1 /* 2 * NVDIMM ACPI Implementation 3 * 4 * Copyright(C) 2015 Intel Corporation. 5 * 6 * Author: 7 * Xiao Guangrong <guangrong.xiao@linux.intel.com> 8 * 9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 10 * and the DSM specification can be found at: 11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 12 * 13 * Currently, it only supports PMEM Virtualization. 14 * 15 * This library is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU Lesser General Public 17 * License as published by the Free Software Foundation; either 18 * version 2 of the License, or (at your option) any later version. 19 * 20 * This library is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * Lesser General Public License for more details. 24 * 25 * You should have received a copy of the GNU Lesser General Public 26 * License along with this library; if not, see <http://www.gnu.org/licenses/> 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/acpi/acpi.h" 31 #include "hw/acpi/aml-build.h" 32 #include "hw/acpi/bios-linker-loader.h" 33 #include "hw/nvram/fw_cfg.h" 34 #include "hw/mem/nvdimm.h" 35 36 static int nvdimm_plugged_device_list(Object *obj, void *opaque) 37 { 38 GSList **list = opaque; 39 40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) { 41 DeviceState *dev = DEVICE(obj); 42 43 if (dev->realized) { /* only realized NVDIMMs matter */ 44 *list = g_slist_append(*list, DEVICE(obj)); 45 } 46 } 47 48 object_child_foreach(obj, nvdimm_plugged_device_list, opaque); 49 return 0; 50 } 51 52 /* 53 * inquire plugged NVDIMM devices and link them into the list which is 54 * returned to the caller. 55 * 56 * Note: it is the caller's responsibility to free the list to avoid 57 * memory leak. 58 */ 59 static GSList *nvdimm_get_plugged_device_list(void) 60 { 61 GSList *list = NULL; 62 63 object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list, 64 &list); 65 return list; 66 } 67 68 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 69 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \ 70 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \ 71 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) } 72 73 /* 74 * define Byte Addressable Persistent Memory (PM) Region according to 75 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. 76 */ 77 static const uint8_t nvdimm_nfit_spa_uuid[] = 78 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 79 0x18, 0xb7, 0x8c, 0xdb); 80 81 /* 82 * NVDIMM Firmware Interface Table 83 * @signature: "NFIT" 84 * 85 * It provides information that allows OSPM to enumerate NVDIMM present in 86 * the platform and associate system physical address ranges created by the 87 * NVDIMMs. 88 * 89 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 90 */ 91 struct NvdimmNfitHeader { 92 ACPI_TABLE_HEADER_DEF 93 uint32_t reserved; 94 } QEMU_PACKED; 95 typedef struct NvdimmNfitHeader NvdimmNfitHeader; 96 97 /* 98 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware 99 * Interface Table (NFIT). 100 */ 101 102 /* 103 * System Physical Address Range Structure 104 * 105 * It describes the system physical address ranges occupied by NVDIMMs and 106 * the types of the regions. 107 */ 108 struct NvdimmNfitSpa { 109 uint16_t type; 110 uint16_t length; 111 uint16_t spa_index; 112 uint16_t flags; 113 uint32_t reserved; 114 uint32_t proximity_domain; 115 uint8_t type_guid[16]; 116 uint64_t spa_base; 117 uint64_t spa_length; 118 uint64_t mem_attr; 119 } QEMU_PACKED; 120 typedef struct NvdimmNfitSpa NvdimmNfitSpa; 121 122 /* 123 * Memory Device to System Physical Address Range Mapping Structure 124 * 125 * It enables identifying each NVDIMM region and the corresponding SPA 126 * describing the memory interleave 127 */ 128 struct NvdimmNfitMemDev { 129 uint16_t type; 130 uint16_t length; 131 uint32_t nfit_handle; 132 uint16_t phys_id; 133 uint16_t region_id; 134 uint16_t spa_index; 135 uint16_t dcr_index; 136 uint64_t region_len; 137 uint64_t region_offset; 138 uint64_t region_dpa; 139 uint16_t interleave_index; 140 uint16_t interleave_ways; 141 uint16_t flags; 142 uint16_t reserved; 143 } QEMU_PACKED; 144 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; 145 146 /* 147 * NVDIMM Control Region Structure 148 * 149 * It describes the NVDIMM and if applicable, Block Control Window. 150 */ 151 struct NvdimmNfitControlRegion { 152 uint16_t type; 153 uint16_t length; 154 uint16_t dcr_index; 155 uint16_t vendor_id; 156 uint16_t device_id; 157 uint16_t revision_id; 158 uint16_t sub_vendor_id; 159 uint16_t sub_device_id; 160 uint16_t sub_revision_id; 161 uint8_t reserved[6]; 162 uint32_t serial_number; 163 uint16_t fic; 164 uint16_t num_bcw; 165 uint64_t bcw_size; 166 uint64_t cmd_offset; 167 uint64_t cmd_size; 168 uint64_t status_offset; 169 uint64_t status_size; 170 uint16_t flags; 171 uint8_t reserved2[6]; 172 } QEMU_PACKED; 173 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; 174 175 /* 176 * Module serial number is a unique number for each device. We use the 177 * slot id of NVDIMM device to generate this number so that each device 178 * associates with a different number. 179 * 180 * 0x123456 is a magic number we arbitrarily chose. 181 */ 182 static uint32_t nvdimm_slot_to_sn(int slot) 183 { 184 return 0x123456 + slot; 185 } 186 187 /* 188 * handle is used to uniquely associate nfit_memdev structure with NVDIMM 189 * ACPI device - nfit_memdev.nfit_handle matches with the value returned 190 * by ACPI device _ADR method. 191 * 192 * We generate the handle with the slot id of NVDIMM device and reserve 193 * 0 for NVDIMM root device. 194 */ 195 static uint32_t nvdimm_slot_to_handle(int slot) 196 { 197 return slot + 1; 198 } 199 200 /* 201 * index uniquely identifies the structure, 0 is reserved which indicates 202 * that the structure is not valid or the associated structure is not 203 * present. 204 * 205 * Each NVDIMM device needs two indexes, one for nfit_spa and another for 206 * nfit_dc which are generated by the slot id of NVDIMM device. 207 */ 208 static uint16_t nvdimm_slot_to_spa_index(int slot) 209 { 210 return (slot + 1) << 1; 211 } 212 213 /* See the comments of nvdimm_slot_to_spa_index(). */ 214 static uint32_t nvdimm_slot_to_dcr_index(int slot) 215 { 216 return nvdimm_slot_to_spa_index(slot) + 1; 217 } 218 219 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) 220 { 221 NVDIMMDevice *nvdimm = NULL; 222 GSList *list, *device_list = nvdimm_get_plugged_device_list(); 223 224 for (list = device_list; list; list = list->next) { 225 NVDIMMDevice *nvd = list->data; 226 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, 227 NULL); 228 229 if (nvdimm_slot_to_handle(slot) == handle) { 230 nvdimm = nvd; 231 break; 232 } 233 } 234 235 g_slist_free(device_list); 236 return nvdimm; 237 } 238 239 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ 240 static void 241 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) 242 { 243 NvdimmNfitSpa *nfit_spa; 244 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP, 245 NULL); 246 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 247 NULL); 248 uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, 249 NULL); 250 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 251 NULL); 252 253 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); 254 255 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range 256 Structure */); 257 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); 258 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 259 260 /* 261 * Control region is strict as all the device info, such as SN, index, 262 * is associated with slot id. 263 */ 264 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for 265 management during hot add/online 266 operation */ | 267 2 /* Data in Proximity Domain field is 268 valid*/); 269 270 /* NUMA node. */ 271 nfit_spa->proximity_domain = cpu_to_le32(node); 272 /* the region reported as PMEM. */ 273 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, 274 sizeof(nvdimm_nfit_spa_uuid)); 275 276 nfit_spa->spa_base = cpu_to_le64(addr); 277 nfit_spa->spa_length = cpu_to_le64(size); 278 279 /* It is the PMEM and can be cached as writeback. */ 280 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 281 0x8000ULL /* EFI_MEMORY_NV */); 282 } 283 284 /* 285 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping 286 * Structure 287 */ 288 static void 289 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) 290 { 291 NvdimmNfitMemDev *nfit_memdev; 292 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 293 NULL); 294 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 295 NULL); 296 uint32_t handle = nvdimm_slot_to_handle(slot); 297 298 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); 299 300 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address 301 Range Map Structure*/); 302 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); 303 nfit_memdev->nfit_handle = cpu_to_le32(handle); 304 305 /* 306 * associate memory device with System Physical Address Range 307 * Structure. 308 */ 309 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 310 /* associate memory device with Control Region Structure. */ 311 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 312 313 /* The memory region on the device. */ 314 nfit_memdev->region_len = cpu_to_le64(size); 315 /* The device address starts from 0. */ 316 nfit_memdev->region_dpa = cpu_to_le64(0); 317 318 /* Only one interleave for PMEM. */ 319 nfit_memdev->interleave_ways = cpu_to_le16(1); 320 } 321 322 /* 323 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. 324 */ 325 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) 326 { 327 NvdimmNfitControlRegion *nfit_dcr; 328 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 329 NULL); 330 uint32_t sn = nvdimm_slot_to_sn(slot); 331 332 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); 333 334 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); 335 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); 336 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 337 338 /* vendor: Intel. */ 339 nfit_dcr->vendor_id = cpu_to_le16(0x8086); 340 nfit_dcr->device_id = cpu_to_le16(1); 341 342 /* The _DSM method is following Intel's DSM specification. */ 343 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported 344 in ACPI 6.0 is 1. */); 345 nfit_dcr->serial_number = cpu_to_le32(sn); 346 nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter 347 2: NVDIMM Device Specific Method 348 (DSM) in DSM Spec Rev1.*/); 349 } 350 351 static GArray *nvdimm_build_device_structure(void) 352 { 353 GSList *device_list = nvdimm_get_plugged_device_list(); 354 GArray *structures = g_array_new(false, true /* clear */, 1); 355 356 for (; device_list; device_list = device_list->next) { 357 DeviceState *dev = device_list->data; 358 359 /* build System Physical Address Range Structure. */ 360 nvdimm_build_structure_spa(structures, dev); 361 362 /* 363 * build Memory Device to System Physical Address Range Mapping 364 * Structure. 365 */ 366 nvdimm_build_structure_memdev(structures, dev); 367 368 /* build NVDIMM Control Region Structure. */ 369 nvdimm_build_structure_dcr(structures, dev); 370 } 371 g_slist_free(device_list); 372 373 return structures; 374 } 375 376 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) 377 { 378 qemu_mutex_init(&fit_buf->lock); 379 fit_buf->fit = g_array_new(false, true /* clear */, 1); 380 } 381 382 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf) 383 { 384 qemu_mutex_lock(&fit_buf->lock); 385 g_array_free(fit_buf->fit, true); 386 fit_buf->fit = nvdimm_build_device_structure(); 387 fit_buf->dirty = true; 388 qemu_mutex_unlock(&fit_buf->lock); 389 } 390 391 void nvdimm_acpi_hotplug(AcpiNVDIMMState *state) 392 { 393 nvdimm_build_fit_buffer(&state->fit_buf); 394 } 395 396 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets, 397 GArray *table_data, BIOSLinker *linker) 398 { 399 NvdimmFitBuffer *fit_buf = &state->fit_buf; 400 unsigned int header; 401 402 qemu_mutex_lock(&fit_buf->lock); 403 404 /* NVDIMM device is not plugged? */ 405 if (!fit_buf->fit->len) { 406 goto exit; 407 } 408 409 acpi_add_table(table_offsets, table_data); 410 411 /* NFIT header. */ 412 header = table_data->len; 413 acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); 414 /* NVDIMM device structures. */ 415 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); 416 417 build_header(linker, table_data, 418 (void *)(table_data->data + header), "NFIT", 419 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL); 420 421 exit: 422 qemu_mutex_unlock(&fit_buf->lock); 423 } 424 425 struct NvdimmDsmIn { 426 uint32_t handle; 427 uint32_t revision; 428 uint32_t function; 429 /* the remaining size in the page is used by arg3. */ 430 union { 431 uint8_t arg3[4084]; 432 }; 433 } QEMU_PACKED; 434 typedef struct NvdimmDsmIn NvdimmDsmIn; 435 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096); 436 437 struct NvdimmDsmOut { 438 /* the size of buffer filled by QEMU. */ 439 uint32_t len; 440 uint8_t data[4092]; 441 } QEMU_PACKED; 442 typedef struct NvdimmDsmOut NvdimmDsmOut; 443 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096); 444 445 struct NvdimmDsmFunc0Out { 446 /* the size of buffer filled by QEMU. */ 447 uint32_t len; 448 uint32_t supported_func; 449 } QEMU_PACKED; 450 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; 451 452 struct NvdimmDsmFuncNoPayloadOut { 453 /* the size of buffer filled by QEMU. */ 454 uint32_t len; 455 uint32_t func_ret_status; 456 } QEMU_PACKED; 457 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; 458 459 struct NvdimmFuncGetLabelSizeOut { 460 /* the size of buffer filled by QEMU. */ 461 uint32_t len; 462 uint32_t func_ret_status; /* return status code. */ 463 uint32_t label_size; /* the size of label data area. */ 464 /* 465 * Maximum size of the namespace label data length supported by 466 * the platform in Get/Set Namespace Label Data functions. 467 */ 468 uint32_t max_xfer; 469 } QEMU_PACKED; 470 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; 471 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096); 472 473 struct NvdimmFuncGetLabelDataIn { 474 uint32_t offset; /* the offset in the namespace label data area. */ 475 uint32_t length; /* the size of data is to be read via the function. */ 476 } QEMU_PACKED; 477 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; 478 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + 479 offsetof(NvdimmDsmIn, arg3) > 4096); 480 481 struct NvdimmFuncGetLabelDataOut { 482 /* the size of buffer filled by QEMU. */ 483 uint32_t len; 484 uint32_t func_ret_status; /* return status code. */ 485 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */ 486 } QEMU_PACKED; 487 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; 488 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096); 489 490 struct NvdimmFuncSetLabelDataIn { 491 uint32_t offset; /* the offset in the namespace label data area. */ 492 uint32_t length; /* the size of data is to be written via the function. */ 493 uint8_t in_buf[0]; /* the data written to label data area. */ 494 } QEMU_PACKED; 495 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; 496 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + 497 offsetof(NvdimmDsmIn, arg3) > 4096); 498 499 static void 500 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) 501 { 502 NvdimmDsmFunc0Out func0 = { 503 .len = cpu_to_le32(sizeof(func0)), 504 .supported_func = cpu_to_le32(supported_func), 505 }; 506 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); 507 } 508 509 static void 510 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) 511 { 512 NvdimmDsmFuncNoPayloadOut out = { 513 .len = cpu_to_le32(sizeof(out)), 514 .func_ret_status = cpu_to_le32(func_ret_status), 515 }; 516 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); 517 } 518 519 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 520 { 521 /* 522 * function 0 is called to inquire which functions are supported by 523 * OSPM 524 */ 525 if (!in->function) { 526 nvdimm_dsm_function0(0 /* No function supported other than 527 function 0 */, dsm_mem_addr); 528 return; 529 } 530 531 /* No function except function 0 is supported yet. */ 532 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 533 } 534 535 /* 536 * the max transfer size is the max size transferred by both a 537 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' 538 * function. 539 */ 540 static uint32_t nvdimm_get_max_xfer_label_size(void) 541 { 542 uint32_t max_get_size, max_set_size, dsm_memory_size = 4096; 543 544 /* 545 * the max data ACPI can read one time which is transferred by 546 * the response of 'Get Namespace Label Data' function. 547 */ 548 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); 549 550 /* 551 * the max data ACPI can write one time which is transferred by 552 * 'Set Namespace Label Data' function. 553 */ 554 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - 555 sizeof(NvdimmFuncSetLabelDataIn); 556 557 return MIN(max_get_size, max_set_size); 558 } 559 560 /* 561 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). 562 * 563 * It gets the size of Namespace Label data area and the max data size 564 * that Get/Set Namespace Label Data functions can transfer. 565 */ 566 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) 567 { 568 NvdimmFuncGetLabelSizeOut label_size_out = { 569 .len = cpu_to_le32(sizeof(label_size_out)), 570 }; 571 uint32_t label_size, mxfer; 572 573 label_size = nvdimm->label_size; 574 mxfer = nvdimm_get_max_xfer_label_size(); 575 576 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer); 577 578 label_size_out.func_ret_status = cpu_to_le32(0 /* Success */); 579 label_size_out.label_size = cpu_to_le32(label_size); 580 label_size_out.max_xfer = cpu_to_le32(mxfer); 581 582 cpu_physical_memory_write(dsm_mem_addr, &label_size_out, 583 sizeof(label_size_out)); 584 } 585 586 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, 587 uint32_t offset, uint32_t length) 588 { 589 uint32_t ret = 3 /* Invalid Input Parameters */; 590 591 if (offset + length < offset) { 592 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset, 593 length); 594 return ret; 595 } 596 597 if (nvdimm->label_size < offset + length) { 598 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n", 599 offset + length, nvdimm->label_size); 600 return ret; 601 } 602 603 if (length > nvdimm_get_max_xfer_label_size()) { 604 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n", 605 length, nvdimm_get_max_xfer_label_size()); 606 return ret; 607 } 608 609 return 0 /* Success */; 610 } 611 612 /* 613 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). 614 */ 615 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 616 hwaddr dsm_mem_addr) 617 { 618 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 619 NvdimmFuncGetLabelDataIn *get_label_data; 620 NvdimmFuncGetLabelDataOut *get_label_data_out; 621 uint32_t status; 622 int size; 623 624 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; 625 le32_to_cpus(&get_label_data->offset); 626 le32_to_cpus(&get_label_data->length); 627 628 nvdimm_debug("Read Label Data: offset %#x length %#x.\n", 629 get_label_data->offset, get_label_data->length); 630 631 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, 632 get_label_data->length); 633 if (status != 0 /* Success */) { 634 nvdimm_dsm_no_payload(status, dsm_mem_addr); 635 return; 636 } 637 638 size = sizeof(*get_label_data_out) + get_label_data->length; 639 assert(size <= 4096); 640 get_label_data_out = g_malloc(size); 641 642 get_label_data_out->len = cpu_to_le32(size); 643 get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */); 644 nvc->read_label_data(nvdimm, get_label_data_out->out_buf, 645 get_label_data->length, get_label_data->offset); 646 647 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); 648 g_free(get_label_data_out); 649 } 650 651 /* 652 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). 653 */ 654 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 655 hwaddr dsm_mem_addr) 656 { 657 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 658 NvdimmFuncSetLabelDataIn *set_label_data; 659 uint32_t status; 660 661 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; 662 663 le32_to_cpus(&set_label_data->offset); 664 le32_to_cpus(&set_label_data->length); 665 666 nvdimm_debug("Write Label Data: offset %#x length %#x.\n", 667 set_label_data->offset, set_label_data->length); 668 669 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, 670 set_label_data->length); 671 if (status != 0 /* Success */) { 672 nvdimm_dsm_no_payload(status, dsm_mem_addr); 673 return; 674 } 675 676 assert(sizeof(*in) + sizeof(*set_label_data) + set_label_data->length <= 677 4096); 678 679 nvc->write_label_data(nvdimm, set_label_data->in_buf, 680 set_label_data->length, set_label_data->offset); 681 nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr); 682 } 683 684 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 685 { 686 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); 687 688 /* See the comments in nvdimm_dsm_root(). */ 689 if (!in->function) { 690 uint32_t supported_func = 0; 691 692 if (nvdimm && nvdimm->label_size) { 693 supported_func |= 0x1 /* Bit 0 indicates whether there is 694 support for any functions other 695 than function 0. */ | 696 1 << 4 /* Get Namespace Label Size */ | 697 1 << 5 /* Get Namespace Label Data */ | 698 1 << 6 /* Set Namespace Label Data */; 699 } 700 nvdimm_dsm_function0(supported_func, dsm_mem_addr); 701 return; 702 } 703 704 if (!nvdimm) { 705 nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */, 706 dsm_mem_addr); 707 return; 708 } 709 710 /* Encode DSM function according to DSM Spec Rev1. */ 711 switch (in->function) { 712 case 4 /* Get Namespace Label Size */: 713 if (nvdimm->label_size) { 714 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); 715 return; 716 } 717 break; 718 case 5 /* Get Namespace Label Data */: 719 if (nvdimm->label_size) { 720 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); 721 return; 722 } 723 break; 724 case 0x6 /* Set Namespace Label Data */: 725 if (nvdimm->label_size) { 726 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); 727 return; 728 } 729 break; 730 } 731 732 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 733 } 734 735 static uint64_t 736 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) 737 { 738 nvdimm_debug("BUG: we never read _DSM IO Port.\n"); 739 return 0; 740 } 741 742 static void 743 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 744 { 745 NvdimmDsmIn *in; 746 hwaddr dsm_mem_addr = val; 747 748 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr); 749 750 /* 751 * The DSM memory is mapped to guest address space so an evil guest 752 * can change its content while we are doing DSM emulation. Avoid 753 * this by copying DSM memory to QEMU local memory. 754 */ 755 in = g_new(NvdimmDsmIn, 1); 756 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); 757 758 le32_to_cpus(&in->revision); 759 le32_to_cpus(&in->function); 760 le32_to_cpus(&in->handle); 761 762 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision, 763 in->handle, in->function); 764 765 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { 766 nvdimm_debug("Revision %#x is not supported, expect %#x.\n", 767 in->revision, 0x1); 768 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 769 goto exit; 770 } 771 772 /* Handle 0 is reserved for NVDIMM Root Device. */ 773 if (!in->handle) { 774 nvdimm_dsm_root(in, dsm_mem_addr); 775 goto exit; 776 } 777 778 nvdimm_dsm_device(in, dsm_mem_addr); 779 780 exit: 781 g_free(in); 782 } 783 784 static const MemoryRegionOps nvdimm_dsm_ops = { 785 .read = nvdimm_dsm_read, 786 .write = nvdimm_dsm_write, 787 .endianness = DEVICE_LITTLE_ENDIAN, 788 .valid = { 789 .min_access_size = 4, 790 .max_access_size = 4, 791 }, 792 }; 793 794 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io, 795 FWCfgState *fw_cfg, Object *owner) 796 { 797 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, 798 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN); 799 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr); 800 801 state->dsm_mem = g_array_new(false, true /* clear */, 1); 802 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); 803 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, 804 state->dsm_mem->len); 805 806 nvdimm_init_fit_buffer(&state->fit_buf); 807 } 808 809 #define NVDIMM_COMMON_DSM "NCAL" 810 #define NVDIMM_ACPI_MEM_ADDR "MEMA" 811 812 #define NVDIMM_DSM_MEMORY "NRAM" 813 #define NVDIMM_DSM_IOPORT "NPIO" 814 815 #define NVDIMM_DSM_NOTIFY "NTFI" 816 #define NVDIMM_DSM_HANDLE "HDLE" 817 #define NVDIMM_DSM_REVISION "REVS" 818 #define NVDIMM_DSM_FUNCTION "FUNC" 819 #define NVDIMM_DSM_ARG3 "FARG" 820 821 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" 822 #define NVDIMM_DSM_OUT_BUF "ODAT" 823 824 static void nvdimm_build_common_dsm(Aml *dev) 825 { 826 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem; 827 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; 828 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; 829 uint8_t byte_list[1]; 830 831 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); 832 uuid = aml_arg(0); 833 function = aml_arg(2); 834 handle = aml_arg(4); 835 dsm_mem = aml_local(6); 836 dsm_out_buf = aml_local(7); 837 838 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); 839 840 /* map DSM memory and IO into ACPI namespace. */ 841 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO, 842 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN)); 843 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, 844 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); 845 846 /* 847 * DSM notifier: 848 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to 849 * emulate the access. 850 * 851 * It is the IO port so that accessing them will cause VM-exit, the 852 * control will be transferred to QEMU. 853 */ 854 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, 855 AML_PRESERVE); 856 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, 857 sizeof(uint32_t) * BITS_PER_BYTE)); 858 aml_append(method, field); 859 860 /* 861 * DSM input: 862 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call 863 * happens on NVDIMM Root Device. 864 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. 865 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. 866 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package 867 * containing function-specific arguments. 868 * 869 * They are RAM mapping on host so that these accesses never cause 870 * VM-EXIT. 871 */ 872 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 873 AML_PRESERVE); 874 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, 875 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); 876 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, 877 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); 878 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, 879 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); 880 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, 881 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); 882 aml_append(method, field); 883 884 /* 885 * DSM output: 886 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. 887 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. 888 * 889 * Since the page is reused by both input and out, the input data 890 * will be lost after storing new result into ODAT so we should fetch 891 * all the input data before writing the result. 892 */ 893 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 894 AML_PRESERVE); 895 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, 896 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); 897 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, 898 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); 899 aml_append(method, field); 900 901 /* 902 * do not support any method if DSM memory address has not been 903 * patched. 904 */ 905 unpatched = aml_equal(dsm_mem, aml_int(0x0)); 906 907 expected_uuid = aml_local(0); 908 909 ifctx = aml_if(aml_equal(handle, aml_int(0x0))); 910 aml_append(ifctx, aml_store( 911 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") 912 /* UUID for NVDIMM Root Device */, expected_uuid)); 913 aml_append(method, ifctx); 914 elsectx = aml_else(); 915 aml_append(elsectx, aml_store( 916 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") 917 /* UUID for NVDIMM Devices */, expected_uuid)); 918 aml_append(method, elsectx); 919 920 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); 921 922 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); 923 924 /* 925 * function 0 is called to inquire what functions are supported by 926 * OSPM 927 */ 928 ifctx = aml_if(aml_equal(function, aml_int(0))); 929 byte_list[0] = 0 /* No function Supported */; 930 aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); 931 aml_append(unsupport, ifctx); 932 933 /* No function is supported yet. */ 934 byte_list[0] = 1 /* Not Supported */; 935 aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); 936 aml_append(method, unsupport); 937 938 /* 939 * The HDLE indicates the DSM function is issued from which device, 940 * it reserves 0 for root device and is the handle for NVDIMM devices. 941 * See the comments in nvdimm_slot_to_handle(). 942 */ 943 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); 944 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); 945 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION))); 946 947 /* 948 * The fourth parameter (Arg3) of _DSM is a package which contains 949 * a buffer, the layout of the buffer is specified by UUID (Arg0), 950 * Revision ID (Arg1) and Function Index (Arg2) which are documented 951 * in the DSM Spec. 952 */ 953 pckg = aml_arg(3); 954 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), 955 aml_int(4 /* Package */)) /* It is a Package? */, 956 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, 957 NULL)); 958 959 pckg_index = aml_local(2); 960 pckg_buf = aml_local(3); 961 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); 962 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); 963 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); 964 aml_append(method, ifctx); 965 966 /* 967 * tell QEMU about the real address of DSM memory, then QEMU 968 * gets the control and fills the result in DSM memory. 969 */ 970 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); 971 972 dsm_out_buf_size = aml_local(1); 973 /* RLEN is not included in the payload returned to guest. */ 974 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), 975 aml_int(4), dsm_out_buf_size)); 976 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), 977 dsm_out_buf_size)); 978 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), 979 aml_int(0), dsm_out_buf_size, "OBUF")); 980 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"), 981 dsm_out_buf)); 982 aml_append(method, aml_return(dsm_out_buf)); 983 aml_append(dev, method); 984 } 985 986 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) 987 { 988 Aml *method; 989 990 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 991 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), 992 aml_arg(1), aml_arg(2), aml_arg(3), 993 aml_int(handle)))); 994 aml_append(dev, method); 995 } 996 997 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) 998 { 999 uint32_t slot; 1000 1001 for (slot = 0; slot < ram_slots; slot++) { 1002 uint32_t handle = nvdimm_slot_to_handle(slot); 1003 Aml *nvdimm_dev; 1004 1005 nvdimm_dev = aml_device("NV%02X", slot); 1006 1007 /* 1008 * ACPI 6.0: 9.20 NVDIMM Devices: 1009 * 1010 * _ADR object that is used to supply OSPM with unique address 1011 * of the NVDIMM device. This is done by returning the NFIT Device 1012 * handle that is used to identify the associated entries in ACPI 1013 * table NFIT or _FIT. 1014 */ 1015 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); 1016 1017 nvdimm_build_device_dsm(nvdimm_dev, handle); 1018 aml_append(root_dev, nvdimm_dev); 1019 } 1020 } 1021 1022 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, 1023 BIOSLinker *linker, GArray *dsm_dma_arrea, 1024 uint32_t ram_slots) 1025 { 1026 Aml *ssdt, *sb_scope, *dev; 1027 int mem_addr_offset, nvdimm_ssdt; 1028 1029 acpi_add_table(table_offsets, table_data); 1030 1031 ssdt = init_aml_allocator(); 1032 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); 1033 1034 sb_scope = aml_scope("\\_SB"); 1035 1036 dev = aml_device("NVDR"); 1037 1038 /* 1039 * ACPI 6.0: 9.20 NVDIMM Devices: 1040 * 1041 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root 1042 * NVDIMM interface device. Platform firmware is required to contain one 1043 * such device in _SB scope if NVDIMMs support is exposed by platform to 1044 * OSPM. 1045 * For each NVDIMM present or intended to be supported by platform, 1046 * platform firmware also exposes an ACPI Namespace Device under the 1047 * root device. 1048 */ 1049 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); 1050 1051 nvdimm_build_common_dsm(dev); 1052 1053 /* 0 is reserved for root device. */ 1054 nvdimm_build_device_dsm(dev, 0); 1055 1056 nvdimm_build_nvdimm_devices(dev, ram_slots); 1057 1058 aml_append(sb_scope, dev); 1059 aml_append(ssdt, sb_scope); 1060 1061 nvdimm_ssdt = table_data->len; 1062 1063 /* copy AML table into ACPI tables blob and patch header there */ 1064 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); 1065 mem_addr_offset = build_append_named_dword(table_data, 1066 NVDIMM_ACPI_MEM_ADDR); 1067 1068 bios_linker_loader_alloc(linker, 1069 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea, 1070 sizeof(NvdimmDsmIn), false /* high memory */); 1071 bios_linker_loader_add_pointer(linker, 1072 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), 1073 NVDIMM_DSM_MEM_FILE, 0); 1074 build_header(linker, table_data, 1075 (void *)(table_data->data + nvdimm_ssdt), 1076 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM"); 1077 free_aml_allocator(); 1078 } 1079 1080 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, 1081 BIOSLinker *linker, AcpiNVDIMMState *state, 1082 uint32_t ram_slots) 1083 { 1084 nvdimm_build_nfit(state, table_offsets, table_data, linker); 1085 1086 /* 1087 * NVDIMM device is allowed to be plugged only if there is available 1088 * slot. 1089 */ 1090 if (ram_slots) { 1091 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem, 1092 ram_slots); 1093 } 1094 } 1095