xref: /openbmc/qemu/hw/acpi/nvdimm.c (revision 75b0713e189a981e5bfd087d5f35705446bbb12a)
1 /*
2  * NVDIMM ACPI Implementation
3  *
4  * Copyright(C) 2015 Intel Corporation.
5  *
6  * Author:
7  *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
8  *
9  * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10  * and the DSM specification can be found at:
11  *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
12  *
13  * Currently, it only supports PMEM Virtualization.
14  *
15  * This library is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU Lesser General Public
17  * License as published by the Free Software Foundation; either
18  * version 2 of the License, or (at your option) any later version.
19  *
20  * This library is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  * Lesser General Public License for more details.
24  *
25  * You should have received a copy of the GNU Lesser General Public
26  * License along with this library; if not, see <http://www.gnu.org/licenses/>
27  */
28 
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
35 
36 static int nvdimm_plugged_device_list(Object *obj, void *opaque)
37 {
38     GSList **list = opaque;
39 
40     if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
41         DeviceState *dev = DEVICE(obj);
42 
43         if (dev->realized) { /* only realized NVDIMMs matter */
44             *list = g_slist_append(*list, DEVICE(obj));
45         }
46     }
47 
48     object_child_foreach(obj, nvdimm_plugged_device_list, opaque);
49     return 0;
50 }
51 
52 /*
53  * inquire plugged NVDIMM devices and link them into the list which is
54  * returned to the caller.
55  *
56  * Note: it is the caller's responsibility to free the list to avoid
57  * memory leak.
58  */
59 static GSList *nvdimm_get_plugged_device_list(void)
60 {
61     GSList *list = NULL;
62 
63     object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list,
64                          &list);
65     return list;
66 }
67 
68 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7)             \
69    { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
70      (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff,          \
71      (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
72 
73 /*
74  * define Byte Addressable Persistent Memory (PM) Region according to
75  * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
76  */
77 static const uint8_t nvdimm_nfit_spa_uuid[] =
78       NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
79                      0x18, 0xb7, 0x8c, 0xdb);
80 
81 /*
82  * NVDIMM Firmware Interface Table
83  * @signature: "NFIT"
84  *
85  * It provides information that allows OSPM to enumerate NVDIMM present in
86  * the platform and associate system physical address ranges created by the
87  * NVDIMMs.
88  *
89  * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
90  */
91 struct NvdimmNfitHeader {
92     ACPI_TABLE_HEADER_DEF
93     uint32_t reserved;
94 } QEMU_PACKED;
95 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
96 
97 /*
98  * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
99  * Interface Table (NFIT).
100  */
101 
102 /*
103  * System Physical Address Range Structure
104  *
105  * It describes the system physical address ranges occupied by NVDIMMs and
106  * the types of the regions.
107  */
108 struct NvdimmNfitSpa {
109     uint16_t type;
110     uint16_t length;
111     uint16_t spa_index;
112     uint16_t flags;
113     uint32_t reserved;
114     uint32_t proximity_domain;
115     uint8_t type_guid[16];
116     uint64_t spa_base;
117     uint64_t spa_length;
118     uint64_t mem_attr;
119 } QEMU_PACKED;
120 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
121 
122 /*
123  * Memory Device to System Physical Address Range Mapping Structure
124  *
125  * It enables identifying each NVDIMM region and the corresponding SPA
126  * describing the memory interleave
127  */
128 struct NvdimmNfitMemDev {
129     uint16_t type;
130     uint16_t length;
131     uint32_t nfit_handle;
132     uint16_t phys_id;
133     uint16_t region_id;
134     uint16_t spa_index;
135     uint16_t dcr_index;
136     uint64_t region_len;
137     uint64_t region_offset;
138     uint64_t region_dpa;
139     uint16_t interleave_index;
140     uint16_t interleave_ways;
141     uint16_t flags;
142     uint16_t reserved;
143 } QEMU_PACKED;
144 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
145 
146 /*
147  * NVDIMM Control Region Structure
148  *
149  * It describes the NVDIMM and if applicable, Block Control Window.
150  */
151 struct NvdimmNfitControlRegion {
152     uint16_t type;
153     uint16_t length;
154     uint16_t dcr_index;
155     uint16_t vendor_id;
156     uint16_t device_id;
157     uint16_t revision_id;
158     uint16_t sub_vendor_id;
159     uint16_t sub_device_id;
160     uint16_t sub_revision_id;
161     uint8_t reserved[6];
162     uint32_t serial_number;
163     uint16_t fic;
164     uint16_t num_bcw;
165     uint64_t bcw_size;
166     uint64_t cmd_offset;
167     uint64_t cmd_size;
168     uint64_t status_offset;
169     uint64_t status_size;
170     uint16_t flags;
171     uint8_t reserved2[6];
172 } QEMU_PACKED;
173 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
174 
175 /*
176  * Module serial number is a unique number for each device. We use the
177  * slot id of NVDIMM device to generate this number so that each device
178  * associates with a different number.
179  *
180  * 0x123456 is a magic number we arbitrarily chose.
181  */
182 static uint32_t nvdimm_slot_to_sn(int slot)
183 {
184     return 0x123456 + slot;
185 }
186 
187 /*
188  * handle is used to uniquely associate nfit_memdev structure with NVDIMM
189  * ACPI device - nfit_memdev.nfit_handle matches with the value returned
190  * by ACPI device _ADR method.
191  *
192  * We generate the handle with the slot id of NVDIMM device and reserve
193  * 0 for NVDIMM root device.
194  */
195 static uint32_t nvdimm_slot_to_handle(int slot)
196 {
197     return slot + 1;
198 }
199 
200 /*
201  * index uniquely identifies the structure, 0 is reserved which indicates
202  * that the structure is not valid or the associated structure is not
203  * present.
204  *
205  * Each NVDIMM device needs two indexes, one for nfit_spa and another for
206  * nfit_dc which are generated by the slot id of NVDIMM device.
207  */
208 static uint16_t nvdimm_slot_to_spa_index(int slot)
209 {
210     return (slot + 1) << 1;
211 }
212 
213 /* See the comments of nvdimm_slot_to_spa_index(). */
214 static uint32_t nvdimm_slot_to_dcr_index(int slot)
215 {
216     return nvdimm_slot_to_spa_index(slot) + 1;
217 }
218 
219 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
220 {
221     NVDIMMDevice *nvdimm = NULL;
222     GSList *list, *device_list = nvdimm_get_plugged_device_list();
223 
224     for (list = device_list; list; list = list->next) {
225         NVDIMMDevice *nvd = list->data;
226         int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
227                                            NULL);
228 
229         if (nvdimm_slot_to_handle(slot) == handle) {
230             nvdimm = nvd;
231             break;
232         }
233     }
234 
235     g_slist_free(device_list);
236     return nvdimm;
237 }
238 
239 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
240 static void
241 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
242 {
243     NvdimmNfitSpa *nfit_spa;
244     uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
245                                             NULL);
246     uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
247                                             NULL);
248     uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
249                                             NULL);
250     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
251                                             NULL);
252 
253     nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
254 
255     nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
256                                       Structure */);
257     nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
258     nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
259 
260     /*
261      * Control region is strict as all the device info, such as SN, index,
262      * is associated with slot id.
263      */
264     nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
265                                        management during hot add/online
266                                        operation */ |
267                                   2 /* Data in Proximity Domain field is
268                                        valid*/);
269 
270     /* NUMA node. */
271     nfit_spa->proximity_domain = cpu_to_le32(node);
272     /* the region reported as PMEM. */
273     memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
274            sizeof(nvdimm_nfit_spa_uuid));
275 
276     nfit_spa->spa_base = cpu_to_le64(addr);
277     nfit_spa->spa_length = cpu_to_le64(size);
278 
279     /* It is the PMEM and can be cached as writeback. */
280     nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
281                                      0x8000ULL /* EFI_MEMORY_NV */);
282 }
283 
284 /*
285  * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
286  * Structure
287  */
288 static void
289 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
290 {
291     NvdimmNfitMemDev *nfit_memdev;
292     uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
293                                             NULL);
294     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
295                                             NULL);
296     uint32_t handle = nvdimm_slot_to_handle(slot);
297 
298     nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
299 
300     nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
301                                          Range Map Structure*/);
302     nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
303     nfit_memdev->nfit_handle = cpu_to_le32(handle);
304 
305     /*
306      * associate memory device with System Physical Address Range
307      * Structure.
308      */
309     nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
310     /* associate memory device with Control Region Structure. */
311     nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
312 
313     /* The memory region on the device. */
314     nfit_memdev->region_len = cpu_to_le64(size);
315     /* The device address starts from 0. */
316     nfit_memdev->region_dpa = cpu_to_le64(0);
317 
318     /* Only one interleave for PMEM. */
319     nfit_memdev->interleave_ways = cpu_to_le16(1);
320 }
321 
322 /*
323  * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
324  */
325 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
326 {
327     NvdimmNfitControlRegion *nfit_dcr;
328     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
329                                        NULL);
330     uint32_t sn = nvdimm_slot_to_sn(slot);
331 
332     nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
333 
334     nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
335     nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
336     nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
337 
338     /* vendor: Intel. */
339     nfit_dcr->vendor_id = cpu_to_le16(0x8086);
340     nfit_dcr->device_id = cpu_to_le16(1);
341 
342     /* The _DSM method is following Intel's DSM specification. */
343     nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
344                                              in ACPI 6.0 is 1. */);
345     nfit_dcr->serial_number = cpu_to_le32(sn);
346     nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
347                                          2: NVDIMM Device Specific Method
348                                          (DSM) in DSM Spec Rev1.*/);
349 }
350 
351 static GArray *nvdimm_build_device_structure(void)
352 {
353     GSList *device_list = nvdimm_get_plugged_device_list();
354     GArray *structures = g_array_new(false, true /* clear */, 1);
355 
356     for (; device_list; device_list = device_list->next) {
357         DeviceState *dev = device_list->data;
358 
359         /* build System Physical Address Range Structure. */
360         nvdimm_build_structure_spa(structures, dev);
361 
362         /*
363          * build Memory Device to System Physical Address Range Mapping
364          * Structure.
365          */
366         nvdimm_build_structure_memdev(structures, dev);
367 
368         /* build NVDIMM Control Region Structure. */
369         nvdimm_build_structure_dcr(structures, dev);
370     }
371     g_slist_free(device_list);
372 
373     return structures;
374 }
375 
376 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
377 {
378     qemu_mutex_init(&fit_buf->lock);
379     fit_buf->fit = g_array_new(false, true /* clear */, 1);
380 }
381 
382 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf)
383 {
384     qemu_mutex_lock(&fit_buf->lock);
385     g_array_free(fit_buf->fit, true);
386     fit_buf->fit = nvdimm_build_device_structure();
387     fit_buf->dirty = true;
388     qemu_mutex_unlock(&fit_buf->lock);
389 }
390 
391 void nvdimm_acpi_hotplug(AcpiNVDIMMState *state)
392 {
393     nvdimm_build_fit_buffer(&state->fit_buf);
394 }
395 
396 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets,
397                               GArray *table_data, BIOSLinker *linker)
398 {
399     NvdimmFitBuffer *fit_buf = &state->fit_buf;
400     unsigned int header;
401 
402     qemu_mutex_lock(&fit_buf->lock);
403 
404     /* NVDIMM device is not plugged? */
405     if (!fit_buf->fit->len) {
406         goto exit;
407     }
408 
409     acpi_add_table(table_offsets, table_data);
410 
411     /* NFIT header. */
412     header = table_data->len;
413     acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
414     /* NVDIMM device structures. */
415     g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
416 
417     build_header(linker, table_data,
418                  (void *)(table_data->data + header), "NFIT",
419                  sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
420 
421 exit:
422     qemu_mutex_unlock(&fit_buf->lock);
423 }
424 
425 struct NvdimmDsmIn {
426     uint32_t handle;
427     uint32_t revision;
428     uint32_t function;
429     /* the remaining size in the page is used by arg3. */
430     union {
431         uint8_t arg3[4084];
432     };
433 } QEMU_PACKED;
434 typedef struct NvdimmDsmIn NvdimmDsmIn;
435 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096);
436 
437 struct NvdimmDsmOut {
438     /* the size of buffer filled by QEMU. */
439     uint32_t len;
440     uint8_t data[4092];
441 } QEMU_PACKED;
442 typedef struct NvdimmDsmOut NvdimmDsmOut;
443 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096);
444 
445 struct NvdimmDsmFunc0Out {
446     /* the size of buffer filled by QEMU. */
447      uint32_t len;
448      uint32_t supported_func;
449 } QEMU_PACKED;
450 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
451 
452 struct NvdimmDsmFuncNoPayloadOut {
453     /* the size of buffer filled by QEMU. */
454      uint32_t len;
455      uint32_t func_ret_status;
456 } QEMU_PACKED;
457 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
458 
459 struct NvdimmFuncGetLabelSizeOut {
460     /* the size of buffer filled by QEMU. */
461     uint32_t len;
462     uint32_t func_ret_status; /* return status code. */
463     uint32_t label_size; /* the size of label data area. */
464     /*
465      * Maximum size of the namespace label data length supported by
466      * the platform in Get/Set Namespace Label Data functions.
467      */
468     uint32_t max_xfer;
469 } QEMU_PACKED;
470 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
471 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096);
472 
473 struct NvdimmFuncGetLabelDataIn {
474     uint32_t offset; /* the offset in the namespace label data area. */
475     uint32_t length; /* the size of data is to be read via the function. */
476 } QEMU_PACKED;
477 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
478 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
479                   offsetof(NvdimmDsmIn, arg3) > 4096);
480 
481 struct NvdimmFuncGetLabelDataOut {
482     /* the size of buffer filled by QEMU. */
483     uint32_t len;
484     uint32_t func_ret_status; /* return status code. */
485     uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
486 } QEMU_PACKED;
487 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
488 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096);
489 
490 struct NvdimmFuncSetLabelDataIn {
491     uint32_t offset; /* the offset in the namespace label data area. */
492     uint32_t length; /* the size of data is to be written via the function. */
493     uint8_t in_buf[0]; /* the data written to label data area. */
494 } QEMU_PACKED;
495 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
496 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
497                   offsetof(NvdimmDsmIn, arg3) > 4096);
498 
499 static void
500 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
501 {
502     NvdimmDsmFunc0Out func0 = {
503         .len = cpu_to_le32(sizeof(func0)),
504         .supported_func = cpu_to_le32(supported_func),
505     };
506     cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
507 }
508 
509 static void
510 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
511 {
512     NvdimmDsmFuncNoPayloadOut out = {
513         .len = cpu_to_le32(sizeof(out)),
514         .func_ret_status = cpu_to_le32(func_ret_status),
515     };
516     cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
517 }
518 
519 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
520 {
521     /*
522      * function 0 is called to inquire which functions are supported by
523      * OSPM
524      */
525     if (!in->function) {
526         nvdimm_dsm_function0(0 /* No function supported other than
527                                   function 0 */, dsm_mem_addr);
528         return;
529     }
530 
531     /* No function except function 0 is supported yet. */
532     nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
533 }
534 
535 /*
536  * the max transfer size is the max size transferred by both a
537  * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
538  * function.
539  */
540 static uint32_t nvdimm_get_max_xfer_label_size(void)
541 {
542     uint32_t max_get_size, max_set_size, dsm_memory_size = 4096;
543 
544     /*
545      * the max data ACPI can read one time which is transferred by
546      * the response of 'Get Namespace Label Data' function.
547      */
548     max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
549 
550     /*
551      * the max data ACPI can write one time which is transferred by
552      * 'Set Namespace Label Data' function.
553      */
554     max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
555                    sizeof(NvdimmFuncSetLabelDataIn);
556 
557     return MIN(max_get_size, max_set_size);
558 }
559 
560 /*
561  * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
562  *
563  * It gets the size of Namespace Label data area and the max data size
564  * that Get/Set Namespace Label Data functions can transfer.
565  */
566 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
567 {
568     NvdimmFuncGetLabelSizeOut label_size_out = {
569         .len = cpu_to_le32(sizeof(label_size_out)),
570     };
571     uint32_t label_size, mxfer;
572 
573     label_size = nvdimm->label_size;
574     mxfer = nvdimm_get_max_xfer_label_size();
575 
576     nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
577 
578     label_size_out.func_ret_status = cpu_to_le32(0 /* Success */);
579     label_size_out.label_size = cpu_to_le32(label_size);
580     label_size_out.max_xfer = cpu_to_le32(mxfer);
581 
582     cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
583                               sizeof(label_size_out));
584 }
585 
586 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
587                                            uint32_t offset, uint32_t length)
588 {
589     uint32_t ret = 3 /* Invalid Input Parameters */;
590 
591     if (offset + length < offset) {
592         nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
593                      length);
594         return ret;
595     }
596 
597     if (nvdimm->label_size < offset + length) {
598         nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
599                      offset + length, nvdimm->label_size);
600         return ret;
601     }
602 
603     if (length > nvdimm_get_max_xfer_label_size()) {
604         nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
605                      length, nvdimm_get_max_xfer_label_size());
606         return ret;
607     }
608 
609     return 0 /* Success */;
610 }
611 
612 /*
613  * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
614  */
615 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
616                                       hwaddr dsm_mem_addr)
617 {
618     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
619     NvdimmFuncGetLabelDataIn *get_label_data;
620     NvdimmFuncGetLabelDataOut *get_label_data_out;
621     uint32_t status;
622     int size;
623 
624     get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
625     le32_to_cpus(&get_label_data->offset);
626     le32_to_cpus(&get_label_data->length);
627 
628     nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
629                  get_label_data->offset, get_label_data->length);
630 
631     status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
632                                         get_label_data->length);
633     if (status != 0 /* Success */) {
634         nvdimm_dsm_no_payload(status, dsm_mem_addr);
635         return;
636     }
637 
638     size = sizeof(*get_label_data_out) + get_label_data->length;
639     assert(size <= 4096);
640     get_label_data_out = g_malloc(size);
641 
642     get_label_data_out->len = cpu_to_le32(size);
643     get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */);
644     nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
645                          get_label_data->length, get_label_data->offset);
646 
647     cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
648     g_free(get_label_data_out);
649 }
650 
651 /*
652  * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
653  */
654 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
655                                       hwaddr dsm_mem_addr)
656 {
657     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
658     NvdimmFuncSetLabelDataIn *set_label_data;
659     uint32_t status;
660 
661     set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
662 
663     le32_to_cpus(&set_label_data->offset);
664     le32_to_cpus(&set_label_data->length);
665 
666     nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
667                  set_label_data->offset, set_label_data->length);
668 
669     status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
670                                         set_label_data->length);
671     if (status != 0 /* Success */) {
672         nvdimm_dsm_no_payload(status, dsm_mem_addr);
673         return;
674     }
675 
676     assert(sizeof(*in) + sizeof(*set_label_data) + set_label_data->length <=
677            4096);
678 
679     nvc->write_label_data(nvdimm, set_label_data->in_buf,
680                           set_label_data->length, set_label_data->offset);
681     nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr);
682 }
683 
684 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
685 {
686     NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
687 
688     /* See the comments in nvdimm_dsm_root(). */
689     if (!in->function) {
690         uint32_t supported_func = 0;
691 
692         if (nvdimm && nvdimm->label_size) {
693             supported_func |= 0x1 /* Bit 0 indicates whether there is
694                                      support for any functions other
695                                      than function 0. */ |
696                               1 << 4 /* Get Namespace Label Size */ |
697                               1 << 5 /* Get Namespace Label Data */ |
698                               1 << 6 /* Set Namespace Label Data */;
699         }
700         nvdimm_dsm_function0(supported_func, dsm_mem_addr);
701         return;
702     }
703 
704     if (!nvdimm) {
705         nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */,
706                               dsm_mem_addr);
707         return;
708     }
709 
710     /* Encode DSM function according to DSM Spec Rev1. */
711     switch (in->function) {
712     case 4 /* Get Namespace Label Size */:
713         if (nvdimm->label_size) {
714             nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
715             return;
716         }
717         break;
718     case 5 /* Get Namespace Label Data */:
719         if (nvdimm->label_size) {
720             nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
721             return;
722         }
723         break;
724     case 0x6 /* Set Namespace Label Data */:
725         if (nvdimm->label_size) {
726             nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
727             return;
728         }
729         break;
730     }
731 
732     nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
733 }
734 
735 static uint64_t
736 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
737 {
738     nvdimm_debug("BUG: we never read _DSM IO Port.\n");
739     return 0;
740 }
741 
742 static void
743 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
744 {
745     NvdimmDsmIn *in;
746     hwaddr dsm_mem_addr = val;
747 
748     nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
749 
750     /*
751      * The DSM memory is mapped to guest address space so an evil guest
752      * can change its content while we are doing DSM emulation. Avoid
753      * this by copying DSM memory to QEMU local memory.
754      */
755     in = g_new(NvdimmDsmIn, 1);
756     cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
757 
758     le32_to_cpus(&in->revision);
759     le32_to_cpus(&in->function);
760     le32_to_cpus(&in->handle);
761 
762     nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
763                  in->handle, in->function);
764 
765     if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
766         nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
767                      in->revision, 0x1);
768         nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
769         goto exit;
770     }
771 
772      /* Handle 0 is reserved for NVDIMM Root Device. */
773     if (!in->handle) {
774         nvdimm_dsm_root(in, dsm_mem_addr);
775         goto exit;
776     }
777 
778     nvdimm_dsm_device(in, dsm_mem_addr);
779 
780 exit:
781     g_free(in);
782 }
783 
784 static const MemoryRegionOps nvdimm_dsm_ops = {
785     .read = nvdimm_dsm_read,
786     .write = nvdimm_dsm_write,
787     .endianness = DEVICE_LITTLE_ENDIAN,
788     .valid = {
789         .min_access_size = 4,
790         .max_access_size = 4,
791     },
792 };
793 
794 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
795                             FWCfgState *fw_cfg, Object *owner)
796 {
797     memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
798                           "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
799     memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
800 
801     state->dsm_mem = g_array_new(false, true /* clear */, 1);
802     acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
803     fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
804                     state->dsm_mem->len);
805 
806     nvdimm_init_fit_buffer(&state->fit_buf);
807 }
808 
809 #define NVDIMM_COMMON_DSM       "NCAL"
810 #define NVDIMM_ACPI_MEM_ADDR    "MEMA"
811 
812 #define NVDIMM_DSM_MEMORY       "NRAM"
813 #define NVDIMM_DSM_IOPORT       "NPIO"
814 
815 #define NVDIMM_DSM_NOTIFY       "NTFI"
816 #define NVDIMM_DSM_HANDLE       "HDLE"
817 #define NVDIMM_DSM_REVISION     "REVS"
818 #define NVDIMM_DSM_FUNCTION     "FUNC"
819 #define NVDIMM_DSM_ARG3         "FARG"
820 
821 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
822 #define NVDIMM_DSM_OUT_BUF      "ODAT"
823 
824 static void nvdimm_build_common_dsm(Aml *dev)
825 {
826     Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem;
827     Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
828     Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
829     uint8_t byte_list[1];
830 
831     method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
832     uuid = aml_arg(0);
833     function = aml_arg(2);
834     handle = aml_arg(4);
835     dsm_mem = aml_local(6);
836     dsm_out_buf = aml_local(7);
837 
838     aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
839 
840     /* map DSM memory and IO into ACPI namespace. */
841     aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO,
842                aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
843     aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
844                AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
845 
846     /*
847      * DSM notifier:
848      * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
849      *                    emulate the access.
850      *
851      * It is the IO port so that accessing them will cause VM-exit, the
852      * control will be transferred to QEMU.
853      */
854     field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
855                       AML_PRESERVE);
856     aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
857                sizeof(uint32_t) * BITS_PER_BYTE));
858     aml_append(method, field);
859 
860     /*
861      * DSM input:
862      * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
863      *                    happens on NVDIMM Root Device.
864      * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
865      * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
866      * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
867      *                  containing function-specific arguments.
868      *
869      * They are RAM mapping on host so that these accesses never cause
870      * VM-EXIT.
871      */
872     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
873                       AML_PRESERVE);
874     aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
875                sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
876     aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
877                sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
878     aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
879                sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
880     aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
881          (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
882     aml_append(method, field);
883 
884     /*
885      * DSM output:
886      * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
887      * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
888      *
889      * Since the page is reused by both input and out, the input data
890      * will be lost after storing new result into ODAT so we should fetch
891      * all the input data before writing the result.
892      */
893     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
894                       AML_PRESERVE);
895     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
896                sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
897     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
898        (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
899     aml_append(method, field);
900 
901     /*
902      * do not support any method if DSM memory address has not been
903      * patched.
904      */
905     unpatched = aml_equal(dsm_mem, aml_int(0x0));
906 
907     expected_uuid = aml_local(0);
908 
909     ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
910     aml_append(ifctx, aml_store(
911                aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
912                /* UUID for NVDIMM Root Device */, expected_uuid));
913     aml_append(method, ifctx);
914     elsectx = aml_else();
915     aml_append(elsectx, aml_store(
916                aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
917                /* UUID for NVDIMM Devices */, expected_uuid));
918     aml_append(method, elsectx);
919 
920     uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
921 
922     unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
923 
924     /*
925      * function 0 is called to inquire what functions are supported by
926      * OSPM
927      */
928     ifctx = aml_if(aml_equal(function, aml_int(0)));
929     byte_list[0] = 0 /* No function Supported */;
930     aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
931     aml_append(unsupport, ifctx);
932 
933     /* No function is supported yet. */
934     byte_list[0] = 1 /* Not Supported */;
935     aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
936     aml_append(method, unsupport);
937 
938     /*
939      * The HDLE indicates the DSM function is issued from which device,
940      * it reserves 0 for root device and is the handle for NVDIMM devices.
941      * See the comments in nvdimm_slot_to_handle().
942      */
943     aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
944     aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
945     aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION)));
946 
947     /*
948      * The fourth parameter (Arg3) of _DSM is a package which contains
949      * a buffer, the layout of the buffer is specified by UUID (Arg0),
950      * Revision ID (Arg1) and Function Index (Arg2) which are documented
951      * in the DSM Spec.
952      */
953     pckg = aml_arg(3);
954     ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
955                    aml_int(4 /* Package */)) /* It is a Package? */,
956                    aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
957                    NULL));
958 
959     pckg_index = aml_local(2);
960     pckg_buf = aml_local(3);
961     aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
962     aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
963     aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
964     aml_append(method, ifctx);
965 
966     /*
967      * tell QEMU about the real address of DSM memory, then QEMU
968      * gets the control and fills the result in DSM memory.
969      */
970     aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
971 
972     dsm_out_buf_size = aml_local(1);
973     /* RLEN is not included in the payload returned to guest. */
974     aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
975                aml_int(4), dsm_out_buf_size));
976     aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
977                                  dsm_out_buf_size));
978     aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
979                aml_int(0), dsm_out_buf_size, "OBUF"));
980     aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
981                                        dsm_out_buf));
982     aml_append(method, aml_return(dsm_out_buf));
983     aml_append(dev, method);
984 }
985 
986 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
987 {
988     Aml *method;
989 
990     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
991     aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
992                                   aml_arg(1), aml_arg(2), aml_arg(3),
993                                   aml_int(handle))));
994     aml_append(dev, method);
995 }
996 
997 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
998 {
999     uint32_t slot;
1000 
1001     for (slot = 0; slot < ram_slots; slot++) {
1002         uint32_t handle = nvdimm_slot_to_handle(slot);
1003         Aml *nvdimm_dev;
1004 
1005         nvdimm_dev = aml_device("NV%02X", slot);
1006 
1007         /*
1008          * ACPI 6.0: 9.20 NVDIMM Devices:
1009          *
1010          * _ADR object that is used to supply OSPM with unique address
1011          * of the NVDIMM device. This is done by returning the NFIT Device
1012          * handle that is used to identify the associated entries in ACPI
1013          * table NFIT or _FIT.
1014          */
1015         aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1016 
1017         nvdimm_build_device_dsm(nvdimm_dev, handle);
1018         aml_append(root_dev, nvdimm_dev);
1019     }
1020 }
1021 
1022 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1023                               BIOSLinker *linker, GArray *dsm_dma_arrea,
1024                               uint32_t ram_slots)
1025 {
1026     Aml *ssdt, *sb_scope, *dev;
1027     int mem_addr_offset, nvdimm_ssdt;
1028 
1029     acpi_add_table(table_offsets, table_data);
1030 
1031     ssdt = init_aml_allocator();
1032     acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1033 
1034     sb_scope = aml_scope("\\_SB");
1035 
1036     dev = aml_device("NVDR");
1037 
1038     /*
1039      * ACPI 6.0: 9.20 NVDIMM Devices:
1040      *
1041      * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1042      * NVDIMM interface device. Platform firmware is required to contain one
1043      * such device in _SB scope if NVDIMMs support is exposed by platform to
1044      * OSPM.
1045      * For each NVDIMM present or intended to be supported by platform,
1046      * platform firmware also exposes an ACPI Namespace Device under the
1047      * root device.
1048      */
1049     aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1050 
1051     nvdimm_build_common_dsm(dev);
1052 
1053     /* 0 is reserved for root device. */
1054     nvdimm_build_device_dsm(dev, 0);
1055 
1056     nvdimm_build_nvdimm_devices(dev, ram_slots);
1057 
1058     aml_append(sb_scope, dev);
1059     aml_append(ssdt, sb_scope);
1060 
1061     nvdimm_ssdt = table_data->len;
1062 
1063     /* copy AML table into ACPI tables blob and patch header there */
1064     g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1065     mem_addr_offset = build_append_named_dword(table_data,
1066                                                NVDIMM_ACPI_MEM_ADDR);
1067 
1068     bios_linker_loader_alloc(linker,
1069                              NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
1070                              sizeof(NvdimmDsmIn), false /* high memory */);
1071     bios_linker_loader_add_pointer(linker,
1072         ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1073         NVDIMM_DSM_MEM_FILE, 0);
1074     build_header(linker, table_data,
1075         (void *)(table_data->data + nvdimm_ssdt),
1076         "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1077     free_aml_allocator();
1078 }
1079 
1080 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1081                        BIOSLinker *linker, AcpiNVDIMMState *state,
1082                        uint32_t ram_slots)
1083 {
1084     nvdimm_build_nfit(state, table_offsets, table_data, linker);
1085 
1086     /*
1087      * NVDIMM device is allowed to be plugged only if there is available
1088      * slot.
1089      */
1090     if (ram_slots) {
1091         nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem,
1092                           ram_slots);
1093     }
1094 }
1095