1 /* 2 * NVDIMM ACPI Implementation 3 * 4 * Copyright(C) 2015 Intel Corporation. 5 * 6 * Author: 7 * Xiao Guangrong <guangrong.xiao@linux.intel.com> 8 * 9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 10 * and the DSM specification can be found at: 11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 12 * 13 * Currently, it only supports PMEM Virtualization. 14 * 15 * This library is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU Lesser General Public 17 * License as published by the Free Software Foundation; either 18 * version 2 of the License, or (at your option) any later version. 19 * 20 * This library is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * Lesser General Public License for more details. 24 * 25 * You should have received a copy of the GNU Lesser General Public 26 * License along with this library; if not, see <http://www.gnu.org/licenses/> 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/acpi/acpi.h" 31 #include "hw/acpi/aml-build.h" 32 #include "hw/acpi/bios-linker-loader.h" 33 #include "hw/nvram/fw_cfg.h" 34 #include "hw/mem/nvdimm.h" 35 36 static int nvdimm_plugged_device_list(Object *obj, void *opaque) 37 { 38 GSList **list = opaque; 39 40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) { 41 *list = g_slist_append(*list, DEVICE(obj)); 42 } 43 44 object_child_foreach(obj, nvdimm_plugged_device_list, opaque); 45 return 0; 46 } 47 48 /* 49 * inquire plugged NVDIMM devices and link them into the list which is 50 * returned to the caller. 51 * 52 * Note: it is the caller's responsibility to free the list to avoid 53 * memory leak. 54 */ 55 static GSList *nvdimm_get_plugged_device_list(void) 56 { 57 GSList *list = NULL; 58 59 object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list, 60 &list); 61 return list; 62 } 63 64 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 65 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \ 66 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \ 67 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) } 68 69 /* 70 * define Byte Addressable Persistent Memory (PM) Region according to 71 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. 72 */ 73 static const uint8_t nvdimm_nfit_spa_uuid[] = 74 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 75 0x18, 0xb7, 0x8c, 0xdb); 76 77 /* 78 * NVDIMM Firmware Interface Table 79 * @signature: "NFIT" 80 * 81 * It provides information that allows OSPM to enumerate NVDIMM present in 82 * the platform and associate system physical address ranges created by the 83 * NVDIMMs. 84 * 85 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 86 */ 87 struct NvdimmNfitHeader { 88 ACPI_TABLE_HEADER_DEF 89 uint32_t reserved; 90 } QEMU_PACKED; 91 typedef struct NvdimmNfitHeader NvdimmNfitHeader; 92 93 /* 94 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware 95 * Interface Table (NFIT). 96 */ 97 98 /* 99 * System Physical Address Range Structure 100 * 101 * It describes the system physical address ranges occupied by NVDIMMs and 102 * the types of the regions. 103 */ 104 struct NvdimmNfitSpa { 105 uint16_t type; 106 uint16_t length; 107 uint16_t spa_index; 108 uint16_t flags; 109 uint32_t reserved; 110 uint32_t proximity_domain; 111 uint8_t type_guid[16]; 112 uint64_t spa_base; 113 uint64_t spa_length; 114 uint64_t mem_attr; 115 } QEMU_PACKED; 116 typedef struct NvdimmNfitSpa NvdimmNfitSpa; 117 118 /* 119 * Memory Device to System Physical Address Range Mapping Structure 120 * 121 * It enables identifying each NVDIMM region and the corresponding SPA 122 * describing the memory interleave 123 */ 124 struct NvdimmNfitMemDev { 125 uint16_t type; 126 uint16_t length; 127 uint32_t nfit_handle; 128 uint16_t phys_id; 129 uint16_t region_id; 130 uint16_t spa_index; 131 uint16_t dcr_index; 132 uint64_t region_len; 133 uint64_t region_offset; 134 uint64_t region_dpa; 135 uint16_t interleave_index; 136 uint16_t interleave_ways; 137 uint16_t flags; 138 uint16_t reserved; 139 } QEMU_PACKED; 140 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; 141 142 /* 143 * NVDIMM Control Region Structure 144 * 145 * It describes the NVDIMM and if applicable, Block Control Window. 146 */ 147 struct NvdimmNfitControlRegion { 148 uint16_t type; 149 uint16_t length; 150 uint16_t dcr_index; 151 uint16_t vendor_id; 152 uint16_t device_id; 153 uint16_t revision_id; 154 uint16_t sub_vendor_id; 155 uint16_t sub_device_id; 156 uint16_t sub_revision_id; 157 uint8_t reserved[6]; 158 uint32_t serial_number; 159 uint16_t fic; 160 uint16_t num_bcw; 161 uint64_t bcw_size; 162 uint64_t cmd_offset; 163 uint64_t cmd_size; 164 uint64_t status_offset; 165 uint64_t status_size; 166 uint16_t flags; 167 uint8_t reserved2[6]; 168 } QEMU_PACKED; 169 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; 170 171 /* 172 * Module serial number is a unique number for each device. We use the 173 * slot id of NVDIMM device to generate this number so that each device 174 * associates with a different number. 175 * 176 * 0x123456 is a magic number we arbitrarily chose. 177 */ 178 static uint32_t nvdimm_slot_to_sn(int slot) 179 { 180 return 0x123456 + slot; 181 } 182 183 /* 184 * handle is used to uniquely associate nfit_memdev structure with NVDIMM 185 * ACPI device - nfit_memdev.nfit_handle matches with the value returned 186 * by ACPI device _ADR method. 187 * 188 * We generate the handle with the slot id of NVDIMM device and reserve 189 * 0 for NVDIMM root device. 190 */ 191 static uint32_t nvdimm_slot_to_handle(int slot) 192 { 193 return slot + 1; 194 } 195 196 /* 197 * index uniquely identifies the structure, 0 is reserved which indicates 198 * that the structure is not valid or the associated structure is not 199 * present. 200 * 201 * Each NVDIMM device needs two indexes, one for nfit_spa and another for 202 * nfit_dc which are generated by the slot id of NVDIMM device. 203 */ 204 static uint16_t nvdimm_slot_to_spa_index(int slot) 205 { 206 return (slot + 1) << 1; 207 } 208 209 /* See the comments of nvdimm_slot_to_spa_index(). */ 210 static uint32_t nvdimm_slot_to_dcr_index(int slot) 211 { 212 return nvdimm_slot_to_spa_index(slot) + 1; 213 } 214 215 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) 216 { 217 NVDIMMDevice *nvdimm = NULL; 218 GSList *list, *device_list = nvdimm_get_plugged_device_list(); 219 220 for (list = device_list; list; list = list->next) { 221 NVDIMMDevice *nvd = list->data; 222 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, 223 NULL); 224 225 if (nvdimm_slot_to_handle(slot) == handle) { 226 nvdimm = nvd; 227 break; 228 } 229 } 230 231 g_slist_free(device_list); 232 return nvdimm; 233 } 234 235 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ 236 static void 237 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) 238 { 239 NvdimmNfitSpa *nfit_spa; 240 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP, 241 NULL); 242 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 243 NULL); 244 uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, 245 NULL); 246 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 247 NULL); 248 249 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); 250 251 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range 252 Structure */); 253 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); 254 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 255 256 /* 257 * Control region is strict as all the device info, such as SN, index, 258 * is associated with slot id. 259 */ 260 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for 261 management during hot add/online 262 operation */ | 263 2 /* Data in Proximity Domain field is 264 valid*/); 265 266 /* NUMA node. */ 267 nfit_spa->proximity_domain = cpu_to_le32(node); 268 /* the region reported as PMEM. */ 269 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, 270 sizeof(nvdimm_nfit_spa_uuid)); 271 272 nfit_spa->spa_base = cpu_to_le64(addr); 273 nfit_spa->spa_length = cpu_to_le64(size); 274 275 /* It is the PMEM and can be cached as writeback. */ 276 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 277 0x8000ULL /* EFI_MEMORY_NV */); 278 } 279 280 /* 281 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping 282 * Structure 283 */ 284 static void 285 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) 286 { 287 NvdimmNfitMemDev *nfit_memdev; 288 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 289 NULL); 290 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 291 NULL); 292 uint32_t handle = nvdimm_slot_to_handle(slot); 293 294 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); 295 296 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address 297 Range Map Structure*/); 298 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); 299 nfit_memdev->nfit_handle = cpu_to_le32(handle); 300 301 /* 302 * associate memory device with System Physical Address Range 303 * Structure. 304 */ 305 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 306 /* associate memory device with Control Region Structure. */ 307 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 308 309 /* The memory region on the device. */ 310 nfit_memdev->region_len = cpu_to_le64(size); 311 /* The device address starts from 0. */ 312 nfit_memdev->region_dpa = cpu_to_le64(0); 313 314 /* Only one interleave for PMEM. */ 315 nfit_memdev->interleave_ways = cpu_to_le16(1); 316 } 317 318 /* 319 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. 320 */ 321 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) 322 { 323 NvdimmNfitControlRegion *nfit_dcr; 324 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 325 NULL); 326 uint32_t sn = nvdimm_slot_to_sn(slot); 327 328 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); 329 330 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); 331 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); 332 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 333 334 /* vendor: Intel. */ 335 nfit_dcr->vendor_id = cpu_to_le16(0x8086); 336 nfit_dcr->device_id = cpu_to_le16(1); 337 338 /* The _DSM method is following Intel's DSM specification. */ 339 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported 340 in ACPI 6.0 is 1. */); 341 nfit_dcr->serial_number = cpu_to_le32(sn); 342 nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter 343 2: NVDIMM Device Specific Method 344 (DSM) in DSM Spec Rev1.*/); 345 } 346 347 static GArray *nvdimm_build_device_structure(void) 348 { 349 GSList *device_list = nvdimm_get_plugged_device_list(); 350 GArray *structures = g_array_new(false, true /* clear */, 1); 351 352 for (; device_list; device_list = device_list->next) { 353 DeviceState *dev = device_list->data; 354 355 /* build System Physical Address Range Structure. */ 356 nvdimm_build_structure_spa(structures, dev); 357 358 /* 359 * build Memory Device to System Physical Address Range Mapping 360 * Structure. 361 */ 362 nvdimm_build_structure_memdev(structures, dev); 363 364 /* build NVDIMM Control Region Structure. */ 365 nvdimm_build_structure_dcr(structures, dev); 366 } 367 g_slist_free(device_list); 368 369 return structures; 370 } 371 372 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) 373 { 374 fit_buf->fit = g_array_new(false, true /* clear */, 1); 375 } 376 377 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf) 378 { 379 g_array_free(fit_buf->fit, true); 380 fit_buf->fit = nvdimm_build_device_structure(); 381 fit_buf->dirty = true; 382 } 383 384 void nvdimm_acpi_hotplug(AcpiNVDIMMState *state) 385 { 386 nvdimm_build_fit_buffer(&state->fit_buf); 387 } 388 389 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets, 390 GArray *table_data, BIOSLinker *linker) 391 { 392 NvdimmFitBuffer *fit_buf = &state->fit_buf; 393 unsigned int header; 394 395 396 /* NVDIMM device is not plugged? */ 397 if (!fit_buf->fit->len) { 398 return; 399 } 400 401 acpi_add_table(table_offsets, table_data); 402 403 /* NFIT header. */ 404 header = table_data->len; 405 acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); 406 /* NVDIMM device structures. */ 407 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); 408 409 build_header(linker, table_data, 410 (void *)(table_data->data + header), "NFIT", 411 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL); 412 } 413 414 struct NvdimmDsmIn { 415 uint32_t handle; 416 uint32_t revision; 417 uint32_t function; 418 /* the remaining size in the page is used by arg3. */ 419 union { 420 uint8_t arg3[4084]; 421 }; 422 } QEMU_PACKED; 423 typedef struct NvdimmDsmIn NvdimmDsmIn; 424 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096); 425 426 struct NvdimmDsmOut { 427 /* the size of buffer filled by QEMU. */ 428 uint32_t len; 429 uint8_t data[4092]; 430 } QEMU_PACKED; 431 typedef struct NvdimmDsmOut NvdimmDsmOut; 432 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096); 433 434 struct NvdimmDsmFunc0Out { 435 /* the size of buffer filled by QEMU. */ 436 uint32_t len; 437 uint32_t supported_func; 438 } QEMU_PACKED; 439 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; 440 441 struct NvdimmDsmFuncNoPayloadOut { 442 /* the size of buffer filled by QEMU. */ 443 uint32_t len; 444 uint32_t func_ret_status; 445 } QEMU_PACKED; 446 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; 447 448 struct NvdimmFuncGetLabelSizeOut { 449 /* the size of buffer filled by QEMU. */ 450 uint32_t len; 451 uint32_t func_ret_status; /* return status code. */ 452 uint32_t label_size; /* the size of label data area. */ 453 /* 454 * Maximum size of the namespace label data length supported by 455 * the platform in Get/Set Namespace Label Data functions. 456 */ 457 uint32_t max_xfer; 458 } QEMU_PACKED; 459 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; 460 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096); 461 462 struct NvdimmFuncGetLabelDataIn { 463 uint32_t offset; /* the offset in the namespace label data area. */ 464 uint32_t length; /* the size of data is to be read via the function. */ 465 } QEMU_PACKED; 466 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; 467 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + 468 offsetof(NvdimmDsmIn, arg3) > 4096); 469 470 struct NvdimmFuncGetLabelDataOut { 471 /* the size of buffer filled by QEMU. */ 472 uint32_t len; 473 uint32_t func_ret_status; /* return status code. */ 474 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */ 475 } QEMU_PACKED; 476 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; 477 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096); 478 479 struct NvdimmFuncSetLabelDataIn { 480 uint32_t offset; /* the offset in the namespace label data area. */ 481 uint32_t length; /* the size of data is to be written via the function. */ 482 uint8_t in_buf[0]; /* the data written to label data area. */ 483 } QEMU_PACKED; 484 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; 485 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + 486 offsetof(NvdimmDsmIn, arg3) > 4096); 487 488 struct NvdimmFuncReadFITIn { 489 uint32_t offset; /* the offset of FIT buffer. */ 490 } QEMU_PACKED; 491 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; 492 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + 493 offsetof(NvdimmDsmIn, arg3) > 4096); 494 495 struct NvdimmFuncReadFITOut { 496 /* the size of buffer filled by QEMU. */ 497 uint32_t len; 498 uint32_t func_ret_status; /* return status code. */ 499 uint8_t fit[0]; /* the FIT data. */ 500 } QEMU_PACKED; 501 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; 502 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > 4096); 503 504 static void 505 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) 506 { 507 NvdimmDsmFunc0Out func0 = { 508 .len = cpu_to_le32(sizeof(func0)), 509 .supported_func = cpu_to_le32(supported_func), 510 }; 511 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); 512 } 513 514 static void 515 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) 516 { 517 NvdimmDsmFuncNoPayloadOut out = { 518 .len = cpu_to_le32(sizeof(out)), 519 .func_ret_status = cpu_to_le32(func_ret_status), 520 }; 521 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); 522 } 523 524 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 525 526 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ 527 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in, 528 hwaddr dsm_mem_addr) 529 { 530 NvdimmFitBuffer *fit_buf = &state->fit_buf; 531 NvdimmFuncReadFITIn *read_fit; 532 NvdimmFuncReadFITOut *read_fit_out; 533 GArray *fit; 534 uint32_t read_len = 0, func_ret_status; 535 int size; 536 537 read_fit = (NvdimmFuncReadFITIn *)in->arg3; 538 le32_to_cpus(&read_fit->offset); 539 540 fit = fit_buf->fit; 541 542 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n", 543 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No"); 544 545 if (read_fit->offset > fit->len) { 546 func_ret_status = 3 /* Invalid Input Parameters */; 547 goto exit; 548 } 549 550 /* It is the first time to read FIT. */ 551 if (!read_fit->offset) { 552 fit_buf->dirty = false; 553 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ 554 func_ret_status = 0x100 /* fit changed */; 555 goto exit; 556 } 557 558 func_ret_status = 0 /* Success */; 559 read_len = MIN(fit->len - read_fit->offset, 560 4096 - sizeof(NvdimmFuncReadFITOut)); 561 562 exit: 563 size = sizeof(NvdimmFuncReadFITOut) + read_len; 564 read_fit_out = g_malloc(size); 565 566 read_fit_out->len = cpu_to_le32(size); 567 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); 568 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); 569 570 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); 571 572 g_free(read_fit_out); 573 } 574 575 static void nvdimm_dsm_reserved_root(AcpiNVDIMMState *state, NvdimmDsmIn *in, 576 hwaddr dsm_mem_addr) 577 { 578 switch (in->function) { 579 case 0x0: 580 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); 581 return; 582 case 0x1 /*Read FIT */: 583 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); 584 return; 585 } 586 587 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 588 } 589 590 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 591 { 592 /* 593 * function 0 is called to inquire which functions are supported by 594 * OSPM 595 */ 596 if (!in->function) { 597 nvdimm_dsm_function0(0 /* No function supported other than 598 function 0 */, dsm_mem_addr); 599 return; 600 } 601 602 /* No function except function 0 is supported yet. */ 603 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 604 } 605 606 /* 607 * the max transfer size is the max size transferred by both a 608 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' 609 * function. 610 */ 611 static uint32_t nvdimm_get_max_xfer_label_size(void) 612 { 613 uint32_t max_get_size, max_set_size, dsm_memory_size = 4096; 614 615 /* 616 * the max data ACPI can read one time which is transferred by 617 * the response of 'Get Namespace Label Data' function. 618 */ 619 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); 620 621 /* 622 * the max data ACPI can write one time which is transferred by 623 * 'Set Namespace Label Data' function. 624 */ 625 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - 626 sizeof(NvdimmFuncSetLabelDataIn); 627 628 return MIN(max_get_size, max_set_size); 629 } 630 631 /* 632 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). 633 * 634 * It gets the size of Namespace Label data area and the max data size 635 * that Get/Set Namespace Label Data functions can transfer. 636 */ 637 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) 638 { 639 NvdimmFuncGetLabelSizeOut label_size_out = { 640 .len = cpu_to_le32(sizeof(label_size_out)), 641 }; 642 uint32_t label_size, mxfer; 643 644 label_size = nvdimm->label_size; 645 mxfer = nvdimm_get_max_xfer_label_size(); 646 647 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer); 648 649 label_size_out.func_ret_status = cpu_to_le32(0 /* Success */); 650 label_size_out.label_size = cpu_to_le32(label_size); 651 label_size_out.max_xfer = cpu_to_le32(mxfer); 652 653 cpu_physical_memory_write(dsm_mem_addr, &label_size_out, 654 sizeof(label_size_out)); 655 } 656 657 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, 658 uint32_t offset, uint32_t length) 659 { 660 uint32_t ret = 3 /* Invalid Input Parameters */; 661 662 if (offset + length < offset) { 663 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset, 664 length); 665 return ret; 666 } 667 668 if (nvdimm->label_size < offset + length) { 669 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n", 670 offset + length, nvdimm->label_size); 671 return ret; 672 } 673 674 if (length > nvdimm_get_max_xfer_label_size()) { 675 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n", 676 length, nvdimm_get_max_xfer_label_size()); 677 return ret; 678 } 679 680 return 0 /* Success */; 681 } 682 683 /* 684 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). 685 */ 686 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 687 hwaddr dsm_mem_addr) 688 { 689 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 690 NvdimmFuncGetLabelDataIn *get_label_data; 691 NvdimmFuncGetLabelDataOut *get_label_data_out; 692 uint32_t status; 693 int size; 694 695 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; 696 le32_to_cpus(&get_label_data->offset); 697 le32_to_cpus(&get_label_data->length); 698 699 nvdimm_debug("Read Label Data: offset %#x length %#x.\n", 700 get_label_data->offset, get_label_data->length); 701 702 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, 703 get_label_data->length); 704 if (status != 0 /* Success */) { 705 nvdimm_dsm_no_payload(status, dsm_mem_addr); 706 return; 707 } 708 709 size = sizeof(*get_label_data_out) + get_label_data->length; 710 assert(size <= 4096); 711 get_label_data_out = g_malloc(size); 712 713 get_label_data_out->len = cpu_to_le32(size); 714 get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */); 715 nvc->read_label_data(nvdimm, get_label_data_out->out_buf, 716 get_label_data->length, get_label_data->offset); 717 718 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); 719 g_free(get_label_data_out); 720 } 721 722 /* 723 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). 724 */ 725 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 726 hwaddr dsm_mem_addr) 727 { 728 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 729 NvdimmFuncSetLabelDataIn *set_label_data; 730 uint32_t status; 731 732 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; 733 734 le32_to_cpus(&set_label_data->offset); 735 le32_to_cpus(&set_label_data->length); 736 737 nvdimm_debug("Write Label Data: offset %#x length %#x.\n", 738 set_label_data->offset, set_label_data->length); 739 740 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, 741 set_label_data->length); 742 if (status != 0 /* Success */) { 743 nvdimm_dsm_no_payload(status, dsm_mem_addr); 744 return; 745 } 746 747 assert(offsetof(NvdimmDsmIn, arg3) + 748 sizeof(*set_label_data) + set_label_data->length <= 4096); 749 750 nvc->write_label_data(nvdimm, set_label_data->in_buf, 751 set_label_data->length, set_label_data->offset); 752 nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr); 753 } 754 755 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 756 { 757 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); 758 759 /* See the comments in nvdimm_dsm_root(). */ 760 if (!in->function) { 761 uint32_t supported_func = 0; 762 763 if (nvdimm && nvdimm->label_size) { 764 supported_func |= 0x1 /* Bit 0 indicates whether there is 765 support for any functions other 766 than function 0. */ | 767 1 << 4 /* Get Namespace Label Size */ | 768 1 << 5 /* Get Namespace Label Data */ | 769 1 << 6 /* Set Namespace Label Data */; 770 } 771 nvdimm_dsm_function0(supported_func, dsm_mem_addr); 772 return; 773 } 774 775 if (!nvdimm) { 776 nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */, 777 dsm_mem_addr); 778 return; 779 } 780 781 /* Encode DSM function according to DSM Spec Rev1. */ 782 switch (in->function) { 783 case 4 /* Get Namespace Label Size */: 784 if (nvdimm->label_size) { 785 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); 786 return; 787 } 788 break; 789 case 5 /* Get Namespace Label Data */: 790 if (nvdimm->label_size) { 791 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); 792 return; 793 } 794 break; 795 case 0x6 /* Set Namespace Label Data */: 796 if (nvdimm->label_size) { 797 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); 798 return; 799 } 800 break; 801 } 802 803 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 804 } 805 806 static uint64_t 807 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) 808 { 809 nvdimm_debug("BUG: we never read _DSM IO Port.\n"); 810 return 0; 811 } 812 813 static void 814 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 815 { 816 AcpiNVDIMMState *state = opaque; 817 NvdimmDsmIn *in; 818 hwaddr dsm_mem_addr = val; 819 820 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr); 821 822 /* 823 * The DSM memory is mapped to guest address space so an evil guest 824 * can change its content while we are doing DSM emulation. Avoid 825 * this by copying DSM memory to QEMU local memory. 826 */ 827 in = g_new(NvdimmDsmIn, 1); 828 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); 829 830 le32_to_cpus(&in->revision); 831 le32_to_cpus(&in->function); 832 le32_to_cpus(&in->handle); 833 834 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision, 835 in->handle, in->function); 836 837 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { 838 nvdimm_debug("Revision %#x is not supported, expect %#x.\n", 839 in->revision, 0x1); 840 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 841 goto exit; 842 } 843 844 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { 845 nvdimm_dsm_reserved_root(state, in, dsm_mem_addr); 846 goto exit; 847 } 848 849 /* Handle 0 is reserved for NVDIMM Root Device. */ 850 if (!in->handle) { 851 nvdimm_dsm_root(in, dsm_mem_addr); 852 goto exit; 853 } 854 855 nvdimm_dsm_device(in, dsm_mem_addr); 856 857 exit: 858 g_free(in); 859 } 860 861 static const MemoryRegionOps nvdimm_dsm_ops = { 862 .read = nvdimm_dsm_read, 863 .write = nvdimm_dsm_write, 864 .endianness = DEVICE_LITTLE_ENDIAN, 865 .valid = { 866 .min_access_size = 4, 867 .max_access_size = 4, 868 }, 869 }; 870 871 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) 872 { 873 if (dev->hotplugged) { 874 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); 875 } 876 } 877 878 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io, 879 FWCfgState *fw_cfg, Object *owner) 880 { 881 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, 882 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN); 883 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr); 884 885 state->dsm_mem = g_array_new(false, true /* clear */, 1); 886 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); 887 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, 888 state->dsm_mem->len); 889 890 nvdimm_init_fit_buffer(&state->fit_buf); 891 } 892 893 #define NVDIMM_COMMON_DSM "NCAL" 894 #define NVDIMM_ACPI_MEM_ADDR "MEMA" 895 896 #define NVDIMM_DSM_MEMORY "NRAM" 897 #define NVDIMM_DSM_IOPORT "NPIO" 898 899 #define NVDIMM_DSM_NOTIFY "NTFI" 900 #define NVDIMM_DSM_HANDLE "HDLE" 901 #define NVDIMM_DSM_REVISION "REVS" 902 #define NVDIMM_DSM_FUNCTION "FUNC" 903 #define NVDIMM_DSM_ARG3 "FARG" 904 905 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" 906 #define NVDIMM_DSM_OUT_BUF "ODAT" 907 908 #define NVDIMM_DSM_RFIT_STATUS "RSTA" 909 910 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" 911 912 static void nvdimm_build_common_dsm(Aml *dev) 913 { 914 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; 915 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; 916 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; 917 uint8_t byte_list[1]; 918 919 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); 920 uuid = aml_arg(0); 921 function = aml_arg(2); 922 handle = aml_arg(4); 923 dsm_mem = aml_local(6); 924 dsm_out_buf = aml_local(7); 925 926 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); 927 928 /* map DSM memory and IO into ACPI namespace. */ 929 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO, 930 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN)); 931 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, 932 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); 933 934 /* 935 * DSM notifier: 936 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to 937 * emulate the access. 938 * 939 * It is the IO port so that accessing them will cause VM-exit, the 940 * control will be transferred to QEMU. 941 */ 942 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, 943 AML_PRESERVE); 944 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, 945 sizeof(uint32_t) * BITS_PER_BYTE)); 946 aml_append(method, field); 947 948 /* 949 * DSM input: 950 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call 951 * happens on NVDIMM Root Device. 952 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. 953 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. 954 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package 955 * containing function-specific arguments. 956 * 957 * They are RAM mapping on host so that these accesses never cause 958 * VM-EXIT. 959 */ 960 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 961 AML_PRESERVE); 962 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, 963 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); 964 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, 965 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); 966 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, 967 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); 968 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, 969 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); 970 aml_append(method, field); 971 972 /* 973 * DSM output: 974 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. 975 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. 976 * 977 * Since the page is reused by both input and out, the input data 978 * will be lost after storing new result into ODAT so we should fetch 979 * all the input data before writing the result. 980 */ 981 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 982 AML_PRESERVE); 983 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, 984 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); 985 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, 986 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); 987 aml_append(method, field); 988 989 /* 990 * do not support any method if DSM memory address has not been 991 * patched. 992 */ 993 unpatched = aml_equal(dsm_mem, aml_int(0x0)); 994 995 expected_uuid = aml_local(0); 996 997 ifctx = aml_if(aml_equal(handle, aml_int(0x0))); 998 aml_append(ifctx, aml_store( 999 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") 1000 /* UUID for NVDIMM Root Device */, expected_uuid)); 1001 aml_append(method, ifctx); 1002 elsectx = aml_else(); 1003 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); 1004 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID 1005 /* UUID for QEMU internal use */), expected_uuid)); 1006 aml_append(elsectx, ifctx); 1007 elsectx2 = aml_else(); 1008 aml_append(elsectx2, aml_store( 1009 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") 1010 /* UUID for NVDIMM Devices */, expected_uuid)); 1011 aml_append(elsectx, elsectx2); 1012 aml_append(method, elsectx); 1013 1014 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); 1015 1016 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); 1017 1018 /* 1019 * function 0 is called to inquire what functions are supported by 1020 * OSPM 1021 */ 1022 ifctx = aml_if(aml_equal(function, aml_int(0))); 1023 byte_list[0] = 0 /* No function Supported */; 1024 aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); 1025 aml_append(unsupport, ifctx); 1026 1027 /* No function is supported yet. */ 1028 byte_list[0] = 1 /* Not Supported */; 1029 aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); 1030 aml_append(method, unsupport); 1031 1032 /* 1033 * The HDLE indicates the DSM function is issued from which device, 1034 * it reserves 0 for root device and is the handle for NVDIMM devices. 1035 * See the comments in nvdimm_slot_to_handle(). 1036 */ 1037 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); 1038 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); 1039 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION))); 1040 1041 /* 1042 * The fourth parameter (Arg3) of _DSM is a package which contains 1043 * a buffer, the layout of the buffer is specified by UUID (Arg0), 1044 * Revision ID (Arg1) and Function Index (Arg2) which are documented 1045 * in the DSM Spec. 1046 */ 1047 pckg = aml_arg(3); 1048 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), 1049 aml_int(4 /* Package */)) /* It is a Package? */, 1050 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, 1051 NULL)); 1052 1053 pckg_index = aml_local(2); 1054 pckg_buf = aml_local(3); 1055 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); 1056 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); 1057 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); 1058 aml_append(method, ifctx); 1059 1060 /* 1061 * tell QEMU about the real address of DSM memory, then QEMU 1062 * gets the control and fills the result in DSM memory. 1063 */ 1064 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); 1065 1066 dsm_out_buf_size = aml_local(1); 1067 /* RLEN is not included in the payload returned to guest. */ 1068 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), 1069 aml_int(4), dsm_out_buf_size)); 1070 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), 1071 dsm_out_buf_size)); 1072 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), 1073 aml_int(0), dsm_out_buf_size, "OBUF")); 1074 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"), 1075 dsm_out_buf)); 1076 aml_append(method, aml_return(dsm_out_buf)); 1077 aml_append(dev, method); 1078 } 1079 1080 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) 1081 { 1082 Aml *method; 1083 1084 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 1085 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), 1086 aml_arg(1), aml_arg(2), aml_arg(3), 1087 aml_int(handle)))); 1088 aml_append(dev, method); 1089 } 1090 1091 static void nvdimm_build_fit(Aml *dev) 1092 { 1093 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; 1094 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; 1095 1096 buf = aml_local(0); 1097 buf_size = aml_local(1); 1098 fit = aml_local(2); 1099 1100 aml_append(dev, aml_create_dword_field(aml_buffer(4, NULL), 1101 aml_int(0), NVDIMM_DSM_RFIT_STATUS)); 1102 1103 /* build helper function, RFIT. */ 1104 method = aml_method("RFIT", 1, AML_SERIALIZED); 1105 aml_append(method, aml_create_dword_field(aml_buffer(4, NULL), 1106 aml_int(0), "OFST")); 1107 1108 /* prepare input package. */ 1109 pkg = aml_package(1); 1110 aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); 1111 aml_append(pkg, aml_name("OFST")); 1112 1113 /* call Read_FIT function. */ 1114 call_result = aml_call5(NVDIMM_COMMON_DSM, 1115 aml_touuid(NVDIMM_QEMU_RSVD_UUID), 1116 aml_int(1) /* Revision 1 */, 1117 aml_int(0x1) /* Read FIT */, 1118 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); 1119 aml_append(method, aml_store(call_result, buf)); 1120 1121 /* handle _DSM result. */ 1122 aml_append(method, aml_create_dword_field(buf, 1123 aml_int(0) /* offset at byte 0 */, "STAU")); 1124 1125 aml_append(method, aml_store(aml_name("STAU"), 1126 aml_name(NVDIMM_DSM_RFIT_STATUS))); 1127 1128 /* if something is wrong during _DSM. */ 1129 ifcond = aml_equal(aml_int(0 /* Success */), aml_name("STAU")); 1130 ifctx = aml_if(aml_lnot(ifcond)); 1131 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1132 aml_append(method, ifctx); 1133 1134 aml_append(method, aml_store(aml_sizeof(buf), buf_size)); 1135 aml_append(method, aml_subtract(buf_size, 1136 aml_int(4) /* the size of "STAU" */, 1137 buf_size)); 1138 1139 /* if we read the end of fit. */ 1140 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1141 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1142 aml_append(method, ifctx); 1143 1144 aml_append(method, aml_store(aml_shiftleft(buf_size, aml_int(3)), 1145 buf_size)); 1146 aml_append(method, aml_create_field(buf, 1147 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ 1148 buf_size, "BUFF")); 1149 aml_append(method, aml_return(aml_name("BUFF"))); 1150 aml_append(dev, method); 1151 1152 /* build _FIT. */ 1153 method = aml_method("_FIT", 0, AML_SERIALIZED); 1154 offset = aml_local(3); 1155 1156 aml_append(method, aml_store(aml_buffer(0, NULL), fit)); 1157 aml_append(method, aml_store(aml_int(0), offset)); 1158 1159 whilectx = aml_while(aml_int(1)); 1160 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); 1161 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); 1162 1163 /* 1164 * if fit buffer was changed during RFIT, read from the beginning 1165 * again. 1166 */ 1167 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), 1168 aml_int(0x100 /* fit changed */))); 1169 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); 1170 aml_append(ifctx, aml_store(aml_int(0), offset)); 1171 aml_append(whilectx, ifctx); 1172 1173 elsectx = aml_else(); 1174 1175 /* finish fit read if no data is read out. */ 1176 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1177 aml_append(ifctx, aml_return(fit)); 1178 aml_append(elsectx, ifctx); 1179 1180 /* update the offset. */ 1181 aml_append(elsectx, aml_add(offset, buf_size, offset)); 1182 /* append the data we read out to the fit buffer. */ 1183 aml_append(elsectx, aml_concatenate(fit, buf, fit)); 1184 aml_append(whilectx, elsectx); 1185 aml_append(method, whilectx); 1186 1187 aml_append(dev, method); 1188 } 1189 1190 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) 1191 { 1192 uint32_t slot; 1193 1194 for (slot = 0; slot < ram_slots; slot++) { 1195 uint32_t handle = nvdimm_slot_to_handle(slot); 1196 Aml *nvdimm_dev; 1197 1198 nvdimm_dev = aml_device("NV%02X", slot); 1199 1200 /* 1201 * ACPI 6.0: 9.20 NVDIMM Devices: 1202 * 1203 * _ADR object that is used to supply OSPM with unique address 1204 * of the NVDIMM device. This is done by returning the NFIT Device 1205 * handle that is used to identify the associated entries in ACPI 1206 * table NFIT or _FIT. 1207 */ 1208 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); 1209 1210 nvdimm_build_device_dsm(nvdimm_dev, handle); 1211 aml_append(root_dev, nvdimm_dev); 1212 } 1213 } 1214 1215 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, 1216 BIOSLinker *linker, GArray *dsm_dma_arrea, 1217 uint32_t ram_slots) 1218 { 1219 Aml *ssdt, *sb_scope, *dev; 1220 int mem_addr_offset, nvdimm_ssdt; 1221 1222 acpi_add_table(table_offsets, table_data); 1223 1224 ssdt = init_aml_allocator(); 1225 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); 1226 1227 sb_scope = aml_scope("\\_SB"); 1228 1229 dev = aml_device("NVDR"); 1230 1231 /* 1232 * ACPI 6.0: 9.20 NVDIMM Devices: 1233 * 1234 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root 1235 * NVDIMM interface device. Platform firmware is required to contain one 1236 * such device in _SB scope if NVDIMMs support is exposed by platform to 1237 * OSPM. 1238 * For each NVDIMM present or intended to be supported by platform, 1239 * platform firmware also exposes an ACPI Namespace Device under the 1240 * root device. 1241 */ 1242 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); 1243 1244 nvdimm_build_common_dsm(dev); 1245 1246 /* 0 is reserved for root device. */ 1247 nvdimm_build_device_dsm(dev, 0); 1248 nvdimm_build_fit(dev); 1249 1250 nvdimm_build_nvdimm_devices(dev, ram_slots); 1251 1252 aml_append(sb_scope, dev); 1253 aml_append(ssdt, sb_scope); 1254 1255 nvdimm_ssdt = table_data->len; 1256 1257 /* copy AML table into ACPI tables blob and patch header there */ 1258 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); 1259 mem_addr_offset = build_append_named_dword(table_data, 1260 NVDIMM_ACPI_MEM_ADDR); 1261 1262 bios_linker_loader_alloc(linker, 1263 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea, 1264 sizeof(NvdimmDsmIn), false /* high memory */); 1265 bios_linker_loader_add_pointer(linker, 1266 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), 1267 NVDIMM_DSM_MEM_FILE, 0); 1268 build_header(linker, table_data, 1269 (void *)(table_data->data + nvdimm_ssdt), 1270 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM"); 1271 free_aml_allocator(); 1272 } 1273 1274 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, 1275 BIOSLinker *linker, AcpiNVDIMMState *state, 1276 uint32_t ram_slots) 1277 { 1278 nvdimm_build_nfit(state, table_offsets, table_data, linker); 1279 1280 /* 1281 * NVDIMM device is allowed to be plugged only if there is available 1282 * slot. 1283 */ 1284 if (ram_slots) { 1285 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem, 1286 ram_slots); 1287 } 1288 } 1289