xref: /openbmc/qemu/hw/acpi/nvdimm.c (revision 4e245a9e)
1 /*
2  * NVDIMM ACPI Implementation
3  *
4  * Copyright(C) 2015 Intel Corporation.
5  *
6  * Author:
7  *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
8  *
9  * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10  * and the DSM specification can be found at:
11  *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
12  *
13  * Currently, it only supports PMEM Virtualization.
14  *
15  * This library is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU Lesser General Public
17  * License as published by the Free Software Foundation; either
18  * version 2.1 of the License, or (at your option) any later version.
19  *
20  * This library is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  * Lesser General Public License for more details.
24  *
25  * You should have received a copy of the GNU Lesser General Public
26  * License along with this library; if not, see <http://www.gnu.org/licenses/>
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/uuid.h"
31 #include "qapi/error.h"
32 #include "hw/acpi/acpi.h"
33 #include "hw/acpi/aml-build.h"
34 #include "hw/acpi/bios-linker-loader.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/mem/nvdimm.h"
37 #include "qemu/nvdimm-utils.h"
38 
39 /*
40  * define Byte Addressable Persistent Memory (PM) Region according to
41  * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
42  */
43 static const uint8_t nvdimm_nfit_spa_uuid[] =
44       UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
45               0x18, 0xb7, 0x8c, 0xdb);
46 
47 /*
48  * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
49  * Interface Table (NFIT).
50  */
51 
52 /*
53  * System Physical Address Range Structure
54  *
55  * It describes the system physical address ranges occupied by NVDIMMs and
56  * the types of the regions.
57  */
58 struct NvdimmNfitSpa {
59     uint16_t type;
60     uint16_t length;
61     uint16_t spa_index;
62     uint16_t flags;
63     uint32_t reserved;
64     uint32_t proximity_domain;
65     uint8_t type_guid[16];
66     uint64_t spa_base;
67     uint64_t spa_length;
68     uint64_t mem_attr;
69 } QEMU_PACKED;
70 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
71 
72 /*
73  * Memory Device to System Physical Address Range Mapping Structure
74  *
75  * It enables identifying each NVDIMM region and the corresponding SPA
76  * describing the memory interleave
77  */
78 struct NvdimmNfitMemDev {
79     uint16_t type;
80     uint16_t length;
81     uint32_t nfit_handle;
82     uint16_t phys_id;
83     uint16_t region_id;
84     uint16_t spa_index;
85     uint16_t dcr_index;
86     uint64_t region_len;
87     uint64_t region_offset;
88     uint64_t region_dpa;
89     uint16_t interleave_index;
90     uint16_t interleave_ways;
91     uint16_t flags;
92     uint16_t reserved;
93 } QEMU_PACKED;
94 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
95 
96 #define ACPI_NFIT_MEM_NOT_ARMED     (1 << 3)
97 
98 /*
99  * NVDIMM Control Region Structure
100  *
101  * It describes the NVDIMM and if applicable, Block Control Window.
102  */
103 struct NvdimmNfitControlRegion {
104     uint16_t type;
105     uint16_t length;
106     uint16_t dcr_index;
107     uint16_t vendor_id;
108     uint16_t device_id;
109     uint16_t revision_id;
110     uint16_t sub_vendor_id;
111     uint16_t sub_device_id;
112     uint16_t sub_revision_id;
113     uint8_t reserved[6];
114     uint32_t serial_number;
115     uint16_t fic;
116     uint16_t num_bcw;
117     uint64_t bcw_size;
118     uint64_t cmd_offset;
119     uint64_t cmd_size;
120     uint64_t status_offset;
121     uint64_t status_size;
122     uint16_t flags;
123     uint8_t reserved2[6];
124 } QEMU_PACKED;
125 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
126 
127 /*
128  * NVDIMM Platform Capabilities Structure
129  *
130  * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
131  */
132 struct NvdimmNfitPlatformCaps {
133     uint16_t type;
134     uint16_t length;
135     uint8_t highest_cap;
136     uint8_t reserved[3];
137     uint32_t capabilities;
138     uint8_t reserved2[4];
139 } QEMU_PACKED;
140 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
141 
142 /*
143  * Module serial number is a unique number for each device. We use the
144  * slot id of NVDIMM device to generate this number so that each device
145  * associates with a different number.
146  *
147  * 0x123456 is a magic number we arbitrarily chose.
148  */
149 static uint32_t nvdimm_slot_to_sn(int slot)
150 {
151     return 0x123456 + slot;
152 }
153 
154 /*
155  * handle is used to uniquely associate nfit_memdev structure with NVDIMM
156  * ACPI device - nfit_memdev.nfit_handle matches with the value returned
157  * by ACPI device _ADR method.
158  *
159  * We generate the handle with the slot id of NVDIMM device and reserve
160  * 0 for NVDIMM root device.
161  */
162 static uint32_t nvdimm_slot_to_handle(int slot)
163 {
164     return slot + 1;
165 }
166 
167 /*
168  * index uniquely identifies the structure, 0 is reserved which indicates
169  * that the structure is not valid or the associated structure is not
170  * present.
171  *
172  * Each NVDIMM device needs two indexes, one for nfit_spa and another for
173  * nfit_dc which are generated by the slot id of NVDIMM device.
174  */
175 static uint16_t nvdimm_slot_to_spa_index(int slot)
176 {
177     return (slot + 1) << 1;
178 }
179 
180 /* See the comments of nvdimm_slot_to_spa_index(). */
181 static uint32_t nvdimm_slot_to_dcr_index(int slot)
182 {
183     return nvdimm_slot_to_spa_index(slot) + 1;
184 }
185 
186 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
187 {
188     NVDIMMDevice *nvdimm = NULL;
189     GSList *list, *device_list = nvdimm_get_device_list();
190 
191     for (list = device_list; list; list = list->next) {
192         NVDIMMDevice *nvd = list->data;
193         int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
194                                            NULL);
195 
196         if (nvdimm_slot_to_handle(slot) == handle) {
197             nvdimm = nvd;
198             break;
199         }
200     }
201 
202     g_slist_free(device_list);
203     return nvdimm;
204 }
205 
206 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
207 static void
208 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
209 {
210     NvdimmNfitSpa *nfit_spa;
211     uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
212                                              NULL);
213     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
214                                              NULL);
215     uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
216                                              NULL);
217     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
218                                        NULL);
219 
220     nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
221 
222     nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
223                                       Structure */);
224     nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
225     nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
226 
227     /*
228      * Control region is strict as all the device info, such as SN, index,
229      * is associated with slot id.
230      */
231     nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
232                                        management during hot add/online
233                                        operation */ |
234                                   2 /* Data in Proximity Domain field is
235                                        valid*/);
236 
237     /* NUMA node. */
238     nfit_spa->proximity_domain = cpu_to_le32(node);
239     /* the region reported as PMEM. */
240     memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
241            sizeof(nvdimm_nfit_spa_uuid));
242 
243     nfit_spa->spa_base = cpu_to_le64(addr);
244     nfit_spa->spa_length = cpu_to_le64(size);
245 
246     /* It is the PMEM and can be cached as writeback. */
247     nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
248                                      0x8000ULL /* EFI_MEMORY_NV */);
249 }
250 
251 /*
252  * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
253  * Structure
254  */
255 static void
256 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
257 {
258     NvdimmNfitMemDev *nfit_memdev;
259     NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
260     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
261                                              NULL);
262     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
263                                             NULL);
264     uint32_t handle = nvdimm_slot_to_handle(slot);
265 
266     nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
267 
268     nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
269                                          Range Map Structure*/);
270     nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
271     nfit_memdev->nfit_handle = cpu_to_le32(handle);
272 
273     /*
274      * associate memory device with System Physical Address Range
275      * Structure.
276      */
277     nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
278     /* associate memory device with Control Region Structure. */
279     nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
280 
281     /* The memory region on the device. */
282     nfit_memdev->region_len = cpu_to_le64(size);
283     /* The device address starts from 0. */
284     nfit_memdev->region_dpa = cpu_to_le64(0);
285 
286     /* Only one interleave for PMEM. */
287     nfit_memdev->interleave_ways = cpu_to_le16(1);
288 
289     if (nvdimm->unarmed) {
290         nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
291     }
292 }
293 
294 /*
295  * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
296  */
297 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
298 {
299     NvdimmNfitControlRegion *nfit_dcr;
300     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
301                                        NULL);
302     uint32_t sn = nvdimm_slot_to_sn(slot);
303 
304     nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
305 
306     nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
307     nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
308     nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
309 
310     /* vendor: Intel. */
311     nfit_dcr->vendor_id = cpu_to_le16(0x8086);
312     nfit_dcr->device_id = cpu_to_le16(1);
313 
314     /* The _DSM method is following Intel's DSM specification. */
315     nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
316                                              in ACPI 6.0 is 1. */);
317     nfit_dcr->serial_number = cpu_to_le32(sn);
318     nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
319                                          Byte addressable, no energy backed.
320                                          See ACPI 6.2, sect 5.2.25.6 and
321                                          JEDEC Annex L Release 3. */);
322 }
323 
324 /*
325  * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
326  */
327 static void
328 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
329 {
330     NvdimmNfitPlatformCaps *nfit_caps;
331 
332     nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
333 
334     nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
335     nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
336     nfit_caps->highest_cap = 31 - clz32(capabilities);
337     nfit_caps->capabilities = cpu_to_le32(capabilities);
338 }
339 
340 static GArray *nvdimm_build_device_structure(NVDIMMState *state)
341 {
342     GSList *device_list, *list = nvdimm_get_device_list();
343     GArray *structures = g_array_new(false, true /* clear */, 1);
344 
345     for (device_list = list; device_list; device_list = device_list->next) {
346         DeviceState *dev = device_list->data;
347 
348         /* build System Physical Address Range Structure. */
349         nvdimm_build_structure_spa(structures, dev);
350 
351         /*
352          * build Memory Device to System Physical Address Range Mapping
353          * Structure.
354          */
355         nvdimm_build_structure_memdev(structures, dev);
356 
357         /* build NVDIMM Control Region Structure. */
358         nvdimm_build_structure_dcr(structures, dev);
359     }
360     g_slist_free(list);
361 
362     if (state->persistence) {
363         nvdimm_build_structure_caps(structures, state->persistence);
364     }
365 
366     return structures;
367 }
368 
369 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
370 {
371     fit_buf->fit = g_array_new(false, true /* clear */, 1);
372 }
373 
374 static void nvdimm_build_fit_buffer(NVDIMMState *state)
375 {
376     NvdimmFitBuffer *fit_buf = &state->fit_buf;
377 
378     g_array_free(fit_buf->fit, true);
379     fit_buf->fit = nvdimm_build_device_structure(state);
380     fit_buf->dirty = true;
381 }
382 
383 void nvdimm_plug(NVDIMMState *state)
384 {
385     nvdimm_build_fit_buffer(state);
386 }
387 
388 /*
389  * NVDIMM Firmware Interface Table
390  * @signature: "NFIT"
391  *
392  * It provides information that allows OSPM to enumerate NVDIMM present in
393  * the platform and associate system physical address ranges created by the
394  * NVDIMMs.
395  *
396  * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
397  */
398 
399 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
400                               GArray *table_data, BIOSLinker *linker,
401                               const char *oem_id, const char *oem_table_id)
402 {
403     NvdimmFitBuffer *fit_buf = &state->fit_buf;
404     AcpiTable table = { .sig = "NFIT", .rev = 1,
405                         .oem_id = oem_id, .oem_table_id = oem_table_id };
406 
407     acpi_add_table(table_offsets, table_data);
408 
409     acpi_table_begin(&table, table_data);
410     /* Reserved */
411     build_append_int_noprefix(table_data, 0, 4);
412     /* NVDIMM device structures. */
413     g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
414     acpi_table_end(linker, &table);
415 }
416 
417 #define NVDIMM_DSM_MEMORY_SIZE      4096
418 
419 struct NvdimmDsmIn {
420     uint32_t handle;
421     uint32_t revision;
422     uint32_t function;
423     /* the remaining size in the page is used by arg3. */
424     union {
425         uint8_t arg3[4084];
426     };
427 } QEMU_PACKED;
428 typedef struct NvdimmDsmIn NvdimmDsmIn;
429 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
430 
431 struct NvdimmDsmOut {
432     /* the size of buffer filled by QEMU. */
433     uint32_t len;
434     uint8_t data[4092];
435 } QEMU_PACKED;
436 typedef struct NvdimmDsmOut NvdimmDsmOut;
437 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
438 
439 struct NvdimmDsmFunc0Out {
440     /* the size of buffer filled by QEMU. */
441      uint32_t len;
442      uint32_t supported_func;
443 } QEMU_PACKED;
444 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
445 
446 struct NvdimmDsmFuncNoPayloadOut {
447     /* the size of buffer filled by QEMU. */
448      uint32_t len;
449      uint32_t func_ret_status;
450 } QEMU_PACKED;
451 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
452 
453 struct NvdimmFuncGetLabelSizeOut {
454     /* the size of buffer filled by QEMU. */
455     uint32_t len;
456     uint32_t func_ret_status; /* return status code. */
457     uint32_t label_size; /* the size of label data area. */
458     /*
459      * Maximum size of the namespace label data length supported by
460      * the platform in Get/Set Namespace Label Data functions.
461      */
462     uint32_t max_xfer;
463 } QEMU_PACKED;
464 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
465 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
466 
467 struct NvdimmFuncGetLabelDataIn {
468     uint32_t offset; /* the offset in the namespace label data area. */
469     uint32_t length; /* the size of data is to be read via the function. */
470 } QEMU_PACKED;
471 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
472 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
473                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
474 
475 struct NvdimmFuncGetLabelDataOut {
476     /* the size of buffer filled by QEMU. */
477     uint32_t len;
478     uint32_t func_ret_status; /* return status code. */
479     uint8_t out_buf[]; /* the data got via Get Namespace Label function. */
480 } QEMU_PACKED;
481 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
482 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
483 
484 struct NvdimmFuncSetLabelDataIn {
485     uint32_t offset; /* the offset in the namespace label data area. */
486     uint32_t length; /* the size of data is to be written via the function. */
487     uint8_t in_buf[]; /* the data written to label data area. */
488 } QEMU_PACKED;
489 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
490 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
491                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
492 
493 struct NvdimmFuncReadFITIn {
494     uint32_t offset; /* the offset into FIT buffer. */
495 } QEMU_PACKED;
496 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
497 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
498                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
499 
500 struct NvdimmFuncReadFITOut {
501     /* the size of buffer filled by QEMU. */
502     uint32_t len;
503     uint32_t func_ret_status; /* return status code. */
504     uint8_t fit[]; /* the FIT data. */
505 } QEMU_PACKED;
506 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
507 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
508 
509 static void
510 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
511 {
512     NvdimmDsmFunc0Out func0 = {
513         .len = cpu_to_le32(sizeof(func0)),
514         .supported_func = cpu_to_le32(supported_func),
515     };
516     cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
517 }
518 
519 static void
520 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
521 {
522     NvdimmDsmFuncNoPayloadOut out = {
523         .len = cpu_to_le32(sizeof(out)),
524         .func_ret_status = cpu_to_le32(func_ret_status),
525     };
526     cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
527 }
528 
529 #define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
530 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
531 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
532 #define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
533 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
534 
535 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
536 
537 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
538 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
539                                      hwaddr dsm_mem_addr)
540 {
541     NvdimmFitBuffer *fit_buf = &state->fit_buf;
542     NvdimmFuncReadFITIn *read_fit;
543     NvdimmFuncReadFITOut *read_fit_out;
544     GArray *fit;
545     uint32_t read_len = 0, func_ret_status;
546     int size;
547 
548     read_fit = (NvdimmFuncReadFITIn *)in->arg3;
549     read_fit->offset = le32_to_cpu(read_fit->offset);
550 
551     fit = fit_buf->fit;
552 
553     nvdimm_debug("Read FIT: offset 0x%x FIT size 0x%x Dirty %s.\n",
554                  read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
555 
556     if (read_fit->offset > fit->len) {
557         func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
558         goto exit;
559     }
560 
561     /* It is the first time to read FIT. */
562     if (!read_fit->offset) {
563         fit_buf->dirty = false;
564     } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
565         func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
566         goto exit;
567     }
568 
569     func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
570     read_len = MIN(fit->len - read_fit->offset,
571                    NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
572 
573 exit:
574     size = sizeof(NvdimmFuncReadFITOut) + read_len;
575     read_fit_out = g_malloc(size);
576 
577     read_fit_out->len = cpu_to_le32(size);
578     read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
579     memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
580 
581     cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
582 
583     g_free(read_fit_out);
584 }
585 
586 static void
587 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
588                                        NvdimmDsmIn *in, hwaddr dsm_mem_addr)
589 {
590     switch (in->function) {
591     case 0x0:
592         nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
593         return;
594     case 0x1 /* Read FIT */:
595         nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
596         return;
597     }
598 
599     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
600 }
601 
602 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
603 {
604     /*
605      * function 0 is called to inquire which functions are supported by
606      * OSPM
607      */
608     if (!in->function) {
609         nvdimm_dsm_function0(0 /* No function supported other than
610                                   function 0 */, dsm_mem_addr);
611         return;
612     }
613 
614     /* No function except function 0 is supported yet. */
615     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
616 }
617 
618 /*
619  * the max transfer size is the max size transferred by both a
620  * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
621  * function.
622  */
623 static uint32_t nvdimm_get_max_xfer_label_size(void)
624 {
625     uint32_t max_get_size, max_set_size, dsm_memory_size;
626 
627     dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
628 
629     /*
630      * the max data ACPI can read one time which is transferred by
631      * the response of 'Get Namespace Label Data' function.
632      */
633     max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
634 
635     /*
636      * the max data ACPI can write one time which is transferred by
637      * 'Set Namespace Label Data' function.
638      */
639     max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
640                    sizeof(NvdimmFuncSetLabelDataIn);
641 
642     return MIN(max_get_size, max_set_size);
643 }
644 
645 /*
646  * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
647  *
648  * It gets the size of Namespace Label data area and the max data size
649  * that Get/Set Namespace Label Data functions can transfer.
650  */
651 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
652 {
653     NvdimmFuncGetLabelSizeOut label_size_out = {
654         .len = cpu_to_le32(sizeof(label_size_out)),
655     };
656     uint32_t label_size, mxfer;
657 
658     label_size = nvdimm->label_size;
659     mxfer = nvdimm_get_max_xfer_label_size();
660 
661     nvdimm_debug("label_size 0x%x, max_xfer 0x%x.\n", label_size, mxfer);
662 
663     label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
664     label_size_out.label_size = cpu_to_le32(label_size);
665     label_size_out.max_xfer = cpu_to_le32(mxfer);
666 
667     cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
668                               sizeof(label_size_out));
669 }
670 
671 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
672                                            uint32_t offset, uint32_t length)
673 {
674     uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
675 
676     if (offset + length < offset) {
677         nvdimm_debug("offset 0x%x + length 0x%x is overflow.\n", offset,
678                      length);
679         return ret;
680     }
681 
682     if (nvdimm->label_size < offset + length) {
683         nvdimm_debug("position 0x%x is beyond label data (len = %" PRIx64 ").\n",
684                      offset + length, nvdimm->label_size);
685         return ret;
686     }
687 
688     if (length > nvdimm_get_max_xfer_label_size()) {
689         nvdimm_debug("length (0x%x) is larger than max_xfer (0x%x).\n",
690                      length, nvdimm_get_max_xfer_label_size());
691         return ret;
692     }
693 
694     return NVDIMM_DSM_RET_STATUS_SUCCESS;
695 }
696 
697 /*
698  * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
699  */
700 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
701                                       hwaddr dsm_mem_addr)
702 {
703     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
704     NvdimmFuncGetLabelDataIn *get_label_data;
705     NvdimmFuncGetLabelDataOut *get_label_data_out;
706     uint32_t status;
707     int size;
708 
709     get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
710     get_label_data->offset = le32_to_cpu(get_label_data->offset);
711     get_label_data->length = le32_to_cpu(get_label_data->length);
712 
713     nvdimm_debug("Read Label Data: offset 0x%x length 0x%x.\n",
714                  get_label_data->offset, get_label_data->length);
715 
716     status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
717                                         get_label_data->length);
718     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
719         nvdimm_dsm_no_payload(status, dsm_mem_addr);
720         return;
721     }
722 
723     size = sizeof(*get_label_data_out) + get_label_data->length;
724     assert(size <= NVDIMM_DSM_MEMORY_SIZE);
725     get_label_data_out = g_malloc(size);
726 
727     get_label_data_out->len = cpu_to_le32(size);
728     get_label_data_out->func_ret_status =
729                             cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
730     nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
731                          get_label_data->length, get_label_data->offset);
732 
733     cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
734     g_free(get_label_data_out);
735 }
736 
737 /*
738  * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
739  */
740 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
741                                       hwaddr dsm_mem_addr)
742 {
743     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
744     NvdimmFuncSetLabelDataIn *set_label_data;
745     uint32_t status;
746 
747     set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
748 
749     set_label_data->offset = le32_to_cpu(set_label_data->offset);
750     set_label_data->length = le32_to_cpu(set_label_data->length);
751 
752     nvdimm_debug("Write Label Data: offset 0x%x length 0x%x.\n",
753                  set_label_data->offset, set_label_data->length);
754 
755     status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
756                                         set_label_data->length);
757     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
758         nvdimm_dsm_no_payload(status, dsm_mem_addr);
759         return;
760     }
761 
762     assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
763                     set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
764 
765     nvc->write_label_data(nvdimm, set_label_data->in_buf,
766                           set_label_data->length, set_label_data->offset);
767     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
768 }
769 
770 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
771 {
772     NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
773 
774     /* See the comments in nvdimm_dsm_root(). */
775     if (!in->function) {
776         uint32_t supported_func = 0;
777 
778         if (nvdimm && nvdimm->label_size) {
779             supported_func |= 0x1 /* Bit 0 indicates whether there is
780                                      support for any functions other
781                                      than function 0. */ |
782                               1 << 4 /* Get Namespace Label Size */ |
783                               1 << 5 /* Get Namespace Label Data */ |
784                               1 << 6 /* Set Namespace Label Data */;
785         }
786         nvdimm_dsm_function0(supported_func, dsm_mem_addr);
787         return;
788     }
789 
790     if (!nvdimm) {
791         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
792                               dsm_mem_addr);
793         return;
794     }
795 
796     /* Encode DSM function according to DSM Spec Rev1. */
797     switch (in->function) {
798     case 4 /* Get Namespace Label Size */:
799         if (nvdimm->label_size) {
800             nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
801             return;
802         }
803         break;
804     case 5 /* Get Namespace Label Data */:
805         if (nvdimm->label_size) {
806             nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
807             return;
808         }
809         break;
810     case 0x6 /* Set Namespace Label Data */:
811         if (nvdimm->label_size) {
812             nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
813             return;
814         }
815         break;
816     }
817 
818     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
819 }
820 
821 static uint64_t
822 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
823 {
824     nvdimm_debug("BUG: we never read _DSM IO Port.\n");
825     return 0;
826 }
827 
828 static void
829 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
830 {
831     NVDIMMState *state = opaque;
832     NvdimmDsmIn *in;
833     hwaddr dsm_mem_addr = val;
834 
835     nvdimm_debug("dsm memory address 0x%" HWADDR_PRIx ".\n", dsm_mem_addr);
836 
837     /*
838      * The DSM memory is mapped to guest address space so an evil guest
839      * can change its content while we are doing DSM emulation. Avoid
840      * this by copying DSM memory to QEMU local memory.
841      */
842     in = g_new(NvdimmDsmIn, 1);
843     cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
844 
845     in->revision = le32_to_cpu(in->revision);
846     in->function = le32_to_cpu(in->function);
847     in->handle = le32_to_cpu(in->handle);
848 
849     nvdimm_debug("Revision 0x%x Handler 0x%x Function 0x%x.\n", in->revision,
850                  in->handle, in->function);
851 
852     if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
853         nvdimm_debug("Revision 0x%x is not supported, expect 0x%x.\n",
854                      in->revision, 0x1);
855         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
856         goto exit;
857     }
858 
859     if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
860         nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
861         goto exit;
862     }
863 
864      /* Handle 0 is reserved for NVDIMM Root Device. */
865     if (!in->handle) {
866         nvdimm_dsm_root(in, dsm_mem_addr);
867         goto exit;
868     }
869 
870     nvdimm_dsm_device(in, dsm_mem_addr);
871 
872 exit:
873     g_free(in);
874 }
875 
876 static const MemoryRegionOps nvdimm_dsm_ops = {
877     .read = nvdimm_dsm_read,
878     .write = nvdimm_dsm_write,
879     .endianness = DEVICE_LITTLE_ENDIAN,
880     .valid = {
881         .min_access_size = 4,
882         .max_access_size = 4,
883     },
884 };
885 
886 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
887 {
888     if (dev->hotplugged) {
889         acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
890     }
891 }
892 
893 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
894                             struct AcpiGenericAddress dsm_io,
895                             FWCfgState *fw_cfg, Object *owner)
896 {
897     state->dsm_io = dsm_io;
898     memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
899                           "nvdimm-acpi-io", dsm_io.bit_width >> 3);
900     memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
901 
902     state->dsm_mem = g_array_new(false, true /* clear */, 1);
903     acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
904     fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
905                     state->dsm_mem->len);
906 
907     nvdimm_init_fit_buffer(&state->fit_buf);
908 }
909 
910 #define NVDIMM_COMMON_DSM       "NCAL"
911 #define NVDIMM_ACPI_MEM_ADDR    "MEMA"
912 
913 #define NVDIMM_DSM_MEMORY       "NRAM"
914 #define NVDIMM_DSM_IOPORT       "NPIO"
915 
916 #define NVDIMM_DSM_NOTIFY       "NTFI"
917 #define NVDIMM_DSM_HANDLE       "HDLE"
918 #define NVDIMM_DSM_REVISION     "REVS"
919 #define NVDIMM_DSM_FUNCTION     "FUNC"
920 #define NVDIMM_DSM_ARG3         "FARG"
921 
922 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
923 #define NVDIMM_DSM_OUT_BUF      "ODAT"
924 
925 #define NVDIMM_DSM_RFIT_STATUS  "RSTA"
926 
927 #define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
928 
929 static void nvdimm_build_common_dsm(Aml *dev,
930                                     NVDIMMState *nvdimm_state)
931 {
932     Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
933     Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
934     Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
935     Aml *whilectx, *offset;
936     uint8_t byte_list[1];
937     AmlRegionSpace rs;
938 
939     method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
940     uuid = aml_arg(0);
941     function = aml_arg(2);
942     handle = aml_arg(4);
943     dsm_mem = aml_local(6);
944     dsm_out_buf = aml_local(7);
945 
946     aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
947 
948     if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
949         rs = AML_SYSTEM_IO;
950     } else {
951         rs = AML_SYSTEM_MEMORY;
952     }
953 
954     /* map DSM memory and IO into ACPI namespace. */
955     aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
956                aml_int(nvdimm_state->dsm_io.address),
957                nvdimm_state->dsm_io.bit_width >> 3));
958     aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
959                AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
960 
961     /*
962      * DSM notifier:
963      * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
964      *                    emulate the access.
965      *
966      * It is the IO port so that accessing them will cause VM-exit, the
967      * control will be transferred to QEMU.
968      */
969     field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
970                       AML_PRESERVE);
971     aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
972                nvdimm_state->dsm_io.bit_width));
973     aml_append(method, field);
974 
975     /*
976      * DSM input:
977      * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
978      *                    happens on NVDIMM Root Device.
979      * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
980      * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
981      * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
982      *                  containing function-specific arguments.
983      *
984      * They are RAM mapping on host so that these accesses never cause
985      * VM-EXIT.
986      */
987     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
988                       AML_PRESERVE);
989     aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
990                sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
991     aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
992                sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
993     aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
994                sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
995     aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
996          (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
997     aml_append(method, field);
998 
999     /*
1000      * DSM output:
1001      * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
1002      * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1003      *
1004      * Since the page is reused by both input and out, the input data
1005      * will be lost after storing new result into ODAT so we should fetch
1006      * all the input data before writing the result.
1007      */
1008     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1009                       AML_PRESERVE);
1010     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1011                sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1012     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1013        (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1014     aml_append(method, field);
1015 
1016     /*
1017      * do not support any method if DSM memory address has not been
1018      * patched.
1019      */
1020     unpatched = aml_equal(dsm_mem, aml_int(0x0));
1021 
1022     expected_uuid = aml_local(0);
1023 
1024     ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1025     aml_append(ifctx, aml_store(
1026                aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1027                /* UUID for NVDIMM Root Device */, expected_uuid));
1028     aml_append(method, ifctx);
1029     elsectx = aml_else();
1030     ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1031     aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1032                /* UUID for QEMU internal use */), expected_uuid));
1033     aml_append(elsectx, ifctx);
1034     elsectx2 = aml_else();
1035     aml_append(elsectx2, aml_store(
1036                aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1037                /* UUID for NVDIMM Devices */, expected_uuid));
1038     aml_append(elsectx, elsectx2);
1039     aml_append(method, elsectx);
1040 
1041     uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1042 
1043     unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1044 
1045     /*
1046      * function 0 is called to inquire what functions are supported by
1047      * OSPM
1048      */
1049     ifctx = aml_if(aml_equal(function, aml_int(0)));
1050     byte_list[0] = 0 /* No function Supported */;
1051     aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1052     aml_append(unsupport, ifctx);
1053 
1054     /* No function is supported yet. */
1055     byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1056     aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1057     aml_append(method, unsupport);
1058 
1059     /*
1060      * The HDLE indicates the DSM function is issued from which device,
1061      * it reserves 0 for root device and is the handle for NVDIMM devices.
1062      * See the comments in nvdimm_slot_to_handle().
1063      */
1064     aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1065     aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1066     aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1067 
1068     /*
1069      * The fourth parameter (Arg3) of _DSM is a package which contains
1070      * a buffer, the layout of the buffer is specified by UUID (Arg0),
1071      * Revision ID (Arg1) and Function Index (Arg2) which are documented
1072      * in the DSM Spec.
1073      */
1074     pckg = aml_arg(3);
1075     ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1076                    aml_int(4 /* Package */)) /* It is a Package? */,
1077                    aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1078                    NULL));
1079 
1080     pckg_index = aml_local(2);
1081     pckg_buf = aml_local(3);
1082     aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1083     aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1084     aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1085     aml_append(method, ifctx);
1086 
1087     /*
1088      * tell QEMU about the real address of DSM memory, then QEMU
1089      * gets the control and fills the result in DSM memory.
1090      */
1091     aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1092 
1093     dsm_out_buf_size = aml_local(1);
1094     /* RLEN is not included in the payload returned to guest. */
1095     aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1096                aml_int(4), dsm_out_buf_size));
1097 
1098     /*
1099      * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1100      * the Buffer Field <= to the size of an Integer (in bits), it will
1101      * be treated as an integer. Moreover, the integer size depends on
1102      * DSDT tables revision number. If revision number is < 2, integer
1103      * size is 32 bits, otherwise it is 64 bits.
1104      * Because of this CreateField() canot be used if RLEN < Integer Size.
1105      *
1106      * Also please note that APCI ASL operator SizeOf() doesn't support
1107      * Integer and there isn't any other way to figure out the Integer
1108      * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1109      * build dsm_out_buf byte by byte.
1110      */
1111     ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
1112     offset = aml_local(2);
1113     aml_append(ifctx, aml_store(aml_int(0), offset));
1114     aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
1115     aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
1116 
1117     whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
1118     /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1119     aml_append(whilectx, aml_store(aml_derefof(aml_index(
1120                                    aml_name(NVDIMM_DSM_OUT_BUF), offset)),
1121                                    aml_index(aml_name("TBUF"), aml_int(0))));
1122     aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
1123                                          dsm_out_buf));
1124     aml_append(whilectx, aml_increment(offset));
1125     aml_append(ifctx, whilectx);
1126 
1127     aml_append(ifctx, aml_return(dsm_out_buf));
1128     aml_append(method, ifctx);
1129 
1130     /* If RLEN >= Integer size, just use CreateField() operator */
1131     aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1132                                  dsm_out_buf_size));
1133     aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1134                aml_int(0), dsm_out_buf_size, "OBUF"));
1135     aml_append(method, aml_return(aml_name("OBUF")));
1136 
1137     aml_append(dev, method);
1138 }
1139 
1140 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1141 {
1142     Aml *method;
1143 
1144     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1145     aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1146                                   aml_arg(1), aml_arg(2), aml_arg(3),
1147                                   aml_int(handle))));
1148     aml_append(dev, method);
1149 }
1150 
1151 static void nvdimm_build_fit(Aml *dev)
1152 {
1153     Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1154     Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1155 
1156     buf = aml_local(0);
1157     buf_size = aml_local(1);
1158     fit = aml_local(2);
1159 
1160     aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1161 
1162     /* build helper function, RFIT. */
1163     method = aml_method("RFIT", 1, AML_SERIALIZED);
1164     aml_append(method, aml_name_decl("OFST", aml_int(0)));
1165 
1166     /* prepare input package. */
1167     pkg = aml_package(1);
1168     aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1169     aml_append(pkg, aml_name("OFST"));
1170 
1171     /* call Read_FIT function. */
1172     call_result = aml_call5(NVDIMM_COMMON_DSM,
1173                             aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1174                             aml_int(1) /* Revision 1 */,
1175                             aml_int(0x1) /* Read FIT */,
1176                             pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1177     aml_append(method, aml_store(call_result, buf));
1178 
1179     /* handle _DSM result. */
1180     aml_append(method, aml_create_dword_field(buf,
1181                aml_int(0) /* offset at byte 0 */, "STAU"));
1182 
1183     aml_append(method, aml_store(aml_name("STAU"),
1184                                  aml_name(NVDIMM_DSM_RFIT_STATUS)));
1185 
1186      /* if something is wrong during _DSM. */
1187     ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1188                        aml_name("STAU"));
1189     ifctx = aml_if(aml_lnot(ifcond));
1190     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1191     aml_append(method, ifctx);
1192 
1193     aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1194     aml_append(method, aml_subtract(buf_size,
1195                                     aml_int(4) /* the size of "STAU" */,
1196                                     buf_size));
1197 
1198     /* if we read the end of fit. */
1199     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1200     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1201     aml_append(method, ifctx);
1202 
1203     aml_append(method, aml_create_field(buf,
1204                             aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1205                             aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1206     aml_append(method, aml_return(aml_name("BUFF")));
1207     aml_append(dev, method);
1208 
1209     /* build _FIT. */
1210     method = aml_method("_FIT", 0, AML_SERIALIZED);
1211     offset = aml_local(3);
1212 
1213     aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1214     aml_append(method, aml_store(aml_int(0), offset));
1215 
1216     whilectx = aml_while(aml_int(1));
1217     aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1218     aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1219 
1220     /*
1221      * if fit buffer was changed during RFIT, read from the beginning
1222      * again.
1223      */
1224     ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1225                              aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1226     aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1227     aml_append(ifctx, aml_store(aml_int(0), offset));
1228     aml_append(whilectx, ifctx);
1229 
1230     elsectx = aml_else();
1231 
1232     /* finish fit read if no data is read out. */
1233     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1234     aml_append(ifctx, aml_return(fit));
1235     aml_append(elsectx, ifctx);
1236 
1237     /* update the offset. */
1238     aml_append(elsectx, aml_add(offset, buf_size, offset));
1239     /* append the data we read out to the fit buffer. */
1240     aml_append(elsectx, aml_concatenate(fit, buf, fit));
1241     aml_append(whilectx, elsectx);
1242     aml_append(method, whilectx);
1243 
1244     aml_append(dev, method);
1245 }
1246 
1247 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1248 {
1249     uint32_t slot;
1250 
1251     for (slot = 0; slot < ram_slots; slot++) {
1252         uint32_t handle = nvdimm_slot_to_handle(slot);
1253         Aml *nvdimm_dev;
1254 
1255         nvdimm_dev = aml_device("NV%02X", slot);
1256 
1257         /*
1258          * ACPI 6.0: 9.20 NVDIMM Devices:
1259          *
1260          * _ADR object that is used to supply OSPM with unique address
1261          * of the NVDIMM device. This is done by returning the NFIT Device
1262          * handle that is used to identify the associated entries in ACPI
1263          * table NFIT or _FIT.
1264          */
1265         aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1266 
1267         nvdimm_build_device_dsm(nvdimm_dev, handle);
1268         aml_append(root_dev, nvdimm_dev);
1269     }
1270 }
1271 
1272 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1273                               BIOSLinker *linker,
1274                               NVDIMMState *nvdimm_state,
1275                               uint32_t ram_slots, const char *oem_id)
1276 {
1277     int mem_addr_offset;
1278     Aml *ssdt, *sb_scope, *dev;
1279     AcpiTable table = { .sig = "SSDT", .rev = 1,
1280                         .oem_id = oem_id, .oem_table_id = "NVDIMM" };
1281 
1282     acpi_add_table(table_offsets, table_data);
1283 
1284     acpi_table_begin(&table, table_data);
1285     ssdt = init_aml_allocator();
1286     sb_scope = aml_scope("\\_SB");
1287 
1288     dev = aml_device("NVDR");
1289 
1290     /*
1291      * ACPI 6.0: 9.20 NVDIMM Devices:
1292      *
1293      * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1294      * NVDIMM interface device. Platform firmware is required to contain one
1295      * such device in _SB scope if NVDIMMs support is exposed by platform to
1296      * OSPM.
1297      * For each NVDIMM present or intended to be supported by platform,
1298      * platform firmware also exposes an ACPI Namespace Device under the
1299      * root device.
1300      */
1301     aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1302 
1303     nvdimm_build_common_dsm(dev, nvdimm_state);
1304 
1305     /* 0 is reserved for root device. */
1306     nvdimm_build_device_dsm(dev, 0);
1307     nvdimm_build_fit(dev);
1308 
1309     nvdimm_build_nvdimm_devices(dev, ram_slots);
1310 
1311     aml_append(sb_scope, dev);
1312     aml_append(ssdt, sb_scope);
1313 
1314     /* copy AML table into ACPI tables blob and patch header there */
1315     g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1316     mem_addr_offset = build_append_named_dword(table_data,
1317                                                NVDIMM_ACPI_MEM_ADDR);
1318 
1319     bios_linker_loader_alloc(linker,
1320                              NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
1321                              sizeof(NvdimmDsmIn), false /* high memory */);
1322     bios_linker_loader_add_pointer(linker,
1323         ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1324         NVDIMM_DSM_MEM_FILE, 0);
1325     free_aml_allocator();
1326     /*
1327      * must be executed as the last so that pointer patching command above
1328      * would be executed by guest before it recalculated checksum which were
1329      * scheduled by acpi_table_end()
1330      */
1331     acpi_table_end(linker, &table);
1332 }
1333 
1334 void nvdimm_build_srat(GArray *table_data)
1335 {
1336     GSList *device_list, *list = nvdimm_get_device_list();
1337 
1338     for (device_list = list; device_list; device_list = device_list->next) {
1339         DeviceState *dev = device_list->data;
1340         Object *obj = OBJECT(dev);
1341         uint64_t addr, size;
1342         int node;
1343 
1344         node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort);
1345         addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort);
1346         size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort);
1347 
1348         build_srat_memory(table_data, addr, size, node,
1349                           MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE);
1350     }
1351     g_slist_free(list);
1352 }
1353 
1354 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1355                        BIOSLinker *linker, NVDIMMState *state,
1356                        uint32_t ram_slots, const char *oem_id,
1357                        const char *oem_table_id)
1358 {
1359     GSList *device_list;
1360 
1361     /* no nvdimm device can be plugged. */
1362     if (!ram_slots) {
1363         return;
1364     }
1365 
1366     nvdimm_build_ssdt(table_offsets, table_data, linker, state,
1367                       ram_slots, oem_id);
1368 
1369     device_list = nvdimm_get_device_list();
1370     /* no NVDIMM device is plugged. */
1371     if (!device_list) {
1372         return;
1373     }
1374 
1375     nvdimm_build_nfit(state, table_offsets, table_data, linker,
1376                       oem_id, oem_table_id);
1377     g_slist_free(device_list);
1378 }
1379