1 /* 2 * NVDIMM ACPI Implementation 3 * 4 * Copyright(C) 2015 Intel Corporation. 5 * 6 * Author: 7 * Xiao Guangrong <guangrong.xiao@linux.intel.com> 8 * 9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 10 * and the DSM specification can be found at: 11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 12 * 13 * Currently, it only supports PMEM Virtualization. 14 * 15 * This library is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU Lesser General Public 17 * License as published by the Free Software Foundation; either 18 * version 2 of the License, or (at your option) any later version. 19 * 20 * This library is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * Lesser General Public License for more details. 24 * 25 * You should have received a copy of the GNU Lesser General Public 26 * License along with this library; if not, see <http://www.gnu.org/licenses/> 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/acpi/acpi.h" 31 #include "hw/acpi/aml-build.h" 32 #include "hw/acpi/bios-linker-loader.h" 33 #include "hw/nvram/fw_cfg.h" 34 #include "hw/mem/nvdimm.h" 35 #include "qemu/nvdimm-utils.h" 36 37 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 38 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \ 39 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \ 40 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) } 41 42 /* 43 * define Byte Addressable Persistent Memory (PM) Region according to 44 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. 45 */ 46 static const uint8_t nvdimm_nfit_spa_uuid[] = 47 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 48 0x18, 0xb7, 0x8c, 0xdb); 49 50 /* 51 * NVDIMM Firmware Interface Table 52 * @signature: "NFIT" 53 * 54 * It provides information that allows OSPM to enumerate NVDIMM present in 55 * the platform and associate system physical address ranges created by the 56 * NVDIMMs. 57 * 58 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 59 */ 60 struct NvdimmNfitHeader { 61 ACPI_TABLE_HEADER_DEF 62 uint32_t reserved; 63 } QEMU_PACKED; 64 typedef struct NvdimmNfitHeader NvdimmNfitHeader; 65 66 /* 67 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware 68 * Interface Table (NFIT). 69 */ 70 71 /* 72 * System Physical Address Range Structure 73 * 74 * It describes the system physical address ranges occupied by NVDIMMs and 75 * the types of the regions. 76 */ 77 struct NvdimmNfitSpa { 78 uint16_t type; 79 uint16_t length; 80 uint16_t spa_index; 81 uint16_t flags; 82 uint32_t reserved; 83 uint32_t proximity_domain; 84 uint8_t type_guid[16]; 85 uint64_t spa_base; 86 uint64_t spa_length; 87 uint64_t mem_attr; 88 } QEMU_PACKED; 89 typedef struct NvdimmNfitSpa NvdimmNfitSpa; 90 91 /* 92 * Memory Device to System Physical Address Range Mapping Structure 93 * 94 * It enables identifying each NVDIMM region and the corresponding SPA 95 * describing the memory interleave 96 */ 97 struct NvdimmNfitMemDev { 98 uint16_t type; 99 uint16_t length; 100 uint32_t nfit_handle; 101 uint16_t phys_id; 102 uint16_t region_id; 103 uint16_t spa_index; 104 uint16_t dcr_index; 105 uint64_t region_len; 106 uint64_t region_offset; 107 uint64_t region_dpa; 108 uint16_t interleave_index; 109 uint16_t interleave_ways; 110 uint16_t flags; 111 uint16_t reserved; 112 } QEMU_PACKED; 113 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; 114 115 #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3) 116 117 /* 118 * NVDIMM Control Region Structure 119 * 120 * It describes the NVDIMM and if applicable, Block Control Window. 121 */ 122 struct NvdimmNfitControlRegion { 123 uint16_t type; 124 uint16_t length; 125 uint16_t dcr_index; 126 uint16_t vendor_id; 127 uint16_t device_id; 128 uint16_t revision_id; 129 uint16_t sub_vendor_id; 130 uint16_t sub_device_id; 131 uint16_t sub_revision_id; 132 uint8_t reserved[6]; 133 uint32_t serial_number; 134 uint16_t fic; 135 uint16_t num_bcw; 136 uint64_t bcw_size; 137 uint64_t cmd_offset; 138 uint64_t cmd_size; 139 uint64_t status_offset; 140 uint64_t status_size; 141 uint16_t flags; 142 uint8_t reserved2[6]; 143 } QEMU_PACKED; 144 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; 145 146 /* 147 * NVDIMM Platform Capabilities Structure 148 * 149 * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017 150 */ 151 struct NvdimmNfitPlatformCaps { 152 uint16_t type; 153 uint16_t length; 154 uint8_t highest_cap; 155 uint8_t reserved[3]; 156 uint32_t capabilities; 157 uint8_t reserved2[4]; 158 } QEMU_PACKED; 159 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps; 160 161 /* 162 * Module serial number is a unique number for each device. We use the 163 * slot id of NVDIMM device to generate this number so that each device 164 * associates with a different number. 165 * 166 * 0x123456 is a magic number we arbitrarily chose. 167 */ 168 static uint32_t nvdimm_slot_to_sn(int slot) 169 { 170 return 0x123456 + slot; 171 } 172 173 /* 174 * handle is used to uniquely associate nfit_memdev structure with NVDIMM 175 * ACPI device - nfit_memdev.nfit_handle matches with the value returned 176 * by ACPI device _ADR method. 177 * 178 * We generate the handle with the slot id of NVDIMM device and reserve 179 * 0 for NVDIMM root device. 180 */ 181 static uint32_t nvdimm_slot_to_handle(int slot) 182 { 183 return slot + 1; 184 } 185 186 /* 187 * index uniquely identifies the structure, 0 is reserved which indicates 188 * that the structure is not valid or the associated structure is not 189 * present. 190 * 191 * Each NVDIMM device needs two indexes, one for nfit_spa and another for 192 * nfit_dc which are generated by the slot id of NVDIMM device. 193 */ 194 static uint16_t nvdimm_slot_to_spa_index(int slot) 195 { 196 return (slot + 1) << 1; 197 } 198 199 /* See the comments of nvdimm_slot_to_spa_index(). */ 200 static uint32_t nvdimm_slot_to_dcr_index(int slot) 201 { 202 return nvdimm_slot_to_spa_index(slot) + 1; 203 } 204 205 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) 206 { 207 NVDIMMDevice *nvdimm = NULL; 208 GSList *list, *device_list = nvdimm_get_device_list(); 209 210 for (list = device_list; list; list = list->next) { 211 NVDIMMDevice *nvd = list->data; 212 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, 213 NULL); 214 215 if (nvdimm_slot_to_handle(slot) == handle) { 216 nvdimm = nvd; 217 break; 218 } 219 } 220 221 g_slist_free(device_list); 222 return nvdimm; 223 } 224 225 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ 226 static void 227 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) 228 { 229 NvdimmNfitSpa *nfit_spa; 230 uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP, 231 NULL); 232 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, 233 NULL); 234 uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, 235 NULL); 236 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 237 NULL); 238 239 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); 240 241 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range 242 Structure */); 243 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); 244 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 245 246 /* 247 * Control region is strict as all the device info, such as SN, index, 248 * is associated with slot id. 249 */ 250 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for 251 management during hot add/online 252 operation */ | 253 2 /* Data in Proximity Domain field is 254 valid*/); 255 256 /* NUMA node. */ 257 nfit_spa->proximity_domain = cpu_to_le32(node); 258 /* the region reported as PMEM. */ 259 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, 260 sizeof(nvdimm_nfit_spa_uuid)); 261 262 nfit_spa->spa_base = cpu_to_le64(addr); 263 nfit_spa->spa_length = cpu_to_le64(size); 264 265 /* It is the PMEM and can be cached as writeback. */ 266 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 267 0x8000ULL /* EFI_MEMORY_NV */); 268 } 269 270 /* 271 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping 272 * Structure 273 */ 274 static void 275 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) 276 { 277 NvdimmNfitMemDev *nfit_memdev; 278 NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev)); 279 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, 280 NULL); 281 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 282 NULL); 283 uint32_t handle = nvdimm_slot_to_handle(slot); 284 285 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); 286 287 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address 288 Range Map Structure*/); 289 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); 290 nfit_memdev->nfit_handle = cpu_to_le32(handle); 291 292 /* 293 * associate memory device with System Physical Address Range 294 * Structure. 295 */ 296 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 297 /* associate memory device with Control Region Structure. */ 298 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 299 300 /* The memory region on the device. */ 301 nfit_memdev->region_len = cpu_to_le64(size); 302 /* The device address starts from 0. */ 303 nfit_memdev->region_dpa = cpu_to_le64(0); 304 305 /* Only one interleave for PMEM. */ 306 nfit_memdev->interleave_ways = cpu_to_le16(1); 307 308 if (nvdimm->unarmed) { 309 nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED); 310 } 311 } 312 313 /* 314 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. 315 */ 316 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) 317 { 318 NvdimmNfitControlRegion *nfit_dcr; 319 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 320 NULL); 321 uint32_t sn = nvdimm_slot_to_sn(slot); 322 323 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); 324 325 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); 326 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); 327 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 328 329 /* vendor: Intel. */ 330 nfit_dcr->vendor_id = cpu_to_le16(0x8086); 331 nfit_dcr->device_id = cpu_to_le16(1); 332 333 /* The _DSM method is following Intel's DSM specification. */ 334 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported 335 in ACPI 6.0 is 1. */); 336 nfit_dcr->serial_number = cpu_to_le32(sn); 337 nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code: 338 Byte addressable, no energy backed. 339 See ACPI 6.2, sect 5.2.25.6 and 340 JEDEC Annex L Release 3. */); 341 } 342 343 /* 344 * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure 345 */ 346 static void 347 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities) 348 { 349 NvdimmNfitPlatformCaps *nfit_caps; 350 351 nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps)); 352 353 nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */); 354 nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps)); 355 nfit_caps->highest_cap = 31 - clz32(capabilities); 356 nfit_caps->capabilities = cpu_to_le32(capabilities); 357 } 358 359 static GArray *nvdimm_build_device_structure(NVDIMMState *state) 360 { 361 GSList *device_list = nvdimm_get_device_list(); 362 GArray *structures = g_array_new(false, true /* clear */, 1); 363 364 for (; device_list; device_list = device_list->next) { 365 DeviceState *dev = device_list->data; 366 367 /* build System Physical Address Range Structure. */ 368 nvdimm_build_structure_spa(structures, dev); 369 370 /* 371 * build Memory Device to System Physical Address Range Mapping 372 * Structure. 373 */ 374 nvdimm_build_structure_memdev(structures, dev); 375 376 /* build NVDIMM Control Region Structure. */ 377 nvdimm_build_structure_dcr(structures, dev); 378 } 379 g_slist_free(device_list); 380 381 if (state->persistence) { 382 nvdimm_build_structure_caps(structures, state->persistence); 383 } 384 385 return structures; 386 } 387 388 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) 389 { 390 fit_buf->fit = g_array_new(false, true /* clear */, 1); 391 } 392 393 static void nvdimm_build_fit_buffer(NVDIMMState *state) 394 { 395 NvdimmFitBuffer *fit_buf = &state->fit_buf; 396 397 g_array_free(fit_buf->fit, true); 398 fit_buf->fit = nvdimm_build_device_structure(state); 399 fit_buf->dirty = true; 400 } 401 402 void nvdimm_plug(NVDIMMState *state) 403 { 404 nvdimm_build_fit_buffer(state); 405 } 406 407 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets, 408 GArray *table_data, BIOSLinker *linker) 409 { 410 NvdimmFitBuffer *fit_buf = &state->fit_buf; 411 unsigned int header; 412 413 acpi_add_table(table_offsets, table_data); 414 415 /* NFIT header. */ 416 header = table_data->len; 417 acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); 418 /* NVDIMM device structures. */ 419 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); 420 421 build_header(linker, table_data, 422 (void *)(table_data->data + header), "NFIT", 423 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL); 424 } 425 426 #define NVDIMM_DSM_MEMORY_SIZE 4096 427 428 struct NvdimmDsmIn { 429 uint32_t handle; 430 uint32_t revision; 431 uint32_t function; 432 /* the remaining size in the page is used by arg3. */ 433 union { 434 uint8_t arg3[4084]; 435 }; 436 } QEMU_PACKED; 437 typedef struct NvdimmDsmIn NvdimmDsmIn; 438 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE); 439 440 struct NvdimmDsmOut { 441 /* the size of buffer filled by QEMU. */ 442 uint32_t len; 443 uint8_t data[4092]; 444 } QEMU_PACKED; 445 typedef struct NvdimmDsmOut NvdimmDsmOut; 446 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE); 447 448 struct NvdimmDsmFunc0Out { 449 /* the size of buffer filled by QEMU. */ 450 uint32_t len; 451 uint32_t supported_func; 452 } QEMU_PACKED; 453 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; 454 455 struct NvdimmDsmFuncNoPayloadOut { 456 /* the size of buffer filled by QEMU. */ 457 uint32_t len; 458 uint32_t func_ret_status; 459 } QEMU_PACKED; 460 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; 461 462 struct NvdimmFuncGetLabelSizeOut { 463 /* the size of buffer filled by QEMU. */ 464 uint32_t len; 465 uint32_t func_ret_status; /* return status code. */ 466 uint32_t label_size; /* the size of label data area. */ 467 /* 468 * Maximum size of the namespace label data length supported by 469 * the platform in Get/Set Namespace Label Data functions. 470 */ 471 uint32_t max_xfer; 472 } QEMU_PACKED; 473 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; 474 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE); 475 476 struct NvdimmFuncGetLabelDataIn { 477 uint32_t offset; /* the offset in the namespace label data area. */ 478 uint32_t length; /* the size of data is to be read via the function. */ 479 } QEMU_PACKED; 480 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; 481 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + 482 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 483 484 struct NvdimmFuncGetLabelDataOut { 485 /* the size of buffer filled by QEMU. */ 486 uint32_t len; 487 uint32_t func_ret_status; /* return status code. */ 488 uint8_t out_buf[]; /* the data got via Get Namesapce Label function. */ 489 } QEMU_PACKED; 490 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; 491 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE); 492 493 struct NvdimmFuncSetLabelDataIn { 494 uint32_t offset; /* the offset in the namespace label data area. */ 495 uint32_t length; /* the size of data is to be written via the function. */ 496 uint8_t in_buf[]; /* the data written to label data area. */ 497 } QEMU_PACKED; 498 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; 499 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + 500 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 501 502 struct NvdimmFuncReadFITIn { 503 uint32_t offset; /* the offset into FIT buffer. */ 504 } QEMU_PACKED; 505 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; 506 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + 507 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); 508 509 struct NvdimmFuncReadFITOut { 510 /* the size of buffer filled by QEMU. */ 511 uint32_t len; 512 uint32_t func_ret_status; /* return status code. */ 513 uint8_t fit[]; /* the FIT data. */ 514 } QEMU_PACKED; 515 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; 516 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE); 517 518 static void 519 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) 520 { 521 NvdimmDsmFunc0Out func0 = { 522 .len = cpu_to_le32(sizeof(func0)), 523 .supported_func = cpu_to_le32(supported_func), 524 }; 525 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); 526 } 527 528 static void 529 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) 530 { 531 NvdimmDsmFuncNoPayloadOut out = { 532 .len = cpu_to_le32(sizeof(out)), 533 .func_ret_status = cpu_to_le32(func_ret_status), 534 }; 535 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); 536 } 537 538 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */ 539 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */ 540 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */ 541 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */ 542 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */ 543 544 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 545 546 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ 547 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in, 548 hwaddr dsm_mem_addr) 549 { 550 NvdimmFitBuffer *fit_buf = &state->fit_buf; 551 NvdimmFuncReadFITIn *read_fit; 552 NvdimmFuncReadFITOut *read_fit_out; 553 GArray *fit; 554 uint32_t read_len = 0, func_ret_status; 555 int size; 556 557 read_fit = (NvdimmFuncReadFITIn *)in->arg3; 558 read_fit->offset = le32_to_cpu(read_fit->offset); 559 560 fit = fit_buf->fit; 561 562 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n", 563 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No"); 564 565 if (read_fit->offset > fit->len) { 566 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID; 567 goto exit; 568 } 569 570 /* It is the first time to read FIT. */ 571 if (!read_fit->offset) { 572 fit_buf->dirty = false; 573 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ 574 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED; 575 goto exit; 576 } 577 578 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS; 579 read_len = MIN(fit->len - read_fit->offset, 580 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut)); 581 582 exit: 583 size = sizeof(NvdimmFuncReadFITOut) + read_len; 584 read_fit_out = g_malloc(size); 585 586 read_fit_out->len = cpu_to_le32(size); 587 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); 588 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); 589 590 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); 591 592 g_free(read_fit_out); 593 } 594 595 static void 596 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state, 597 NvdimmDsmIn *in, hwaddr dsm_mem_addr) 598 { 599 switch (in->function) { 600 case 0x0: 601 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); 602 return; 603 case 0x1 /* Read FIT */: 604 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); 605 return; 606 } 607 608 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 609 } 610 611 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 612 { 613 /* 614 * function 0 is called to inquire which functions are supported by 615 * OSPM 616 */ 617 if (!in->function) { 618 nvdimm_dsm_function0(0 /* No function supported other than 619 function 0 */, dsm_mem_addr); 620 return; 621 } 622 623 /* No function except function 0 is supported yet. */ 624 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 625 } 626 627 /* 628 * the max transfer size is the max size transferred by both a 629 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' 630 * function. 631 */ 632 static uint32_t nvdimm_get_max_xfer_label_size(void) 633 { 634 uint32_t max_get_size, max_set_size, dsm_memory_size; 635 636 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE; 637 638 /* 639 * the max data ACPI can read one time which is transferred by 640 * the response of 'Get Namespace Label Data' function. 641 */ 642 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); 643 644 /* 645 * the max data ACPI can write one time which is transferred by 646 * 'Set Namespace Label Data' function. 647 */ 648 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - 649 sizeof(NvdimmFuncSetLabelDataIn); 650 651 return MIN(max_get_size, max_set_size); 652 } 653 654 /* 655 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). 656 * 657 * It gets the size of Namespace Label data area and the max data size 658 * that Get/Set Namespace Label Data functions can transfer. 659 */ 660 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) 661 { 662 NvdimmFuncGetLabelSizeOut label_size_out = { 663 .len = cpu_to_le32(sizeof(label_size_out)), 664 }; 665 uint32_t label_size, mxfer; 666 667 label_size = nvdimm->label_size; 668 mxfer = nvdimm_get_max_xfer_label_size(); 669 670 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer); 671 672 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); 673 label_size_out.label_size = cpu_to_le32(label_size); 674 label_size_out.max_xfer = cpu_to_le32(mxfer); 675 676 cpu_physical_memory_write(dsm_mem_addr, &label_size_out, 677 sizeof(label_size_out)); 678 } 679 680 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, 681 uint32_t offset, uint32_t length) 682 { 683 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID; 684 685 if (offset + length < offset) { 686 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset, 687 length); 688 return ret; 689 } 690 691 if (nvdimm->label_size < offset + length) { 692 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n", 693 offset + length, nvdimm->label_size); 694 return ret; 695 } 696 697 if (length > nvdimm_get_max_xfer_label_size()) { 698 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n", 699 length, nvdimm_get_max_xfer_label_size()); 700 return ret; 701 } 702 703 return NVDIMM_DSM_RET_STATUS_SUCCESS; 704 } 705 706 /* 707 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). 708 */ 709 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 710 hwaddr dsm_mem_addr) 711 { 712 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 713 NvdimmFuncGetLabelDataIn *get_label_data; 714 NvdimmFuncGetLabelDataOut *get_label_data_out; 715 uint32_t status; 716 int size; 717 718 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; 719 get_label_data->offset = le32_to_cpu(get_label_data->offset); 720 get_label_data->length = le32_to_cpu(get_label_data->length); 721 722 nvdimm_debug("Read Label Data: offset %#x length %#x.\n", 723 get_label_data->offset, get_label_data->length); 724 725 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, 726 get_label_data->length); 727 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { 728 nvdimm_dsm_no_payload(status, dsm_mem_addr); 729 return; 730 } 731 732 size = sizeof(*get_label_data_out) + get_label_data->length; 733 assert(size <= NVDIMM_DSM_MEMORY_SIZE); 734 get_label_data_out = g_malloc(size); 735 736 get_label_data_out->len = cpu_to_le32(size); 737 get_label_data_out->func_ret_status = 738 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); 739 nvc->read_label_data(nvdimm, get_label_data_out->out_buf, 740 get_label_data->length, get_label_data->offset); 741 742 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); 743 g_free(get_label_data_out); 744 } 745 746 /* 747 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). 748 */ 749 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 750 hwaddr dsm_mem_addr) 751 { 752 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 753 NvdimmFuncSetLabelDataIn *set_label_data; 754 uint32_t status; 755 756 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; 757 758 set_label_data->offset = le32_to_cpu(set_label_data->offset); 759 set_label_data->length = le32_to_cpu(set_label_data->length); 760 761 nvdimm_debug("Write Label Data: offset %#x length %#x.\n", 762 set_label_data->offset, set_label_data->length); 763 764 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, 765 set_label_data->length); 766 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { 767 nvdimm_dsm_no_payload(status, dsm_mem_addr); 768 return; 769 } 770 771 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) + 772 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE); 773 774 nvc->write_label_data(nvdimm, set_label_data->in_buf, 775 set_label_data->length, set_label_data->offset); 776 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr); 777 } 778 779 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 780 { 781 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); 782 783 /* See the comments in nvdimm_dsm_root(). */ 784 if (!in->function) { 785 uint32_t supported_func = 0; 786 787 if (nvdimm && nvdimm->label_size) { 788 supported_func |= 0x1 /* Bit 0 indicates whether there is 789 support for any functions other 790 than function 0. */ | 791 1 << 4 /* Get Namespace Label Size */ | 792 1 << 5 /* Get Namespace Label Data */ | 793 1 << 6 /* Set Namespace Label Data */; 794 } 795 nvdimm_dsm_function0(supported_func, dsm_mem_addr); 796 return; 797 } 798 799 if (!nvdimm) { 800 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV, 801 dsm_mem_addr); 802 return; 803 } 804 805 /* Encode DSM function according to DSM Spec Rev1. */ 806 switch (in->function) { 807 case 4 /* Get Namespace Label Size */: 808 if (nvdimm->label_size) { 809 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); 810 return; 811 } 812 break; 813 case 5 /* Get Namespace Label Data */: 814 if (nvdimm->label_size) { 815 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); 816 return; 817 } 818 break; 819 case 0x6 /* Set Namespace Label Data */: 820 if (nvdimm->label_size) { 821 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); 822 return; 823 } 824 break; 825 } 826 827 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 828 } 829 830 static uint64_t 831 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) 832 { 833 nvdimm_debug("BUG: we never read _DSM IO Port.\n"); 834 return 0; 835 } 836 837 static void 838 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 839 { 840 NVDIMMState *state = opaque; 841 NvdimmDsmIn *in; 842 hwaddr dsm_mem_addr = val; 843 844 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr); 845 846 /* 847 * The DSM memory is mapped to guest address space so an evil guest 848 * can change its content while we are doing DSM emulation. Avoid 849 * this by copying DSM memory to QEMU local memory. 850 */ 851 in = g_new(NvdimmDsmIn, 1); 852 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); 853 854 in->revision = le32_to_cpu(in->revision); 855 in->function = le32_to_cpu(in->function); 856 in->handle = le32_to_cpu(in->handle); 857 858 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision, 859 in->handle, in->function); 860 861 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { 862 nvdimm_debug("Revision %#x is not supported, expect %#x.\n", 863 in->revision, 0x1); 864 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); 865 goto exit; 866 } 867 868 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { 869 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr); 870 goto exit; 871 } 872 873 /* Handle 0 is reserved for NVDIMM Root Device. */ 874 if (!in->handle) { 875 nvdimm_dsm_root(in, dsm_mem_addr); 876 goto exit; 877 } 878 879 nvdimm_dsm_device(in, dsm_mem_addr); 880 881 exit: 882 g_free(in); 883 } 884 885 static const MemoryRegionOps nvdimm_dsm_ops = { 886 .read = nvdimm_dsm_read, 887 .write = nvdimm_dsm_write, 888 .endianness = DEVICE_LITTLE_ENDIAN, 889 .valid = { 890 .min_access_size = 4, 891 .max_access_size = 4, 892 }, 893 }; 894 895 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) 896 { 897 if (dev->hotplugged) { 898 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); 899 } 900 } 901 902 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io, 903 FWCfgState *fw_cfg, Object *owner) 904 { 905 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, 906 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN); 907 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr); 908 909 state->dsm_mem = g_array_new(false, true /* clear */, 1); 910 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); 911 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, 912 state->dsm_mem->len); 913 914 nvdimm_init_fit_buffer(&state->fit_buf); 915 } 916 917 #define NVDIMM_COMMON_DSM "NCAL" 918 #define NVDIMM_ACPI_MEM_ADDR "MEMA" 919 920 #define NVDIMM_DSM_MEMORY "NRAM" 921 #define NVDIMM_DSM_IOPORT "NPIO" 922 923 #define NVDIMM_DSM_NOTIFY "NTFI" 924 #define NVDIMM_DSM_HANDLE "HDLE" 925 #define NVDIMM_DSM_REVISION "REVS" 926 #define NVDIMM_DSM_FUNCTION "FUNC" 927 #define NVDIMM_DSM_ARG3 "FARG" 928 929 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" 930 #define NVDIMM_DSM_OUT_BUF "ODAT" 931 932 #define NVDIMM_DSM_RFIT_STATUS "RSTA" 933 934 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" 935 936 static void nvdimm_build_common_dsm(Aml *dev) 937 { 938 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; 939 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; 940 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; 941 uint8_t byte_list[1]; 942 943 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); 944 uuid = aml_arg(0); 945 function = aml_arg(2); 946 handle = aml_arg(4); 947 dsm_mem = aml_local(6); 948 dsm_out_buf = aml_local(7); 949 950 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); 951 952 /* map DSM memory and IO into ACPI namespace. */ 953 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO, 954 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN)); 955 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, 956 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); 957 958 /* 959 * DSM notifier: 960 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to 961 * emulate the access. 962 * 963 * It is the IO port so that accessing them will cause VM-exit, the 964 * control will be transferred to QEMU. 965 */ 966 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, 967 AML_PRESERVE); 968 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, 969 NVDIMM_ACPI_IO_LEN * BITS_PER_BYTE)); 970 aml_append(method, field); 971 972 /* 973 * DSM input: 974 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call 975 * happens on NVDIMM Root Device. 976 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. 977 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. 978 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package 979 * containing function-specific arguments. 980 * 981 * They are RAM mapping on host so that these accesses never cause 982 * VM-EXIT. 983 */ 984 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 985 AML_PRESERVE); 986 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, 987 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); 988 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, 989 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); 990 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, 991 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); 992 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, 993 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); 994 aml_append(method, field); 995 996 /* 997 * DSM output: 998 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. 999 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. 1000 * 1001 * Since the page is reused by both input and out, the input data 1002 * will be lost after storing new result into ODAT so we should fetch 1003 * all the input data before writing the result. 1004 */ 1005 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 1006 AML_PRESERVE); 1007 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, 1008 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); 1009 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, 1010 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); 1011 aml_append(method, field); 1012 1013 /* 1014 * do not support any method if DSM memory address has not been 1015 * patched. 1016 */ 1017 unpatched = aml_equal(dsm_mem, aml_int(0x0)); 1018 1019 expected_uuid = aml_local(0); 1020 1021 ifctx = aml_if(aml_equal(handle, aml_int(0x0))); 1022 aml_append(ifctx, aml_store( 1023 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") 1024 /* UUID for NVDIMM Root Device */, expected_uuid)); 1025 aml_append(method, ifctx); 1026 elsectx = aml_else(); 1027 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); 1028 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID 1029 /* UUID for QEMU internal use */), expected_uuid)); 1030 aml_append(elsectx, ifctx); 1031 elsectx2 = aml_else(); 1032 aml_append(elsectx2, aml_store( 1033 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") 1034 /* UUID for NVDIMM Devices */, expected_uuid)); 1035 aml_append(elsectx, elsectx2); 1036 aml_append(method, elsectx); 1037 1038 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); 1039 1040 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); 1041 1042 /* 1043 * function 0 is called to inquire what functions are supported by 1044 * OSPM 1045 */ 1046 ifctx = aml_if(aml_equal(function, aml_int(0))); 1047 byte_list[0] = 0 /* No function Supported */; 1048 aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); 1049 aml_append(unsupport, ifctx); 1050 1051 /* No function is supported yet. */ 1052 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT; 1053 aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); 1054 aml_append(method, unsupport); 1055 1056 /* 1057 * The HDLE indicates the DSM function is issued from which device, 1058 * it reserves 0 for root device and is the handle for NVDIMM devices. 1059 * See the comments in nvdimm_slot_to_handle(). 1060 */ 1061 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); 1062 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); 1063 aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION))); 1064 1065 /* 1066 * The fourth parameter (Arg3) of _DSM is a package which contains 1067 * a buffer, the layout of the buffer is specified by UUID (Arg0), 1068 * Revision ID (Arg1) and Function Index (Arg2) which are documented 1069 * in the DSM Spec. 1070 */ 1071 pckg = aml_arg(3); 1072 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), 1073 aml_int(4 /* Package */)) /* It is a Package? */, 1074 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, 1075 NULL)); 1076 1077 pckg_index = aml_local(2); 1078 pckg_buf = aml_local(3); 1079 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); 1080 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); 1081 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); 1082 aml_append(method, ifctx); 1083 1084 /* 1085 * tell QEMU about the real address of DSM memory, then QEMU 1086 * gets the control and fills the result in DSM memory. 1087 */ 1088 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); 1089 1090 dsm_out_buf_size = aml_local(1); 1091 /* RLEN is not included in the payload returned to guest. */ 1092 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), 1093 aml_int(4), dsm_out_buf_size)); 1094 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), 1095 dsm_out_buf_size)); 1096 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), 1097 aml_int(0), dsm_out_buf_size, "OBUF")); 1098 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"), 1099 dsm_out_buf)); 1100 aml_append(method, aml_return(dsm_out_buf)); 1101 aml_append(dev, method); 1102 } 1103 1104 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) 1105 { 1106 Aml *method; 1107 1108 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 1109 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), 1110 aml_arg(1), aml_arg(2), aml_arg(3), 1111 aml_int(handle)))); 1112 aml_append(dev, method); 1113 } 1114 1115 static void nvdimm_build_fit(Aml *dev) 1116 { 1117 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; 1118 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; 1119 1120 buf = aml_local(0); 1121 buf_size = aml_local(1); 1122 fit = aml_local(2); 1123 1124 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0))); 1125 1126 /* build helper function, RFIT. */ 1127 method = aml_method("RFIT", 1, AML_SERIALIZED); 1128 aml_append(method, aml_name_decl("OFST", aml_int(0))); 1129 1130 /* prepare input package. */ 1131 pkg = aml_package(1); 1132 aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); 1133 aml_append(pkg, aml_name("OFST")); 1134 1135 /* call Read_FIT function. */ 1136 call_result = aml_call5(NVDIMM_COMMON_DSM, 1137 aml_touuid(NVDIMM_QEMU_RSVD_UUID), 1138 aml_int(1) /* Revision 1 */, 1139 aml_int(0x1) /* Read FIT */, 1140 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); 1141 aml_append(method, aml_store(call_result, buf)); 1142 1143 /* handle _DSM result. */ 1144 aml_append(method, aml_create_dword_field(buf, 1145 aml_int(0) /* offset at byte 0 */, "STAU")); 1146 1147 aml_append(method, aml_store(aml_name("STAU"), 1148 aml_name(NVDIMM_DSM_RFIT_STATUS))); 1149 1150 /* if something is wrong during _DSM. */ 1151 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS), 1152 aml_name("STAU")); 1153 ifctx = aml_if(aml_lnot(ifcond)); 1154 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1155 aml_append(method, ifctx); 1156 1157 aml_append(method, aml_store(aml_sizeof(buf), buf_size)); 1158 aml_append(method, aml_subtract(buf_size, 1159 aml_int(4) /* the size of "STAU" */, 1160 buf_size)); 1161 1162 /* if we read the end of fit. */ 1163 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1164 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1165 aml_append(method, ifctx); 1166 1167 aml_append(method, aml_create_field(buf, 1168 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ 1169 aml_shiftleft(buf_size, aml_int(3)), "BUFF")); 1170 aml_append(method, aml_return(aml_name("BUFF"))); 1171 aml_append(dev, method); 1172 1173 /* build _FIT. */ 1174 method = aml_method("_FIT", 0, AML_SERIALIZED); 1175 offset = aml_local(3); 1176 1177 aml_append(method, aml_store(aml_buffer(0, NULL), fit)); 1178 aml_append(method, aml_store(aml_int(0), offset)); 1179 1180 whilectx = aml_while(aml_int(1)); 1181 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); 1182 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); 1183 1184 /* 1185 * if fit buffer was changed during RFIT, read from the beginning 1186 * again. 1187 */ 1188 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), 1189 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED))); 1190 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); 1191 aml_append(ifctx, aml_store(aml_int(0), offset)); 1192 aml_append(whilectx, ifctx); 1193 1194 elsectx = aml_else(); 1195 1196 /* finish fit read if no data is read out. */ 1197 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1198 aml_append(ifctx, aml_return(fit)); 1199 aml_append(elsectx, ifctx); 1200 1201 /* update the offset. */ 1202 aml_append(elsectx, aml_add(offset, buf_size, offset)); 1203 /* append the data we read out to the fit buffer. */ 1204 aml_append(elsectx, aml_concatenate(fit, buf, fit)); 1205 aml_append(whilectx, elsectx); 1206 aml_append(method, whilectx); 1207 1208 aml_append(dev, method); 1209 } 1210 1211 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) 1212 { 1213 uint32_t slot; 1214 1215 for (slot = 0; slot < ram_slots; slot++) { 1216 uint32_t handle = nvdimm_slot_to_handle(slot); 1217 Aml *nvdimm_dev; 1218 1219 nvdimm_dev = aml_device("NV%02X", slot); 1220 1221 /* 1222 * ACPI 6.0: 9.20 NVDIMM Devices: 1223 * 1224 * _ADR object that is used to supply OSPM with unique address 1225 * of the NVDIMM device. This is done by returning the NFIT Device 1226 * handle that is used to identify the associated entries in ACPI 1227 * table NFIT or _FIT. 1228 */ 1229 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); 1230 1231 nvdimm_build_device_dsm(nvdimm_dev, handle); 1232 aml_append(root_dev, nvdimm_dev); 1233 } 1234 } 1235 1236 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, 1237 BIOSLinker *linker, GArray *dsm_dma_area, 1238 uint32_t ram_slots) 1239 { 1240 Aml *ssdt, *sb_scope, *dev; 1241 int mem_addr_offset, nvdimm_ssdt; 1242 1243 acpi_add_table(table_offsets, table_data); 1244 1245 ssdt = init_aml_allocator(); 1246 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); 1247 1248 sb_scope = aml_scope("\\_SB"); 1249 1250 dev = aml_device("NVDR"); 1251 1252 /* 1253 * ACPI 6.0: 9.20 NVDIMM Devices: 1254 * 1255 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root 1256 * NVDIMM interface device. Platform firmware is required to contain one 1257 * such device in _SB scope if NVDIMMs support is exposed by platform to 1258 * OSPM. 1259 * For each NVDIMM present or intended to be supported by platform, 1260 * platform firmware also exposes an ACPI Namespace Device under the 1261 * root device. 1262 */ 1263 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); 1264 1265 nvdimm_build_common_dsm(dev); 1266 1267 /* 0 is reserved for root device. */ 1268 nvdimm_build_device_dsm(dev, 0); 1269 nvdimm_build_fit(dev); 1270 1271 nvdimm_build_nvdimm_devices(dev, ram_slots); 1272 1273 aml_append(sb_scope, dev); 1274 aml_append(ssdt, sb_scope); 1275 1276 nvdimm_ssdt = table_data->len; 1277 1278 /* copy AML table into ACPI tables blob and patch header there */ 1279 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); 1280 mem_addr_offset = build_append_named_dword(table_data, 1281 NVDIMM_ACPI_MEM_ADDR); 1282 1283 bios_linker_loader_alloc(linker, 1284 NVDIMM_DSM_MEM_FILE, dsm_dma_area, 1285 sizeof(NvdimmDsmIn), false /* high memory */); 1286 bios_linker_loader_add_pointer(linker, 1287 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), 1288 NVDIMM_DSM_MEM_FILE, 0); 1289 build_header(linker, table_data, 1290 (void *)(table_data->data + nvdimm_ssdt), 1291 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM"); 1292 free_aml_allocator(); 1293 } 1294 1295 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, 1296 BIOSLinker *linker, NVDIMMState *state, 1297 uint32_t ram_slots) 1298 { 1299 GSList *device_list; 1300 1301 /* no nvdimm device can be plugged. */ 1302 if (!ram_slots) { 1303 return; 1304 } 1305 1306 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem, 1307 ram_slots); 1308 1309 device_list = nvdimm_get_device_list(); 1310 /* no NVDIMM device is plugged. */ 1311 if (!device_list) { 1312 return; 1313 } 1314 1315 nvdimm_build_nfit(state, table_offsets, table_data, linker); 1316 g_slist_free(device_list); 1317 } 1318