimm_slot_to_sn(int slot) 178 { 179 return 0x123456 + slot; 180 } 181 182 /* 183 * handle is used to uniquely associate nfit_memdev structure with NVDIMM 184 * ACPI device - nfit_memdev.nfit_handle matches with the value returned 185 * by ACPI device _ADR method. 186 * 187 * We generate the handle with the slot id of NVDIMM device and reserve 188 * 0 for NVDIMM root device. 189 */ 190 static uint32_t nvdimm_slot_to_handle(int slot) 191 { 192 return slot + 1; 193 } 194 195 /* 196 * index uniquely identifies the structure, 0 is reserved which indicates 197 * that the structure is not valid or the associated structure is not 198 * present. 199 * 200 * Each NVDIMM device needs two indexes, one for nfit_spa and another for 201 * nfit_dc which are generated by the slot id of NVDIMM device. 202 */ 203 static uint16_t nvdimm_slot_to_spa_index(int slot) 204 { 205 return (slot + 1) << 1; 206 } 207 208 /* See the comments of nvdimm_slot_to_spa_index(). */ 209 static uint32_t nvdimm_slot_to_dcr_index(int slot) 210 { 211 return nvdimm_slot_to_spa_index(slot) + 1; 212 } 213 214 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) 215 { 216 NVDIMMDevice *nvdimm = NULL; 217 GSList *list, *device_list = nvdimm_get_device_list(); 218 219 for (list = device_list; list; list = list->next) { 220 NVDIMMDevice *nvd = list->data; 221 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, 222 NULL); 223 224 if (nvdimm_slot_to_handle(slot) == handle) { 225 nvdimm = nvd; 226 break; 227 } 228 } 229 230 g_slist_free(device_list); 231 return nvdimm; 232 } 233 234 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ 235 static void 236 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) 237 { 238 NvdimmNfitSpa *nfit_spa; 239 uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP, 240 NULL); 241 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, 242 NULL); 243 uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, 244 NULL); 245 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 246 NULL); 247 248 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); 249 250 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range 251 Structure */); 252 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); 253 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 254 255 /* 256 * Control region is strict as all the device info, such as SN, index, 257 * is associated with slot id. 258 */ 259 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for 260 management during hot add/online 261 operation */ | 262 2 /* Data in Proximity Domain field is 263 valid*/); 264 265 /* NUMA node. */ 266 nfit_spa->proximity_domain = cpu_to_le32(node); 267 /* the region reported as PMEM. */ 268 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, 269 sizeof(nvdimm_nfit_spa_uuid)); 270 271 nfit_spa->spa_base = cpu_to_le64(addr); 272 nfit_spa->spa_length = cpu_to_le64(size); 273 274 /* It is the PMEM and can be cached as writeback. */ 275 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 276 0x8000ULL /* EFI_MEMORY_NV */); 277 } 278 279 /* 280 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping 281 * Structure 282 */ 283 static void 284 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) 285 { 286 NvdimmNfitMemDev *nfit_memdev; 287 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, 288 NULL); 289 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 290 NULL); 291 uint32_t handle = nvdimm_slot_to_handle(slot); 292 293 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); 294 295 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address 296 Range Map Structure*/); 297 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); 298 nfit_memdev->nfit_handle = cpu_to_le32(handle); 299 300 /* 301 * associate memory device with System Physical Address Range 302 * Structure. 303 */ 304 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 305 /* associate memory device with Control Region Structure. */ 306 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 307 308 /* The memory region on the device. */ 309 nfit_memdev->region_len = cpu_to_le64(size); 310 /* The device address starts from 0. */ 311 nfit_memdev->region_dpa = cpu_to_le64(0); 312 313 /* Only one interleave for PMEM. */ 314 nfit_memdev->interleave_ways = cpu_to_le16(1); 315 } 316 317 /* 318 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. 319 */ 320 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) 321 { 322 NvdimmNfitControlRegion *nfit_dcr; 323 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 324 NULL); 325 uint32_t sn = nvdimm_slot_to_sn(slot); 326 327 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); 328 329 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); 330 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); 331 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 332 333 /* vendor: Intel. */ 334 nfit_dcr->vendor_id = cpu_to_le16(0x8086); 335 nfit_dcr->device_id = cpu_to_le16(1); 336 337 /* The _DSM method is following Intel's DSM specification. */ 338 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported 339 in ACPI 6.0 is 1. */); 340 nfit_dcr->serial_number = cpu_to_le32(sn); 341 nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code: 342 Byte addressable, no energy backed. 343 See ACPI 6.2, sect 5.2.25.6 and 344 JEDEC Annex L Release 3. */); 345 } 346 347 static GArray *nvdimm_build_device_structure(void) 348 { 349 GSList *device_list = nvdimm_get_device_list(); 350 GArray *structures = g_array_new(false, true /* clear */, 1); 351 352 for (; device_list; device_list = device_list->next) { 353 DeviceState *dev = device_list->data; 354 355 /* build System Physical Address Range Structure. */ 356 nvdimm_build_structure_spa(structures, dev); 357 358 /* 359 * build Memory Device to System Physical Address Range Mapping 360 * Structure. 361 */ 362 nvdimm_build_structure_memdev(structures, dev); 363 364 /* build NVDIMM Control Region Structure. */ 365 nvdimm_build_structure_dcr(structures, dev); 366 } 367 g_slist_free(device_list); 368 369 return structures; 370 } 371 372 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) 373 { 374 fit_buf->fit = g_array_new(false, true /* clear */, 1); 375 } 376 377 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf) 378 { 379 g_array_free(fit_buf->fit, true); 380 fit_buf->fit = nvdimm_build_device_structure(); 381 fit_buf->dirty = true; 382 } 383 384 void nvdimm_plug(AcpiNVDIMMState *state) 385 { 386 nvdimm_build_fit_buffer(&state->fit_buf); 387 } 388 389 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets, 390 GArray *table_data, BIOSLinker *linker) 391 { 392 NvdimmFitBuffer *fit_buf = &state->fit_buf; 393 unsigned int header; 394 395 acpi_add_table(table_offsets, table_data); 396 397 /* NFIT header. */ 398 header = table_data->len; 399 acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); 400 /* NVDIMM device structures. */ 401 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); 402 403 build_header(linker, table_data, 404 (void *)(table_data->data + header), "NFIT", 405 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL); 406 } 407 408 #define NVDIMM_DSM_MEMORY_SIZE 4096 409 410 struct NvdimmDsmIn { 411 uint32_t handle; 412 uint32_t revision; 413 uint32_t function; 414 /* the remaining size in the page is used by arg3. */ 415 union { 416 uint8_t arg3[4084]; 417 }; 418 } QEMU_PACKED; 419 typedef struct NvdimmDsmIn NvdimmDsmIn; 420 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE); 421 422 struct NvdimmDsmOut { 423 /* the size of buffer filled by QEMU. */ 424 uint32_t len; 425 uint8_t data[4092]; 426 } QEMU_PACKED; 427 typedef struct NvdimmDsmOut NvdimmDsmOut; 428 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE); 429 430 struct NvdimmDsmFunc0Out { 431 /* the size of buffer filled by QEMU. */ 432 uint32_t len; 433 uint32_t supported_func; 434 } QEMU_PACKED; 435 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; 436 437 struct NvdimmDsmFuncNoPayloadOut { 438 /* the size of buffer filled by QEMU. */ 439 uint32_t len; 440 uint32_t func_ret_status; 441 } QEMU_PACKED; 442 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; 443 444 struct NvdimmFuncGetLabelSizeOut { 445 /* the size of buffer filled by QEMU. */ 446 uint32_t len; 447 uint32_t func_ret_status; /* return status code. */ 448 uint32_t label_size; /* the size of label data area. */ 449 /* 450 * Maximum size of the namespace label data length supported by 451 * the platform in Get/Set Namespace Label Data functions. 452 */ 453 uint32_t max_xfer; 454 } QEMU_PACKED; 455 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; 456 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE); 457 458 struct NvdimmFuncGetLabelDataIn { 459 uint32_t offset; /* the offset in the namespace label data area. */ 460 uint32_t length; /* the size of data is to be read via the function. */ 461 } QEMU_PACKED; 462 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; 463 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + 464 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 465 466 struct NvdimmFuncGetLabelDataOut { 467 /* the size of buffer filled by QEMU. */ 468 uint32_t len; 469 uint32_t func_ret_status; /* return status code. */ 470 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */ 471 } QEMU_PACKED; 472 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; 473 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE); 474 475 struct NvdimmFuncSetLabelDataIn { 476 uint32_t offset; /* the offset in the namespace label data area. */ 477 uint32_t length; /* the size of data is to be written via the function. */ 478 uint8_t in_buf[0]; /* the data written to label data area. */ 479 } QEMU_PACKED; 480 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; 481 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + 482 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 483 484 struct NvdimmFuncReadFITIn { 485 uint32_t offset; /* the offset into FIT buffer. */ 486 } QEMU_PACKED; 487 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; 488 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + 489 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 490 491 struct NvdimmFuncReadFITOut { 492 /* the size of buffer filled by QEMU. */ 493 uint32_t len; 494 uint32_t func_ret_status; /* return status code. */ 495 uint8_t fit[0]; /* the FIT data. */ 496 } QEMU_PACKED; 497 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; 498 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE); 499 500 static void 501 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) 502 { 503 NvdimmDsmFunc0Out func0 = { 504 .len = cpu_to_le32(sizeof(func0)), 505 .supported_func = cpu_to_le32(supported_func), 506 }; 507 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); 508 } 509 510 static void 511 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) 512 { 513 NvdimmDsmFuncNoPayloadOut out = { 514 .len = cpu_to_le32(sizeof(out)), 515 .func_ret_status = cpu_to_le32(func_ret_status), 516 }; 517 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); 518 } 519 520 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */ 521 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */ 522 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */ 523 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */ 524 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */ 525 526 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 527 528 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ 529 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in, 530 hwaddr dsm_mem_addr) 531 { 532 NvdimmFitBuffer *fit_buf = &state->fit_buf; 533 NvdimmFuncReadFITIn *read_fit; 534 NvdimmFuncReadFITOut *read_fit_out; 535 GArray *fit; 536 uint32_t read_len = 0, func_ret_status; 537 int size; 538 539 read_fit = (NvdimmFuncReadFITIn *)in->arg3; 540 le32_to_cpus(&read_fit->offset); 541 542 fit = fit_buf->fit; 543 544 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n", 545 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No"); 546 547 if (read_fit->offset > fit->len) { 548 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID; 549 goto exit; 550 } 551 552 /* It is the first time to read FIT. */ 553 if (!read_fit->offset) { 554 fit_buf->dirty = false; 555 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ 556 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED; 557 goto exit; 558 } 559 560 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS; 561 read_len = MIN(fit->len - read_fit->offset, 562 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut)); 563 564 exit: 565 size = sizeof(NvdimmFuncReadFITOut) + read_len; 566 read_fit_out = g_malloc(size); 567 568 read_fit_out->len = cpu_to_le32(size); 569 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); 570 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); 571 572 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); 573 574 g_free(read_fit_out); 575 } 576 577 static void 578 nvdimm_dsm_handle_reserved_root_method(AcpiNVDIMMState *state, 579 NvdimmDsmIn *in, hwaddr dsm_mem_addr) 580 { 581 switch (in->function) { 582 case 0x0: 583 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); 584 return; 585 case 0x1 /* Read FIT */: 586 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); 587 return; 588 } 589 590 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 591 } 592 593 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 594 { 595 /* 596 * function 0 is called to inquire which functions are supported by 597 * OSPM 598 */ 599 if (!in->function) { 600 nvdimm_dsm_function0(0 /* No function supported other than 601 function 0 */, dsm_mem_addr); 602 return; 603 } 604 605 /* No function except function 0 is supported yet. */ 606 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 607 } 608 609 /* 610 * the max transfer size is the max size transferred by both a 611 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' 612 * function. 613 */ 614 static uint32_t nvdimm_get_max_xfer_label_size(void) 615 { 616 uint32_t max_get_size, max_set_size, dsm_memory_size; 617 618 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE; 619 620 /* 621 * the max data ACPI can read one time which is transferred by 622 * the response of 'Get Namespace Label Data' function. 623 */ 624 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); 625 626 /* 627 * the max data ACPI can write one time which is transferred by 628 * 'Set Namespace Label Data' function. 629 */ 630 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - 631 sizeof(NvdimmFuncSetLabelDataIn); 632 633 return MIN(max_get_size, max_set_size); 634 } 635 636 /* 637 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). 638 * 639 * It gets the size of Namespace Label data area and the max data size 640 * that Get/Set Namespace Label Data functions can transfer. 641 */ 642 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) 643 { 644 NvdimmFuncGetLabelSizeOut label_size_out = { 645 .len = cpu_to_le32(sizeof(label_size_out)), 646 }; 647 uint32_t label_size, mxfer; 648 649 label_size = nvdimm->label_size; 650 mxfer = nvdimm_get_max_xfer_label_size(); 651 652 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer); 653 654 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); 655 label_size_out.label_size = cpu_to_le32(label_size); 656 label_size_out.max_xfer = cpu_to_le32(mxfer); 657 658 cpu_physical_memory_write(dsm_mem_addr, &label_size_out, 659 sizeof(label_size_out)); 660 } 661 662 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, 663 uint32_t offset, uint32_t length) 664 { 665 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID; 666 667 if (offset + length < offset) { 668 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset, 669 length); 670 return ret; 671 } 672 673 if (nvdimm->label_size < offset + length) { 674 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n", 675 offset + length, nvdimm->label_size); 676 return ret; 677 } 678 679 if (length > nvdimm_get_max_xfer_label_size()) { 680 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n", 681 length, nvdimm_get_max_xfer_label_size()); 682 return ret; 683 } 684 685 return NVDIMM_DSM_RET_STATUS_SUCCESS; 686 } 687 688 /* 689 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). 690 */ 691 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 692 hwaddr dsm_mem_addr) 693 { 694 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 695 NvdimmFuncGetLabelDataIn *get_label_data; 696 NvdimmFuncGetLabelDataOut *get_label_data_out; 697 uint32_t status; 698 int size; 699 700 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; 701 le32_to_cpus(&get_label_data->offset); 702 le32_to_cpus(&get_label_data->length); 703 704 nvdimm_debug("Read Label Data: offset %#x length %#x.\n", 705 get_label_data->offset, get_label_data->length); 706 707 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, 708 get_label_data->length); 709 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { 710 nvdimm_dsm_no_payload(status, dsm_mem_addr); 711 return; 712 } 713 714 size = sizeof(*get_label_data_out) + get_label_data->length; 715 assert(size <= NVDIMM_DSM_MEMORY_SIZE); 716 get_label_data_out = g_malloc(size); 717 718 get_label_data_out->len = cpu_to_le32(size); 719 get_label_data_out->func_ret_status = 720 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); 721 nvc->read_label_data(nvdimm, get_label_data_out->out_buf, 722 get_label_data->length, get_label_data->offset); 723 724 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); 725 g_free(get_label_data_out); 726 } 727 728 /* 729 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). 730 */ 731 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 732 hwaddr dsm_mem_addr) 733 { 734 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 735 NvdimmFuncSetLabelDataIn *set_label_data; 736 uint32_t status; 737 738 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; 739 740 le32_to_cpus(&set_label_data->offset); 741 le32_to_cpus(&set_label_data->length); 742 743 nvdimm_debug("Write Label Data: offset %#x length %#x.\n", 744 set_label_data->offset, set_label_data->length); 745 746 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, 747 set_label_data->length); 748 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { 749 nvdimm_dsm_no_payload(status, dsm_mem_addr); 750 return; 751 } 752 753 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) + 754 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE); 755 756 nvc->write_label_data(nvdimm, set_label_data->in_buf, 757 set_label_data->length, set_label_data->offset); 758 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr); 759 } 760 761 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 762 { 763 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); 764 765 /* See the comments in nvdimm_dsm_root(). */ 766 if (!in->function) { 767 uint32_t supported_func = 0; 768 769 if (nvdimm && nvdimm->label_size) { 770 supported_func |= 0x1 /* Bit 0 indicates whether there is 771 support for any functions other 772 than function 0. */ | 773 1 << 4 /* Get Namespace Label Size */ | 774 1 << 5 /* Get Namespace Label Data */ | 775 1 << 6 /* Set Namespace Label Data */; 776 } 777 nvdimm_dsm_function0(supported_func, dsm_mem_addr); 778 return; 779 } 780 781 if (!nvdimm) { 782 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV, 783 dsm_mem_addr); 784 return; 785 } 786 787 /* Encode DSM function according to DSM Spec Rev1. */ 788 switch (in->function) { 789 case 4 /* Get Namespace Label Size */: 790 if (nvdimm->label_size) { 791 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); 792 return; 793 } 794 break; 795 case 5 /* Get Namespace Label Data */: 796 if (nvdimm->label_size) { 797 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); 798 return; 799 } 800 break; 801 case 0x6 /* Set Namespace Label Data */: 802 if (nvdimm->label_size) { 803 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); 804 return; 805 } 806 break; 807 } 808 809 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 810 } 811 812 static uint64_t 813 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) 814 { 815 nvdimm_debug("BUG: we never read _DSM IO Port.\n"); 816 return 0; 817 } 818 819 static void 820 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 821 { 822 AcpiNVDIMMState *state = opaque; 823 NvdimmDsmIn *in; 824 hwaddr dsm_mem_addr = val; 825 826 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr); 827 828 /* 829 * The DSM memory is mapped to guest address space so an evil guest 830 * can change its content while we are doing DSM emulation. Avoid 831 * this by copying DSM memory to QEMU local memory. 832 */ 833 in = g_new(NvdimmDsmIn, 1); 834 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); 835 836 le32_to_cpus(&in->revision); 837 le32_to_cpus(&in->function); 838 le32_to_cpus(&in->handle); 839 840 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision, 841 in->handle, in->function); 842 843 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { 844 nvdimm_debug("Revision %#x is not supported, expect %#x.\n", 845 in->revision, 0x1); 846 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 847 goto exit; 848 } 849 850 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { 851 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr); 852 goto exit; 853 } 854 855 /* Handle 0 is reserved for NVDIMM Root Device. */ 856 if (!in->handle) { 857 nvdimm_dsm_root(in, dsm_mem_addr); 858 goto exit; 859 } 860 861 nvdimm_dsm_device(in, dsm_mem_addr); 862 863 exit: 864 g_free(in); 865 } 866 867 static const MemoryRegionOps nvdimm_dsm_ops = { 868 .read = nvdimm_dsm_read, 869 .write = nvdimm_dsm_write, 870 .endianness = DEVICE_LITTLE_ENDIAN, 871 .valid = { 872 .min_access_size = 4, 873 .max_access_size = 4, 874 }, 875 }; 876 877 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) 878 { 879 if (dev->hotplugged) { 880 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); 881 } 882 } 883 884 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io, 885 FWCfgState *fw_cfg, Object *owner) 886 { 887 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, 888 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN); 889 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr); 890 891 state->dsm_mem = g_array_new(false, true /* clear */, 1); 892 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); 893 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, 894 state->dsm_mem->len); 895 896 nvdimm_init_fit_buffer(&state->fit_buf); 897 } 898 899 #define NVDIMM_COMMON_DSM "NCAL" 900 #define NVDIMM_ACPI_MEM_ADDR "MEMA" 901 902 #define NVDIMM_DSM_MEMORY "NRAM" 903 #define NVDIMM_DSM_IOPORT "NPIO" 904 905 #define NVDIMM_DSM_NOTIFY "NTFI" 906 #define NVDIMM_DSM_HANDLE "HDLE" 907 #define NVDIMM_DSM_REVISION "REVS" 908 #define NVDIMM_DSM_FUNCTION "FUNC" 909 #define NVDIMM_DSM_ARG3 "FARG" 910 911 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" 912 #define NVDIMM_DSM_OUT_BUF "ODAT" 913 914 #define NVDIMM_DSM_RFIT_STATUS "RSTA" 915 916 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" 917 918 static void nvdimm_build_common_dsm(Aml *dev) 919 { 920 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; 921 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; 922 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; 923 uint8_t byte_list[1]; 924 925 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); 926 uuid = aml_arg(0); 927 function = aml_arg(2); 928 handle = aml_arg(4); 929 dsm_mem = aml_local(6); 930 dsm_out_buf = aml_local(7); 931 932 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); 933 934 /* map DSM memory and IO into ACPI namespace. */ 935 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO, 936 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN)); 937 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, 938 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); 939 940 /* 941 * DSM notifier: 942 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to 943 * emulate the access. 944 * 945 * It is the IO port so that accessing them will cause VM-exit, the 946 * control will be transferred to QEMU. 947 */ 948 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, 949 AML_PRESERVE); 950 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, 951 sizeof(uint32_t) * BITS_PER_BYTE)); 952 aml_append(method, field); 953 954 /* 955 * DSM input: 956 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call 957 * happens on NVDIMM Root Device. 958 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. 959 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. 960 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package 961 * containing function-specific arguments. 962 * 963 * They are RAM mapping on host so that these accesses never cause 964 * VM-EXIT. 965 */ 966 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 967 AML_PRESERVE); 968 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, 969 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); 970 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, 971 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); 972 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, 973 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); 974 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, 975 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); 976 aml_append(method, field); 977 978 /* 979 * DSM output: 980 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. 981 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. 982 * 983 * Since the page is reused by both input and out, the input data 984 * will be lost after storing new result into ODAT so we should fetch 985 * all the input data before writing the result. 986 */ 987 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 988 AML_PRESERVE); 989 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, 990 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); 991 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, 992 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); 993 aml_append(method, field); 994 995 /* 996 * do not support any method if DSM memory address has not been 997 * patched. 998 */ 999 unpatched = aml_equal(dsm_mem, aml_int(0x0)); 1000 1001 expected_uuid = aml_local(0); 1002 1003 ifctx = aml_if(aml_equal(handle, aml_int(0x0))); 1004 aml_append(ifctx, aml_store( 1005 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") 1006 /* UUID for NVDIMM Root Device */, expected_uuid)); 1007 aml_append(method, ifctx); 1008 elsectx = aml_else(); 1009 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); 1010 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID 1011 /* UUID for QEMU internal use */), expected_uuid)); 1012 aml_append(elsectx, ifctx); 1013 elsectx2 = aml_else(); 1014 aml_append(elsectx2, aml_store( 1015 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") 1016 /* UUID for NVDIMM Devices */, expected_uuid)); 1017 aml_append(elsectx, elsectx2); 1018 aml_append(method, elsectx); 1019 1020 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); 1021 1022 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); 1023 1024 /* 1025 * function 0 is called to inquire what functions are supported by 1026 * OSPM 1027 */ 1028 ifctx = aml_if(aml_equal(function, aml_int(0))); 1029 byte_list[0] = 0 /* No function Supported */; 1030 aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); 1031 aml_append(unsupport, ifctx); 1032 1033 /* No function is supported yet. */ 1034 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT; 1035 aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); 1036 aml_append(method, unsupport); 1037 1038 /* 1039 * The HDLE indicates the DSM function is issued from which device, 1040 * it reserves 0 for root device and is the handle for NVDIMM devices. 1041 * See the comments in nvdimm_slot_to_handle(). 1042 */ 1043 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); 1044 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); 1045 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION))); 1046 1047 /* 1048 * The fourth parameter (Arg3) of _DSM is a package which contains 1049 * a buffer, the layout of the buffer is specified by UUID (Arg0), 1050 * Revision ID (Arg1) and Function Index (Arg2) which are documented 1051 * in the DSM Spec. 1052 */ 1053 pckg = aml_arg(3); 1054 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), 1055 aml_int(4 /* Package */)) /* It is a Package? */, 1056 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, 1057 NULL)); 1058 1059 pckg_index = aml_local(2); 1060 pckg_buf = aml_local(3); 1061 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); 1062 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); 1063 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); 1064 aml_append(method, ifctx); 1065 1066 /* 1067 * tell QEMU about the real address of DSM memory, then QEMU 1068 * gets the control and fills the result in DSM memory. 1069 */ 1070 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); 1071 1072 dsm_out_buf_size = aml_local(1); 1073 /* RLEN is not included in the payload returned to guest. */ 1074 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), 1075 aml_int(4), dsm_out_buf_size)); 1076 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), 1077 dsm_out_buf_size)); 1078 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), 1079 aml_int(0), dsm_out_buf_size, "OBUF")); 1080 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"), 1081 dsm_out_buf)); 1082 aml_append(method, aml_return(dsm_out_buf)); 1083 aml_append(dev, method); 1084 } 1085 1086 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) 1087 { 1088 Aml *method; 1089 1090 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 1091 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), 1092 aml_arg(1), aml_arg(2), aml_arg(3), 1093 aml_int(handle)))); 1094 aml_append(dev, method); 1095 } 1096 1097 static void nvdimm_build_fit(Aml *dev) 1098 { 1099 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; 1100 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; 1101 1102 buf = aml_local(0); 1103 buf_size = aml_local(1); 1104 fit = aml_local(2); 1105 1106 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0))); 1107 1108 /* build helper function, RFIT. */ 1109 method = aml_method("RFIT", 1, AML_SERIALIZED); 1110 aml_append(method, aml_name_decl("OFST", aml_int(0))); 1111 1112 /* prepare input package. */ 1113 pkg = aml_package(1); 1114 aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); 1115 aml_append(pkg, aml_name("OFST")); 1116 1117 /* call Read_FIT function. */ 1118 call_result = aml_call5(NVDIMM_COMMON_DSM, 1119 aml_touuid(NVDIMM_QEMU_RSVD_UUID), 1120 aml_int(1) /* Revision 1 */, 1121 aml_int(0x1) /* Read FIT */, 1122 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); 1123 aml_append(method, aml_store(call_result, buf)); 1124 1125 /* handle _DSM result. */ 1126 aml_append(method, aml_create_dword_field(buf, 1127 aml_int(0) /* offset at byte 0 */, "STAU")); 1128 1129 aml_append(method, aml_store(aml_name("STAU"), 1130 aml_name(NVDIMM_DSM_RFIT_STATUS))); 1131 1132 /* if something is wrong during _DSM. */ 1133 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS), 1134 aml_name("STAU")); 1135 ifctx = aml_if(aml_lnot(ifcond)); 1136 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1137 aml_append(method, ifctx); 1138 1139 aml_append(method, aml_store(aml_sizeof(buf), buf_size)); 1140 aml_append(method, aml_subtract(buf_size, 1141 aml_int(4) /* the size of "STAU" */, 1142 buf_size)); 1143 1144 /* if we read the end of fit. */ 1145 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1146 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1147 aml_append(method, ifctx); 1148 1149 aml_append(method, aml_create_field(buf, 1150 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ 1151 aml_shiftleft(buf_size, aml_int(3)), "BUFF")); 1152 aml_append(method, aml_return(aml_name("BUFF"))); 1153 aml_append(dev, method); 1154 1155 /* build _FIT. */ 1156 method = aml_method("_FIT", 0, AML_SERIALIZED); 1157 offset = aml_local(3); 1158 1159 aml_append(method, aml_store(aml_buffer(0, NULL), fit)); 1160 aml_append(method, aml_store(aml_int(0), offset)); 1161 1162 whilectx = aml_while(aml_int(1)); 1163 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); 1164 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); 1165 1166 /* 1167 * if fit buffer was changed during RFIT, read from the beginning 1168 * again. 1169 */ 1170 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), 1171 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED))); 1172 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); 1173 aml_append(ifctx, aml_store(aml_int(0), offset)); 1174 aml_append(whilectx, ifctx); 1175 1176 elsectx = aml_else(); 1177 1178 /* finish fit read if no data is read out. */ 1179 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1180 aml_append(ifctx, aml_return(fit)); 1181 aml_append(elsectx, ifctx); 1182 1183 /* update the offset. */ 1184 aml_append(elsectx, aml_add(offset, buf_size, offset)); 1185 /* append the data we read out to the fit buffer. */ 1186 aml_append(elsectx, aml_concatenate(fit, buf, fit)); 1187 aml_append(whilectx, elsectx); 1188 aml_append(method, whilectx); 1189 1190 aml_append(dev, method); 1191 } 1192 1193 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) 1194 { 1195 uint32_t slot; 1196 1197 for (slot = 0; slot < ram_slots; slot++) { 1198 uint32_t handle = nvdimm_slot_to_handle(slot); 1199 Aml *nvdimm_dev; 1200 1201 nvdimm_dev = aml_device("NV%02X", slot); 1202 1203 /* 1204 * ACPI 6.0: 9.20 NVDIMM Devices: 1205 * 1206 * _ADR object that is used to supply OSPM with unique address 1207 * of the NVDIMM device. This is done by returning the NFIT Device 1208 * handle that is used to identify the associated entries in ACPI 1209 * table NFIT or _FIT. 1210 */ 1211 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); 1212 1213 nvdimm_build_device_dsm(nvdimm_dev, handle); 1214 aml_append(root_dev, nvdimm_dev); 1215 } 1216 } 1217 1218 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, 1219 BIOSLinker *linker, GArray *dsm_dma_arrea, 1220 uint32_t ram_slots) 1221 { 1222 Aml *ssdt, *sb_scope, *dev; 1223 int mem_addr_offset, nvdimm_ssdt; 1224 1225 acpi_add_table(table_offsets, table_data); 1226 1227 ssdt = init_aml_allocator(); 1228 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); 1229 1230 sb_scope = aml_scope("\\_SB"); 1231 1232 dev = aml_device("NVDR"); 1233 1234 /* 1235 * ACPI 6.0: 9.20 NVDIMM Devices: 1236 * 1237 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root 1238 * NVDIMM interface device. Platform firmware is required to contain one 1239 * such device in _SB scope if NVDIMMs support is exposed by platform to 1240 * OSPM. 1241 * For each NVDIMM present or intended to be supported by platform, 1242 * platform firmware also exposes an ACPI Namespace Device under the 1243 * root device. 1244 */ 1245 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); 1246 1247 nvdimm_build_common_dsm(dev); 1248 1249 /* 0 is reserved for root device. */ 1250 nvdimm_build_device_dsm(dev, 0); 1251 nvdimm_build_fit(dev); 1252 1253 nvdimm_build_nvdimm_devices(dev, ram_slots); 1254 1255 aml_append(sb_scope, dev); 1256 aml_append(ssdt, sb_scope); 1257 1258 nvdimm_ssdt = table_data->len; 1259 1260 /* copy AML table into ACPI tables blob and patch header there */ 1261 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); 1262 mem_addr_offset = build_append_named_dword(table_data, 1263 NVDIMM_ACPI_MEM_ADDR); 1264 1265 bios_linker_loader_alloc(linker, 1266 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea, 1267 sizeof(NvdimmDsmIn), false /* high memory */); 1268 bios_linker_loader_add_pointer(linker, 1269 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), 1270 NVDIMM_DSM_MEM_FILE, 0); 1271 build_header(linker, table_data, 1272 (void *)(table_data->data + nvdimm_ssdt), 1273 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM"); 1274 free_aml_allocator(); 1275 } 1276 1277 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, 1278 BIOSLinker *linker, AcpiNVDIMMState *state, 1279 uint32_t ram_slots) 1280 { 1281 GSList *device_list; 1282 1283 /* no nvdimm device can be plugged. */ 1284 if (!ram_slots) { 1285 return; 1286 } 1287 1288 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem, 1289 ram_slots); 1290 1291 device_list = nvdimm_get_device_list(); 1292 /* no NVDIMM device is plugged. */ 1293 if (!device_list) { 1294 return; 1295 } 1296 1297 nvdimm_build_nfit(state, table_offsets, table_data, linker); 1298 g_slist_free(device_list); 1299 } 1300