xref: /openbmc/qemu/hw/acpi/nvdimm.c (revision 6ab425d8)
1 /*
2  * NVDIMM ACPI Implementation
3  *
4  * Copyright(C) 2015 Intel Corporation.
5  *
6  * Author:
7  *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
8  *
9  * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10  * and the DSM specification can be found at:
11  *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
12  *
13  * Currently, it only supports PMEM Virtualization.
14  *
15  * This library is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU Lesser General Public
17  * License as published by the Free Software Foundation; either
18  * version 2 of the License, or (at your option) any later version.
19  *
20  * This library is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  * Lesser General Public License for more details.
24  *
25  * You should have received a copy of the GNU Lesser General Public
26  * License along with this library; if not, see <http://www.gnu.org/licenses/>
27  */
28 
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
35 #include "qemu/nvdimm-utils.h"
36 
37 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7)             \
38    { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
39      (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff,          \
40      (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
41 
42 /*
43  * define Byte Addressable Persistent Memory (PM) Region according to
44  * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
45  */
46 static const uint8_t nvdimm_nfit_spa_uuid[] =
47       NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
48                      0x18, 0xb7, 0x8c, 0xdb);
49 
50 /*
51  * NVDIMM Firmware Interface Table
52  * @signature: "NFIT"
53  *
54  * It provides information that allows OSPM to enumerate NVDIMM present in
55  * the platform and associate system physical address ranges created by the
56  * NVDIMMs.
57  *
58  * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
59  */
60 struct NvdimmNfitHeader {
61     ACPI_TABLE_HEADER_DEF
62     uint32_t reserved;
63 } QEMU_PACKED;
64 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
65 
66 /*
67  * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
68  * Interface Table (NFIT).
69  */
70 
71 /*
72  * System Physical Address Range Structure
73  *
74  * It describes the system physical address ranges occupied by NVDIMMs and
75  * the types of the regions.
76  */
77 struct NvdimmNfitSpa {
78     uint16_t type;
79     uint16_t length;
80     uint16_t spa_index;
81     uint16_t flags;
82     uint32_t reserved;
83     uint32_t proximity_domain;
84     uint8_t type_guid[16];
85     uint64_t spa_base;
86     uint64_t spa_length;
87     uint64_t mem_attr;
88 } QEMU_PACKED;
89 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
90 
91 /*
92  * Memory Device to System Physical Address Range Mapping Structure
93  *
94  * It enables identifying each NVDIMM region and the corresponding SPA
95  * describing the memory interleave
96  */
97 struct NvdimmNfitMemDev {
98     uint16_t type;
99     uint16_t length;
100     uint32_t nfit_handle;
101     uint16_t phys_id;
102     uint16_t region_id;
103     uint16_t spa_index;
104     uint16_t dcr_index;
105     uint64_t region_len;
106     uint64_t region_offset;
107     uint64_t region_dpa;
108     uint16_t interleave_index;
109     uint16_t interleave_ways;
110     uint16_t flags;
111     uint16_t reserved;
112 } QEMU_PACKED;
113 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
114 
115 #define ACPI_NFIT_MEM_NOT_ARMED     (1 << 3)
116 
117 /*
118  * NVDIMM Control Region Structure
119  *
120  * It describes the NVDIMM and if applicable, Block Control Window.
121  */
122 struct NvdimmNfitControlRegion {
123     uint16_t type;
124     uint16_t length;
125     uint16_t dcr_index;
126     uint16_t vendor_id;
127     uint16_t device_id;
128     uint16_t revision_id;
129     uint16_t sub_vendor_id;
130     uint16_t sub_device_id;
131     uint16_t sub_revision_id;
132     uint8_t reserved[6];
133     uint32_t serial_number;
134     uint16_t fic;
135     uint16_t num_bcw;
136     uint64_t bcw_size;
137     uint64_t cmd_offset;
138     uint64_t cmd_size;
139     uint64_t status_offset;
140     uint64_t status_size;
141     uint16_t flags;
142     uint8_t reserved2[6];
143 } QEMU_PACKED;
144 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
145 
146 /*
147  * NVDIMM Platform Capabilities Structure
148  *
149  * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
150  */
151 struct NvdimmNfitPlatformCaps {
152     uint16_t type;
153     uint16_t length;
154     uint8_t highest_cap;
155     uint8_t reserved[3];
156     uint32_t capabilities;
157     uint8_t reserved2[4];
158 } QEMU_PACKED;
159 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
160 
161 /*
162  * Module serial number is a unique number for each device. We use the
163  * slot id of NVDIMM device to generate this number so that each device
164  * associates with a different number.
165  *
166  * 0x123456 is a magic number we arbitrarily chose.
167  */
168 static uint32_t nvdimm_slot_to_sn(int slot)
169 {
170     return 0x123456 + slot;
171 }
172 
173 /*
174  * handle is used to uniquely associate nfit_memdev structure with NVDIMM
175  * ACPI device - nfit_memdev.nfit_handle matches with the value returned
176  * by ACPI device _ADR method.
177  *
178  * We generate the handle with the slot id of NVDIMM device and reserve
179  * 0 for NVDIMM root device.
180  */
181 static uint32_t nvdimm_slot_to_handle(int slot)
182 {
183     return slot + 1;
184 }
185 
186 /*
187  * index uniquely identifies the structure, 0 is reserved which indicates
188  * that the structure is not valid or the associated structure is not
189  * present.
190  *
191  * Each NVDIMM device needs two indexes, one for nfit_spa and another for
192  * nfit_dc which are generated by the slot id of NVDIMM device.
193  */
194 static uint16_t nvdimm_slot_to_spa_index(int slot)
195 {
196     return (slot + 1) << 1;
197 }
198 
199 /* See the comments of nvdimm_slot_to_spa_index(). */
200 static uint32_t nvdimm_slot_to_dcr_index(int slot)
201 {
202     return nvdimm_slot_to_spa_index(slot) + 1;
203 }
204 
205 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
206 {
207     NVDIMMDevice *nvdimm = NULL;
208     GSList *list, *device_list = nvdimm_get_device_list();
209 
210     for (list = device_list; list; list = list->next) {
211         NVDIMMDevice *nvd = list->data;
212         int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
213                                            NULL);
214 
215         if (nvdimm_slot_to_handle(slot) == handle) {
216             nvdimm = nvd;
217             break;
218         }
219     }
220 
221     g_slist_free(device_list);
222     return nvdimm;
223 }
224 
225 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
226 static void
227 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
228 {
229     NvdimmNfitSpa *nfit_spa;
230     uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
231                                              NULL);
232     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
233                                              NULL);
234     uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
235                                              NULL);
236     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
237                                        NULL);
238 
239     nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
240 
241     nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
242                                       Structure */);
243     nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
244     nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
245 
246     /*
247      * Control region is strict as all the device info, such as SN, index,
248      * is associated with slot id.
249      */
250     nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
251                                        management during hot add/online
252                                        operation */ |
253                                   2 /* Data in Proximity Domain field is
254                                        valid*/);
255 
256     /* NUMA node. */
257     nfit_spa->proximity_domain = cpu_to_le32(node);
258     /* the region reported as PMEM. */
259     memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
260            sizeof(nvdimm_nfit_spa_uuid));
261 
262     nfit_spa->spa_base = cpu_to_le64(addr);
263     nfit_spa->spa_length = cpu_to_le64(size);
264 
265     /* It is the PMEM and can be cached as writeback. */
266     nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
267                                      0x8000ULL /* EFI_MEMORY_NV */);
268 }
269 
270 /*
271  * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
272  * Structure
273  */
274 static void
275 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
276 {
277     NvdimmNfitMemDev *nfit_memdev;
278     NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
279     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
280                                              NULL);
281     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
282                                             NULL);
283     uint32_t handle = nvdimm_slot_to_handle(slot);
284 
285     nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
286 
287     nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
288                                          Range Map Structure*/);
289     nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
290     nfit_memdev->nfit_handle = cpu_to_le32(handle);
291 
292     /*
293      * associate memory device with System Physical Address Range
294      * Structure.
295      */
296     nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
297     /* associate memory device with Control Region Structure. */
298     nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
299 
300     /* The memory region on the device. */
301     nfit_memdev->region_len = cpu_to_le64(size);
302     /* The device address starts from 0. */
303     nfit_memdev->region_dpa = cpu_to_le64(0);
304 
305     /* Only one interleave for PMEM. */
306     nfit_memdev->interleave_ways = cpu_to_le16(1);
307 
308     if (nvdimm->unarmed) {
309         nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
310     }
311 }
312 
313 /*
314  * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
315  */
316 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
317 {
318     NvdimmNfitControlRegion *nfit_dcr;
319     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
320                                        NULL);
321     uint32_t sn = nvdimm_slot_to_sn(slot);
322 
323     nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
324 
325     nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
326     nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
327     nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
328 
329     /* vendor: Intel. */
330     nfit_dcr->vendor_id = cpu_to_le16(0x8086);
331     nfit_dcr->device_id = cpu_to_le16(1);
332 
333     /* The _DSM method is following Intel's DSM specification. */
334     nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
335                                              in ACPI 6.0 is 1. */);
336     nfit_dcr->serial_number = cpu_to_le32(sn);
337     nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
338                                          Byte addressable, no energy backed.
339                                          See ACPI 6.2, sect 5.2.25.6 and
340                                          JEDEC Annex L Release 3. */);
341 }
342 
343 /*
344  * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
345  */
346 static void
347 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
348 {
349     NvdimmNfitPlatformCaps *nfit_caps;
350 
351     nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
352 
353     nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
354     nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
355     nfit_caps->highest_cap = 31 - clz32(capabilities);
356     nfit_caps->capabilities = cpu_to_le32(capabilities);
357 }
358 
359 static GArray *nvdimm_build_device_structure(NVDIMMState *state)
360 {
361     GSList *device_list = nvdimm_get_device_list();
362     GArray *structures = g_array_new(false, true /* clear */, 1);
363 
364     for (; device_list; device_list = device_list->next) {
365         DeviceState *dev = device_list->data;
366 
367         /* build System Physical Address Range Structure. */
368         nvdimm_build_structure_spa(structures, dev);
369 
370         /*
371          * build Memory Device to System Physical Address Range Mapping
372          * Structure.
373          */
374         nvdimm_build_structure_memdev(structures, dev);
375 
376         /* build NVDIMM Control Region Structure. */
377         nvdimm_build_structure_dcr(structures, dev);
378     }
379     g_slist_free(device_list);
380 
381     if (state->persistence) {
382         nvdimm_build_structure_caps(structures, state->persistence);
383     }
384 
385     return structures;
386 }
387 
388 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
389 {
390     fit_buf->fit = g_array_new(false, true /* clear */, 1);
391 }
392 
393 static void nvdimm_build_fit_buffer(NVDIMMState *state)
394 {
395     NvdimmFitBuffer *fit_buf = &state->fit_buf;
396 
397     g_array_free(fit_buf->fit, true);
398     fit_buf->fit = nvdimm_build_device_structure(state);
399     fit_buf->dirty = true;
400 }
401 
402 void nvdimm_plug(NVDIMMState *state)
403 {
404     nvdimm_build_fit_buffer(state);
405 }
406 
407 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
408                               GArray *table_data, BIOSLinker *linker)
409 {
410     NvdimmFitBuffer *fit_buf = &state->fit_buf;
411     unsigned int header;
412 
413     acpi_add_table(table_offsets, table_data);
414 
415     /* NFIT header. */
416     header = table_data->len;
417     acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
418     /* NVDIMM device structures. */
419     g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
420 
421     build_header(linker, table_data,
422                  (void *)(table_data->data + header), "NFIT",
423                  sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
424 }
425 
426 #define NVDIMM_DSM_MEMORY_SIZE      4096
427 
428 struct NvdimmDsmIn {
429     uint32_t handle;
430     uint32_t revision;
431     uint32_t function;
432     /* the remaining size in the page is used by arg3. */
433     union {
434         uint8_t arg3[4084];
435     };
436 } QEMU_PACKED;
437 typedef struct NvdimmDsmIn NvdimmDsmIn;
438 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
439 
440 struct NvdimmDsmOut {
441     /* the size of buffer filled by QEMU. */
442     uint32_t len;
443     uint8_t data[4092];
444 } QEMU_PACKED;
445 typedef struct NvdimmDsmOut NvdimmDsmOut;
446 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
447 
448 struct NvdimmDsmFunc0Out {
449     /* the size of buffer filled by QEMU. */
450      uint32_t len;
451      uint32_t supported_func;
452 } QEMU_PACKED;
453 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
454 
455 struct NvdimmDsmFuncNoPayloadOut {
456     /* the size of buffer filled by QEMU. */
457      uint32_t len;
458      uint32_t func_ret_status;
459 } QEMU_PACKED;
460 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
461 
462 struct NvdimmFuncGetLabelSizeOut {
463     /* the size of buffer filled by QEMU. */
464     uint32_t len;
465     uint32_t func_ret_status; /* return status code. */
466     uint32_t label_size; /* the size of label data area. */
467     /*
468      * Maximum size of the namespace label data length supported by
469      * the platform in Get/Set Namespace Label Data functions.
470      */
471     uint32_t max_xfer;
472 } QEMU_PACKED;
473 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
474 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
475 
476 struct NvdimmFuncGetLabelDataIn {
477     uint32_t offset; /* the offset in the namespace label data area. */
478     uint32_t length; /* the size of data is to be read via the function. */
479 } QEMU_PACKED;
480 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
481 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
482                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
483 
484 struct NvdimmFuncGetLabelDataOut {
485     /* the size of buffer filled by QEMU. */
486     uint32_t len;
487     uint32_t func_ret_status; /* return status code. */
488     uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
489 } QEMU_PACKED;
490 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
491 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
492 
493 struct NvdimmFuncSetLabelDataIn {
494     uint32_t offset; /* the offset in the namespace label data area. */
495     uint32_t length; /* the size of data is to be written via the function. */
496     uint8_t in_buf[0]; /* the data written to label data area. */
497 } QEMU_PACKED;
498 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
499 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
500                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
501 
502 struct NvdimmFuncReadFITIn {
503     uint32_t offset; /* the offset into FIT buffer. */
504 } QEMU_PACKED;
505 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
506 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
507                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
508 
509 struct NvdimmFuncReadFITOut {
510     /* the size of buffer filled by QEMU. */
511     uint32_t len;
512     uint32_t func_ret_status; /* return status code. */
513     uint8_t fit[0]; /* the FIT data. */
514 } QEMU_PACKED;
515 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
516 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
517 
518 static void
519 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
520 {
521     NvdimmDsmFunc0Out func0 = {
522         .len = cpu_to_le32(sizeof(func0)),
523         .supported_func = cpu_to_le32(supported_func),
524     };
525     cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
526 }
527 
528 static void
529 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
530 {
531     NvdimmDsmFuncNoPayloadOut out = {
532         .len = cpu_to_le32(sizeof(out)),
533         .func_ret_status = cpu_to_le32(func_ret_status),
534     };
535     cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
536 }
537 
538 #define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
539 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
540 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
541 #define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
542 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
543 
544 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
545 
546 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
547 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
548                                      hwaddr dsm_mem_addr)
549 {
550     NvdimmFitBuffer *fit_buf = &state->fit_buf;
551     NvdimmFuncReadFITIn *read_fit;
552     NvdimmFuncReadFITOut *read_fit_out;
553     GArray *fit;
554     uint32_t read_len = 0, func_ret_status;
555     int size;
556 
557     read_fit = (NvdimmFuncReadFITIn *)in->arg3;
558     read_fit->offset = le32_to_cpu(read_fit->offset);
559 
560     fit = fit_buf->fit;
561 
562     nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
563                  read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
564 
565     if (read_fit->offset > fit->len) {
566         func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
567         goto exit;
568     }
569 
570     /* It is the first time to read FIT. */
571     if (!read_fit->offset) {
572         fit_buf->dirty = false;
573     } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
574         func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
575         goto exit;
576     }
577 
578     func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
579     read_len = MIN(fit->len - read_fit->offset,
580                    NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
581 
582 exit:
583     size = sizeof(NvdimmFuncReadFITOut) + read_len;
584     read_fit_out = g_malloc(size);
585 
586     read_fit_out->len = cpu_to_le32(size);
587     read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
588     memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
589 
590     cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
591 
592     g_free(read_fit_out);
593 }
594 
595 static void
596 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
597                                        NvdimmDsmIn *in, hwaddr dsm_mem_addr)
598 {
599     switch (in->function) {
600     case 0x0:
601         nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
602         return;
603     case 0x1 /* Read FIT */:
604         nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
605         return;
606     }
607 
608     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
609 }
610 
611 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
612 {
613     /*
614      * function 0 is called to inquire which functions are supported by
615      * OSPM
616      */
617     if (!in->function) {
618         nvdimm_dsm_function0(0 /* No function supported other than
619                                   function 0 */, dsm_mem_addr);
620         return;
621     }
622 
623     /* No function except function 0 is supported yet. */
624     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
625 }
626 
627 /*
628  * the max transfer size is the max size transferred by both a
629  * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
630  * function.
631  */
632 static uint32_t nvdimm_get_max_xfer_label_size(void)
633 {
634     uint32_t max_get_size, max_set_size, dsm_memory_size;
635 
636     dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
637 
638     /*
639      * the max data ACPI can read one time which is transferred by
640      * the response of 'Get Namespace Label Data' function.
641      */
642     max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
643 
644     /*
645      * the max data ACPI can write one time which is transferred by
646      * 'Set Namespace Label Data' function.
647      */
648     max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
649                    sizeof(NvdimmFuncSetLabelDataIn);
650 
651     return MIN(max_get_size, max_set_size);
652 }
653 
654 /*
655  * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
656  *
657  * It gets the size of Namespace Label data area and the max data size
658  * that Get/Set Namespace Label Data functions can transfer.
659  */
660 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
661 {
662     NvdimmFuncGetLabelSizeOut label_size_out = {
663         .len = cpu_to_le32(sizeof(label_size_out)),
664     };
665     uint32_t label_size, mxfer;
666 
667     label_size = nvdimm->label_size;
668     mxfer = nvdimm_get_max_xfer_label_size();
669 
670     nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
671 
672     label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
673     label_size_out.label_size = cpu_to_le32(label_size);
674     label_size_out.max_xfer = cpu_to_le32(mxfer);
675 
676     cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
677                               sizeof(label_size_out));
678 }
679 
680 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
681                                            uint32_t offset, uint32_t length)
682 {
683     uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
684 
685     if (offset + length < offset) {
686         nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
687                      length);
688         return ret;
689     }
690 
691     if (nvdimm->label_size < offset + length) {
692         nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
693                      offset + length, nvdimm->label_size);
694         return ret;
695     }
696 
697     if (length > nvdimm_get_max_xfer_label_size()) {
698         nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
699                      length, nvdimm_get_max_xfer_label_size());
700         return ret;
701     }
702 
703     return NVDIMM_DSM_RET_STATUS_SUCCESS;
704 }
705 
706 /*
707  * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
708  */
709 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
710                                       hwaddr dsm_mem_addr)
711 {
712     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
713     NvdimmFuncGetLabelDataIn *get_label_data;
714     NvdimmFuncGetLabelDataOut *get_label_data_out;
715     uint32_t status;
716     int size;
717 
718     get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
719     get_label_data->offset = le32_to_cpu(get_label_data->offset);
720     get_label_data->length = le32_to_cpu(get_label_data->length);
721 
722     nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
723                  get_label_data->offset, get_label_data->length);
724 
725     status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
726                                         get_label_data->length);
727     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
728         nvdimm_dsm_no_payload(status, dsm_mem_addr);
729         return;
730     }
731 
732     size = sizeof(*get_label_data_out) + get_label_data->length;
733     assert(size <= NVDIMM_DSM_MEMORY_SIZE);
734     get_label_data_out = g_malloc(size);
735 
736     get_label_data_out->len = cpu_to_le32(size);
737     get_label_data_out->func_ret_status =
738                             cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
739     nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
740                          get_label_data->length, get_label_data->offset);
741 
742     cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
743     g_free(get_label_data_out);
744 }
745 
746 /*
747  * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
748  */
749 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
750                                       hwaddr dsm_mem_addr)
751 {
752     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
753     NvdimmFuncSetLabelDataIn *set_label_data;
754     uint32_t status;
755 
756     set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
757 
758     set_label_data->offset = le32_to_cpu(set_label_data->offset);
759     set_label_data->length = le32_to_cpu(set_label_data->length);
760 
761     nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
762                  set_label_data->offset, set_label_data->length);
763 
764     status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
765                                         set_label_data->length);
766     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
767         nvdimm_dsm_no_payload(status, dsm_mem_addr);
768         return;
769     }
770 
771     assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
772                     set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
773 
774     nvc->write_label_data(nvdimm, set_label_data->in_buf,
775                           set_label_data->length, set_label_data->offset);
776     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
777 }
778 
779 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
780 {
781     NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
782 
783     /* See the comments in nvdimm_dsm_root(). */
784     if (!in->function) {
785         uint32_t supported_func = 0;
786 
787         if (nvdimm && nvdimm->label_size) {
788             supported_func |= 0x1 /* Bit 0 indicates whether there is
789                                      support for any functions other
790                                      than function 0. */ |
791                               1 << 4 /* Get Namespace Label Size */ |
792                               1 << 5 /* Get Namespace Label Data */ |
793                               1 << 6 /* Set Namespace Label Data */;
794         }
795         nvdimm_dsm_function0(supported_func, dsm_mem_addr);
796         return;
797     }
798 
799     if (!nvdimm) {
800         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
801                               dsm_mem_addr);
802         return;
803     }
804 
805     /* Encode DSM function according to DSM Spec Rev1. */
806     switch (in->function) {
807     case 4 /* Get Namespace Label Size */:
808         if (nvdimm->label_size) {
809             nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
810             return;
811         }
812         break;
813     case 5 /* Get Namespace Label Data */:
814         if (nvdimm->label_size) {
815             nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
816             return;
817         }
818         break;
819     case 0x6 /* Set Namespace Label Data */:
820         if (nvdimm->label_size) {
821             nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
822             return;
823         }
824         break;
825     }
826 
827     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
828 }
829 
830 static uint64_t
831 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
832 {
833     nvdimm_debug("BUG: we never read _DSM IO Port.\n");
834     return 0;
835 }
836 
837 static void
838 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
839 {
840     NVDIMMState *state = opaque;
841     NvdimmDsmIn *in;
842     hwaddr dsm_mem_addr = val;
843 
844     nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
845 
846     /*
847      * The DSM memory is mapped to guest address space so an evil guest
848      * can change its content while we are doing DSM emulation. Avoid
849      * this by copying DSM memory to QEMU local memory.
850      */
851     in = g_new(NvdimmDsmIn, 1);
852     cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
853 
854     in->revision = le32_to_cpu(in->revision);
855     in->function = le32_to_cpu(in->function);
856     in->handle = le32_to_cpu(in->handle);
857 
858     nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
859                  in->handle, in->function);
860 
861     if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
862         nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
863                      in->revision, 0x1);
864         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
865         goto exit;
866     }
867 
868     if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
869         nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
870         goto exit;
871     }
872 
873      /* Handle 0 is reserved for NVDIMM Root Device. */
874     if (!in->handle) {
875         nvdimm_dsm_root(in, dsm_mem_addr);
876         goto exit;
877     }
878 
879     nvdimm_dsm_device(in, dsm_mem_addr);
880 
881 exit:
882     g_free(in);
883 }
884 
885 static const MemoryRegionOps nvdimm_dsm_ops = {
886     .read = nvdimm_dsm_read,
887     .write = nvdimm_dsm_write,
888     .endianness = DEVICE_LITTLE_ENDIAN,
889     .valid = {
890         .min_access_size = 4,
891         .max_access_size = 4,
892     },
893 };
894 
895 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
896 {
897     if (dev->hotplugged) {
898         acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
899     }
900 }
901 
902 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
903                             FWCfgState *fw_cfg, Object *owner)
904 {
905     memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
906                           "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
907     memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
908 
909     state->dsm_mem = g_array_new(false, true /* clear */, 1);
910     acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
911     fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
912                     state->dsm_mem->len);
913 
914     nvdimm_init_fit_buffer(&state->fit_buf);
915 }
916 
917 #define NVDIMM_COMMON_DSM       "NCAL"
918 #define NVDIMM_ACPI_MEM_ADDR    "MEMA"
919 
920 #define NVDIMM_DSM_MEMORY       "NRAM"
921 #define NVDIMM_DSM_IOPORT       "NPIO"
922 
923 #define NVDIMM_DSM_NOTIFY       "NTFI"
924 #define NVDIMM_DSM_HANDLE       "HDLE"
925 #define NVDIMM_DSM_REVISION     "REVS"
926 #define NVDIMM_DSM_FUNCTION     "FUNC"
927 #define NVDIMM_DSM_ARG3         "FARG"
928 
929 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
930 #define NVDIMM_DSM_OUT_BUF      "ODAT"
931 
932 #define NVDIMM_DSM_RFIT_STATUS  "RSTA"
933 
934 #define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
935 
936 static void nvdimm_build_common_dsm(Aml *dev)
937 {
938     Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
939     Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
940     Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
941     uint8_t byte_list[1];
942 
943     method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
944     uuid = aml_arg(0);
945     function = aml_arg(2);
946     handle = aml_arg(4);
947     dsm_mem = aml_local(6);
948     dsm_out_buf = aml_local(7);
949 
950     aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
951 
952     /* map DSM memory and IO into ACPI namespace. */
953     aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO,
954                aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
955     aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
956                AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
957 
958     /*
959      * DSM notifier:
960      * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
961      *                    emulate the access.
962      *
963      * It is the IO port so that accessing them will cause VM-exit, the
964      * control will be transferred to QEMU.
965      */
966     field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
967                       AML_PRESERVE);
968     aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
969                NVDIMM_ACPI_IO_LEN * BITS_PER_BYTE));
970     aml_append(method, field);
971 
972     /*
973      * DSM input:
974      * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
975      *                    happens on NVDIMM Root Device.
976      * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
977      * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
978      * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
979      *                  containing function-specific arguments.
980      *
981      * They are RAM mapping on host so that these accesses never cause
982      * VM-EXIT.
983      */
984     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
985                       AML_PRESERVE);
986     aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
987                sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
988     aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
989                sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
990     aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
991                sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
992     aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
993          (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
994     aml_append(method, field);
995 
996     /*
997      * DSM output:
998      * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
999      * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1000      *
1001      * Since the page is reused by both input and out, the input data
1002      * will be lost after storing new result into ODAT so we should fetch
1003      * all the input data before writing the result.
1004      */
1005     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1006                       AML_PRESERVE);
1007     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1008                sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1009     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1010        (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1011     aml_append(method, field);
1012 
1013     /*
1014      * do not support any method if DSM memory address has not been
1015      * patched.
1016      */
1017     unpatched = aml_equal(dsm_mem, aml_int(0x0));
1018 
1019     expected_uuid = aml_local(0);
1020 
1021     ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1022     aml_append(ifctx, aml_store(
1023                aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1024                /* UUID for NVDIMM Root Device */, expected_uuid));
1025     aml_append(method, ifctx);
1026     elsectx = aml_else();
1027     ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1028     aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1029                /* UUID for QEMU internal use */), expected_uuid));
1030     aml_append(elsectx, ifctx);
1031     elsectx2 = aml_else();
1032     aml_append(elsectx2, aml_store(
1033                aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1034                /* UUID for NVDIMM Devices */, expected_uuid));
1035     aml_append(elsectx, elsectx2);
1036     aml_append(method, elsectx);
1037 
1038     uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1039 
1040     unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1041 
1042     /*
1043      * function 0 is called to inquire what functions are supported by
1044      * OSPM
1045      */
1046     ifctx = aml_if(aml_equal(function, aml_int(0)));
1047     byte_list[0] = 0 /* No function Supported */;
1048     aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1049     aml_append(unsupport, ifctx);
1050 
1051     /* No function is supported yet. */
1052     byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1053     aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1054     aml_append(method, unsupport);
1055 
1056     /*
1057      * The HDLE indicates the DSM function is issued from which device,
1058      * it reserves 0 for root device and is the handle for NVDIMM devices.
1059      * See the comments in nvdimm_slot_to_handle().
1060      */
1061     aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1062     aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1063     aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1064 
1065     /*
1066      * The fourth parameter (Arg3) of _DSM is a package which contains
1067      * a buffer, the layout of the buffer is specified by UUID (Arg0),
1068      * Revision ID (Arg1) and Function Index (Arg2) which are documented
1069      * in the DSM Spec.
1070      */
1071     pckg = aml_arg(3);
1072     ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1073                    aml_int(4 /* Package */)) /* It is a Package? */,
1074                    aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1075                    NULL));
1076 
1077     pckg_index = aml_local(2);
1078     pckg_buf = aml_local(3);
1079     aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1080     aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1081     aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1082     aml_append(method, ifctx);
1083 
1084     /*
1085      * tell QEMU about the real address of DSM memory, then QEMU
1086      * gets the control and fills the result in DSM memory.
1087      */
1088     aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1089 
1090     dsm_out_buf_size = aml_local(1);
1091     /* RLEN is not included in the payload returned to guest. */
1092     aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1093                aml_int(4), dsm_out_buf_size));
1094     aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1095                                  dsm_out_buf_size));
1096     aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1097                aml_int(0), dsm_out_buf_size, "OBUF"));
1098     aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
1099                                        dsm_out_buf));
1100     aml_append(method, aml_return(dsm_out_buf));
1101     aml_append(dev, method);
1102 }
1103 
1104 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1105 {
1106     Aml *method;
1107 
1108     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1109     aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1110                                   aml_arg(1), aml_arg(2), aml_arg(3),
1111                                   aml_int(handle))));
1112     aml_append(dev, method);
1113 }
1114 
1115 static void nvdimm_build_fit(Aml *dev)
1116 {
1117     Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1118     Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1119 
1120     buf = aml_local(0);
1121     buf_size = aml_local(1);
1122     fit = aml_local(2);
1123 
1124     aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1125 
1126     /* build helper function, RFIT. */
1127     method = aml_method("RFIT", 1, AML_SERIALIZED);
1128     aml_append(method, aml_name_decl("OFST", aml_int(0)));
1129 
1130     /* prepare input package. */
1131     pkg = aml_package(1);
1132     aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1133     aml_append(pkg, aml_name("OFST"));
1134 
1135     /* call Read_FIT function. */
1136     call_result = aml_call5(NVDIMM_COMMON_DSM,
1137                             aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1138                             aml_int(1) /* Revision 1 */,
1139                             aml_int(0x1) /* Read FIT */,
1140                             pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1141     aml_append(method, aml_store(call_result, buf));
1142 
1143     /* handle _DSM result. */
1144     aml_append(method, aml_create_dword_field(buf,
1145                aml_int(0) /* offset at byte 0 */, "STAU"));
1146 
1147     aml_append(method, aml_store(aml_name("STAU"),
1148                                  aml_name(NVDIMM_DSM_RFIT_STATUS)));
1149 
1150      /* if something is wrong during _DSM. */
1151     ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1152                        aml_name("STAU"));
1153     ifctx = aml_if(aml_lnot(ifcond));
1154     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1155     aml_append(method, ifctx);
1156 
1157     aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1158     aml_append(method, aml_subtract(buf_size,
1159                                     aml_int(4) /* the size of "STAU" */,
1160                                     buf_size));
1161 
1162     /* if we read the end of fit. */
1163     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1164     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1165     aml_append(method, ifctx);
1166 
1167     aml_append(method, aml_create_field(buf,
1168                             aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1169                             aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1170     aml_append(method, aml_return(aml_name("BUFF")));
1171     aml_append(dev, method);
1172 
1173     /* build _FIT. */
1174     method = aml_method("_FIT", 0, AML_SERIALIZED);
1175     offset = aml_local(3);
1176 
1177     aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1178     aml_append(method, aml_store(aml_int(0), offset));
1179 
1180     whilectx = aml_while(aml_int(1));
1181     aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1182     aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1183 
1184     /*
1185      * if fit buffer was changed during RFIT, read from the beginning
1186      * again.
1187      */
1188     ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1189                              aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1190     aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1191     aml_append(ifctx, aml_store(aml_int(0), offset));
1192     aml_append(whilectx, ifctx);
1193 
1194     elsectx = aml_else();
1195 
1196     /* finish fit read if no data is read out. */
1197     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1198     aml_append(ifctx, aml_return(fit));
1199     aml_append(elsectx, ifctx);
1200 
1201     /* update the offset. */
1202     aml_append(elsectx, aml_add(offset, buf_size, offset));
1203     /* append the data we read out to the fit buffer. */
1204     aml_append(elsectx, aml_concatenate(fit, buf, fit));
1205     aml_append(whilectx, elsectx);
1206     aml_append(method, whilectx);
1207 
1208     aml_append(dev, method);
1209 }
1210 
1211 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1212 {
1213     uint32_t slot;
1214 
1215     for (slot = 0; slot < ram_slots; slot++) {
1216         uint32_t handle = nvdimm_slot_to_handle(slot);
1217         Aml *nvdimm_dev;
1218 
1219         nvdimm_dev = aml_device("NV%02X", slot);
1220 
1221         /*
1222          * ACPI 6.0: 9.20 NVDIMM Devices:
1223          *
1224          * _ADR object that is used to supply OSPM with unique address
1225          * of the NVDIMM device. This is done by returning the NFIT Device
1226          * handle that is used to identify the associated entries in ACPI
1227          * table NFIT or _FIT.
1228          */
1229         aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1230 
1231         nvdimm_build_device_dsm(nvdimm_dev, handle);
1232         aml_append(root_dev, nvdimm_dev);
1233     }
1234 }
1235 
1236 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1237                               BIOSLinker *linker, GArray *dsm_dma_area,
1238                               uint32_t ram_slots)
1239 {
1240     Aml *ssdt, *sb_scope, *dev;
1241     int mem_addr_offset, nvdimm_ssdt;
1242 
1243     acpi_add_table(table_offsets, table_data);
1244 
1245     ssdt = init_aml_allocator();
1246     acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1247 
1248     sb_scope = aml_scope("\\_SB");
1249 
1250     dev = aml_device("NVDR");
1251 
1252     /*
1253      * ACPI 6.0: 9.20 NVDIMM Devices:
1254      *
1255      * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1256      * NVDIMM interface device. Platform firmware is required to contain one
1257      * such device in _SB scope if NVDIMMs support is exposed by platform to
1258      * OSPM.
1259      * For each NVDIMM present or intended to be supported by platform,
1260      * platform firmware also exposes an ACPI Namespace Device under the
1261      * root device.
1262      */
1263     aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1264 
1265     nvdimm_build_common_dsm(dev);
1266 
1267     /* 0 is reserved for root device. */
1268     nvdimm_build_device_dsm(dev, 0);
1269     nvdimm_build_fit(dev);
1270 
1271     nvdimm_build_nvdimm_devices(dev, ram_slots);
1272 
1273     aml_append(sb_scope, dev);
1274     aml_append(ssdt, sb_scope);
1275 
1276     nvdimm_ssdt = table_data->len;
1277 
1278     /* copy AML table into ACPI tables blob and patch header there */
1279     g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1280     mem_addr_offset = build_append_named_dword(table_data,
1281                                                NVDIMM_ACPI_MEM_ADDR);
1282 
1283     bios_linker_loader_alloc(linker,
1284                              NVDIMM_DSM_MEM_FILE, dsm_dma_area,
1285                              sizeof(NvdimmDsmIn), false /* high memory */);
1286     bios_linker_loader_add_pointer(linker,
1287         ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1288         NVDIMM_DSM_MEM_FILE, 0);
1289     build_header(linker, table_data,
1290         (void *)(table_data->data + nvdimm_ssdt),
1291         "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1292     free_aml_allocator();
1293 }
1294 
1295 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1296                        BIOSLinker *linker, NVDIMMState *state,
1297                        uint32_t ram_slots)
1298 {
1299     GSList *device_list;
1300 
1301     /* no nvdimm device can be plugged. */
1302     if (!ram_slots) {
1303         return;
1304     }
1305 
1306     nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem,
1307                       ram_slots);
1308 
1309     device_list = nvdimm_get_device_list();
1310     /* no NVDIMM device is plugged. */
1311     if (!device_list) {
1312         return;
1313     }
1314 
1315     nvdimm_build_nfit(state, table_offsets, table_data, linker);
1316     g_slist_free(device_list);
1317 }
1318