1 /* 2 * NVDIMM ACPI Implementation 3 * 4 * Copyright(C) 2015 Intel Corporation. 5 * 6 * Author: 7 * Xiao Guangrong <guangrong.xiao@linux.intel.com> 8 * 9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 10 * and the DSM specification can be found at: 11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 12 * 13 * Currently, it only supports PMEM Virtualization. 14 * 15 * This library is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU Lesser General Public 17 * License as published by the Free Software Foundation; either 18 * version 2 of the License, or (at your option) any later version. 19 * 20 * This library is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * Lesser General Public License for more details. 24 * 25 * You should have received a copy of the GNU Lesser General Public 26 * License along with this library; if not, see <http://www.gnu.org/licenses/> 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/acpi/acpi.h" 31 #include "hw/acpi/aml-build.h" 32 #include "hw/acpi/bios-linker-loader.h" 33 #include "hw/nvram/fw_cfg.h" 34 #include "hw/mem/nvdimm.h" 35 36 static int nvdimm_plugged_device_list(Object *obj, void *opaque) 37 { 38 GSList **list = opaque; 39 40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) { 41 *list = g_slist_append(*list, DEVICE(obj)); 42 } 43 44 object_child_foreach(obj, nvdimm_plugged_device_list, opaque); 45 return 0; 46 } 47 48 /* 49 * inquire plugged NVDIMM devices and link them into the list which is 50 * returned to the caller. 51 * 52 * Note: it is the caller's responsibility to free the list to avoid 53 * memory leak. 54 */ 55 static GSList *nvdimm_get_plugged_device_list(void) 56 { 57 GSList *list = NULL; 58 59 object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list, 60 &list); 61 return list; 62 } 63 64 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 65 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \ 66 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \ 67 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) } 68 69 /* 70 * define Byte Addressable Persistent Memory (PM) Region according to 71 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. 72 */ 73 static const uint8_t nvdimm_nfit_spa_uuid[] = 74 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 75 0x18, 0xb7, 0x8c, 0xdb); 76 77 /* 78 * NVDIMM Firmware Interface Table 79 * @signature: "NFIT" 80 * 81 * It provides information that allows OSPM to enumerate NVDIMM present in 82 * the platform and associate system physical address ranges created by the 83 * NVDIMMs. 84 * 85 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 86 */ 87 struct NvdimmNfitHeader { 88 ACPI_TABLE_HEADER_DEF 89 uint32_t reserved; 90 } QEMU_PACKED; 91 typedef struct NvdimmNfitHeader NvdimmNfitHeader; 92 93 /* 94 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware 95 * Interface Table (NFIT). 96 */ 97 98 /* 99 * System Physical Address Range Structure 100 * 101 * It describes the system physical address ranges occupied by NVDIMMs and 102 * the types of the regions. 103 */ 104 struct NvdimmNfitSpa { 105 uint16_t type; 106 uint16_t length; 107 uint16_t spa_index; 108 uint16_t flags; 109 uint32_t reserved; 110 uint32_t proximity_domain; 111 uint8_t type_guid[16]; 112 uint64_t spa_base; 113 uint64_t spa_length; 114 uint64_t mem_attr; 115 } QEMU_PACKED; 116 typedef struct NvdimmNfitSpa NvdimmNfitSpa; 117 118 /* 119 * Memory Device to System Physical Address Range Mapping Structure 120 * 121 * It enables identifying each NVDIMM region and the corresponding SPA 122 * describing the memory interleave 123 */ 124 struct NvdimmNfitMemDev { 125 uint16_t type; 126 uint16_t length; 127 uint32_t nfit_handle; 128 uint16_t phys_id; 129 uint16_t region_id; 130 uint16_t spa_index; 131 uint16_t dcr_index; 132 uint64_t region_len; 133 uint64_t region_offset; 134 uint64_t region_dpa; 135 uint16_t interleave_index; 136 uint16_t interleave_ways; 137 uint16_t flags; 138 uint16_t reserved; 139 } QEMU_PACKED; 140 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; 141 142 /* 143 * NVDIMM Control Region Structure 144 * 145 * It describes the NVDIMM and if applicable, Block Control Window. 146 */ 147 struct NvdimmNfitControlRegion { 148 uint16_t type; 149 uint16_t length; 150 uint16_t dcr_index; 151 uint16_t vendor_id; 152 uint16_t device_id; 153 uint16_t revision_id; 154 uint16_t sub_vendor_id; 155 uint16_t sub_device_id; 156 uint16_t sub_revision_id; 157 uint8_t reserved[6]; 158 uint32_t serial_number; 159 uint16_t fic; 160 uint16_t num_bcw; 161 uint64_t bcw_size; 162 uint64_t cmd_offset; 163 uint64_t cmd_size; 164 uint64_t status_offset; 165 uint64_t status_size; 166 uint16_t flags; 167 uint8_t reserved2[6]; 168 } QEMU_PACKED; 169 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; 170 171 /* 172 * Module serial number is a unique number for each device. We use the 173 * slot id of NVDIMM device to generate this number so that each device 174 * associates with a different number. 175 * 176 * 0x123456 is a magic number we arbitrarily chose. 177 */ 178 static uint32_t nvdimm_slot_to_sn(int slot) 179 { 180 return 0x123456 + slot; 181 } 182 183 /* 184 * handle is used to uniquely associate nfit_memdev structure with NVDIMM 185 * ACPI device - nfit_memdev.nfit_handle matches with the value returned 186 * by ACPI device _ADR method. 187 * 188 * We generate the handle with the slot id of NVDIMM device and reserve 189 * 0 for NVDIMM root device. 190 */ 191 static uint32_t nvdimm_slot_to_handle(int slot) 192 { 193 return slot + 1; 194 } 195 196 /* 197 * index uniquely identifies the structure, 0 is reserved which indicates 198 * that the structure is not valid or the associated structure is not 199 * present. 200 * 201 * Each NVDIMM device needs two indexes, one for nfit_spa and another for 202 * nfit_dc which are generated by the slot id of NVDIMM device. 203 */ 204 static uint16_t nvdimm_slot_to_spa_index(int slot) 205 { 206 return (slot + 1) << 1; 207 } 208 209 /* See the comments of nvdimm_slot_to_spa_index(). */ 210 static uint32_t nvdimm_slot_to_dcr_index(int slot) 211 { 212 return nvdimm_slot_to_spa_index(slot) + 1; 213 } 214 215 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) 216 { 217 NVDIMMDevice *nvdimm = NULL; 218 GSList *list, *device_list = nvdimm_get_plugged_device_list(); 219 220 for (list = device_list; list; list = list->next) { 221 NVDIMMDevice *nvd = list->data; 222 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, 223 NULL); 224 225 if (nvdimm_slot_to_handle(slot) == handle) { 226 nvdimm = nvd; 227 break; 228 } 229 } 230 231 g_slist_free(device_list); 232 return nvdimm; 233 } 234 235 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ 236 static void 237 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) 238 { 239 NvdimmNfitSpa *nfit_spa; 240 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP, 241 NULL); 242 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 243 NULL); 244 uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, 245 NULL); 246 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 247 NULL); 248 249 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); 250 251 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range 252 Structure */); 253 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); 254 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 255 256 /* 257 * Control region is strict as all the device info, such as SN, index, 258 * is associated with slot id. 259 */ 260 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for 261 management during hot add/online 262 operation */ | 263 2 /* Data in Proximity Domain field is 264 valid*/); 265 266 /* NUMA node. */ 267 nfit_spa->proximity_domain = cpu_to_le32(node); 268 /* the region reported as PMEM. */ 269 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, 270 sizeof(nvdimm_nfit_spa_uuid)); 271 272 nfit_spa->spa_base = cpu_to_le64(addr); 273 nfit_spa->spa_length = cpu_to_le64(size); 274 275 /* It is the PMEM and can be cached as writeback. */ 276 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 277 0x8000ULL /* EFI_MEMORY_NV */); 278 } 279 280 /* 281 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping 282 * Structure 283 */ 284 static void 285 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) 286 { 287 NvdimmNfitMemDev *nfit_memdev; 288 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 289 NULL); 290 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 291 NULL); 292 uint32_t handle = nvdimm_slot_to_handle(slot); 293 294 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); 295 296 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address 297 Range Map Structure*/); 298 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); 299 nfit_memdev->nfit_handle = cpu_to_le32(handle); 300 301 /* 302 * associate memory device with System Physical Address Range 303 * Structure. 304 */ 305 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 306 /* associate memory device with Control Region Structure. */ 307 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 308 309 /* The memory region on the device. */ 310 nfit_memdev->region_len = cpu_to_le64(size); 311 /* The device address starts from 0. */ 312 nfit_memdev->region_dpa = cpu_to_le64(0); 313 314 /* Only one interleave for PMEM. */ 315 nfit_memdev->interleave_ways = cpu_to_le16(1); 316 } 317 318 /* 319 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. 320 */ 321 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) 322 { 323 NvdimmNfitControlRegion *nfit_dcr; 324 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 325 NULL); 326 uint32_t sn = nvdimm_slot_to_sn(slot); 327 328 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); 329 330 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); 331 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); 332 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 333 334 /* vendor: Intel. */ 335 nfit_dcr->vendor_id = cpu_to_le16(0x8086); 336 nfit_dcr->device_id = cpu_to_le16(1); 337 338 /* The _DSM method is following Intel's DSM specification. */ 339 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported 340 in ACPI 6.0 is 1. */); 341 nfit_dcr->serial_number = cpu_to_le32(sn); 342 nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter 343 2: NVDIMM Device Specific Method 344 (DSM) in DSM Spec Rev1.*/); 345 } 346 347 static GArray *nvdimm_build_device_structure(void) 348 { 349 GSList *device_list = nvdimm_get_plugged_device_list(); 350 GArray *structures = g_array_new(false, true /* clear */, 1); 351 352 for (; device_list; device_list = device_list->next) { 353 DeviceState *dev = device_list->data; 354 355 /* build System Physical Address Range Structure. */ 356 nvdimm_build_structure_spa(structures, dev); 357 358 /* 359 * build Memory Device to System Physical Address Range Mapping 360 * Structure. 361 */ 362 nvdimm_build_structure_memdev(structures, dev); 363 364 /* build NVDIMM Control Region Structure. */ 365 nvdimm_build_structure_dcr(structures, dev); 366 } 367 g_slist_free(device_list); 368 369 return structures; 370 } 371 372 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) 373 { 374 fit_buf->fit = g_array_new(false, true /* clear */, 1); 375 } 376 377 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf) 378 { 379 g_array_free(fit_buf->fit, true); 380 fit_buf->fit = nvdimm_build_device_structure(); 381 fit_buf->dirty = true; 382 } 383 384 void nvdimm_acpi_hotplug(AcpiNVDIMMState *state) 385 { 386 nvdimm_build_fit_buffer(&state->fit_buf); 387 } 388 389 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets, 390 GArray *table_data, BIOSLinker *linker) 391 { 392 NvdimmFitBuffer *fit_buf = &state->fit_buf; 393 unsigned int header; 394 395 acpi_add_table(table_offsets, table_data); 396 397 /* NFIT header. */ 398 header = table_data->len; 399 acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); 400 /* NVDIMM device structures. */ 401 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); 402 403 build_header(linker, table_data, 404 (void *)(table_data->data + header), "NFIT", 405 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL); 406 } 407 408 struct NvdimmDsmIn { 409 uint32_t handle; 410 uint32_t revision; 411 uint32_t function; 412 /* the remaining size in the page is used by arg3. */ 413 union { 414 uint8_t arg3[4084]; 415 }; 416 } QEMU_PACKED; 417 typedef struct NvdimmDsmIn NvdimmDsmIn; 418 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096); 419 420 struct NvdimmDsmOut { 421 /* the size of buffer filled by QEMU. */ 422 uint32_t len; 423 uint8_t data[4092]; 424 } QEMU_PACKED; 425 typedef struct NvdimmDsmOut NvdimmDsmOut; 426 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096); 427 428 struct NvdimmDsmFunc0Out { 429 /* the size of buffer filled by QEMU. */ 430 uint32_t len; 431 uint32_t supported_func; 432 } QEMU_PACKED; 433 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; 434 435 struct NvdimmDsmFuncNoPayloadOut { 436 /* the size of buffer filled by QEMU. */ 437 uint32_t len; 438 uint32_t func_ret_status; 439 } QEMU_PACKED; 440 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; 441 442 struct NvdimmFuncGetLabelSizeOut { 443 /* the size of buffer filled by QEMU. */ 444 uint32_t len; 445 uint32_t func_ret_status; /* return status code. */ 446 uint32_t label_size; /* the size of label data area. */ 447 /* 448 * Maximum size of the namespace label data length supported by 449 * the platform in Get/Set Namespace Label Data functions. 450 */ 451 uint32_t max_xfer; 452 } QEMU_PACKED; 453 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; 454 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096); 455 456 struct NvdimmFuncGetLabelDataIn { 457 uint32_t offset; /* the offset in the namespace label data area. */ 458 uint32_t length; /* the size of data is to be read via the function. */ 459 } QEMU_PACKED; 460 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; 461 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + 462 offsetof(NvdimmDsmIn, arg3) > 4096); 463 464 struct NvdimmFuncGetLabelDataOut { 465 /* the size of buffer filled by QEMU. */ 466 uint32_t len; 467 uint32_t func_ret_status; /* return status code. */ 468 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */ 469 } QEMU_PACKED; 470 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; 471 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096); 472 473 struct NvdimmFuncSetLabelDataIn { 474 uint32_t offset; /* the offset in the namespace label data area. */ 475 uint32_t length; /* the size of data is to be written via the function. */ 476 uint8_t in_buf[0]; /* the data written to label data area. */ 477 } QEMU_PACKED; 478 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; 479 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + 480 offsetof(NvdimmDsmIn, arg3) > 4096); 481 482 struct NvdimmFuncReadFITIn { 483 uint32_t offset; /* the offset of FIT buffer. */ 484 } QEMU_PACKED; 485 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; 486 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + 487 offsetof(NvdimmDsmIn, arg3) > 4096); 488 489 struct NvdimmFuncReadFITOut { 490 /* the size of buffer filled by QEMU. */ 491 uint32_t len; 492 uint32_t func_ret_status; /* return status code. */ 493 uint8_t fit[0]; /* the FIT data. */ 494 } QEMU_PACKED; 495 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; 496 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > 4096); 497 498 static void 499 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) 500 { 501 NvdimmDsmFunc0Out func0 = { 502 .len = cpu_to_le32(sizeof(func0)), 503 .supported_func = cpu_to_le32(supported_func), 504 }; 505 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); 506 } 507 508 static void 509 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) 510 { 511 NvdimmDsmFuncNoPayloadOut out = { 512 .len = cpu_to_le32(sizeof(out)), 513 .func_ret_status = cpu_to_le32(func_ret_status), 514 }; 515 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); 516 } 517 518 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 519 520 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ 521 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in, 522 hwaddr dsm_mem_addr) 523 { 524 NvdimmFitBuffer *fit_buf = &state->fit_buf; 525 NvdimmFuncReadFITIn *read_fit; 526 NvdimmFuncReadFITOut *read_fit_out; 527 GArray *fit; 528 uint32_t read_len = 0, func_ret_status; 529 int size; 530 531 read_fit = (NvdimmFuncReadFITIn *)in->arg3; 532 le32_to_cpus(&read_fit->offset); 533 534 fit = fit_buf->fit; 535 536 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n", 537 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No"); 538 539 if (read_fit->offset > fit->len) { 540 func_ret_status = 3 /* Invalid Input Parameters */; 541 goto exit; 542 } 543 544 /* It is the first time to read FIT. */ 545 if (!read_fit->offset) { 546 fit_buf->dirty = false; 547 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ 548 func_ret_status = 0x100 /* fit changed */; 549 goto exit; 550 } 551 552 func_ret_status = 0 /* Success */; 553 read_len = MIN(fit->len - read_fit->offset, 554 4096 - sizeof(NvdimmFuncReadFITOut)); 555 556 exit: 557 size = sizeof(NvdimmFuncReadFITOut) + read_len; 558 read_fit_out = g_malloc(size); 559 560 read_fit_out->len = cpu_to_le32(size); 561 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); 562 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); 563 564 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); 565 566 g_free(read_fit_out); 567 } 568 569 static void nvdimm_dsm_reserved_root(AcpiNVDIMMState *state, NvdimmDsmIn *in, 570 hwaddr dsm_mem_addr) 571 { 572 switch (in->function) { 573 case 0x0: 574 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); 575 return; 576 case 0x1 /*Read FIT */: 577 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); 578 return; 579 } 580 581 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 582 } 583 584 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 585 { 586 /* 587 * function 0 is called to inquire which functions are supported by 588 * OSPM 589 */ 590 if (!in->function) { 591 nvdimm_dsm_function0(0 /* No function supported other than 592 function 0 */, dsm_mem_addr); 593 return; 594 } 595 596 /* No function except function 0 is supported yet. */ 597 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 598 } 599 600 /* 601 * the max transfer size is the max size transferred by both a 602 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' 603 * function. 604 */ 605 static uint32_t nvdimm_get_max_xfer_label_size(void) 606 { 607 uint32_t max_get_size, max_set_size, dsm_memory_size = 4096; 608 609 /* 610 * the max data ACPI can read one time which is transferred by 611 * the response of 'Get Namespace Label Data' function. 612 */ 613 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); 614 615 /* 616 * the max data ACPI can write one time which is transferred by 617 * 'Set Namespace Label Data' function. 618 */ 619 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - 620 sizeof(NvdimmFuncSetLabelDataIn); 621 622 return MIN(max_get_size, max_set_size); 623 } 624 625 /* 626 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). 627 * 628 * It gets the size of Namespace Label data area and the max data size 629 * that Get/Set Namespace Label Data functions can transfer. 630 */ 631 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) 632 { 633 NvdimmFuncGetLabelSizeOut label_size_out = { 634 .len = cpu_to_le32(sizeof(label_size_out)), 635 }; 636 uint32_t label_size, mxfer; 637 638 label_size = nvdimm->label_size; 639 mxfer = nvdimm_get_max_xfer_label_size(); 640 641 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer); 642 643 label_size_out.func_ret_status = cpu_to_le32(0 /* Success */); 644 label_size_out.label_size = cpu_to_le32(label_size); 645 label_size_out.max_xfer = cpu_to_le32(mxfer); 646 647 cpu_physical_memory_write(dsm_mem_addr, &label_size_out, 648 sizeof(label_size_out)); 649 } 650 651 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, 652 uint32_t offset, uint32_t length) 653 { 654 uint32_t ret = 3 /* Invalid Input Parameters */; 655 656 if (offset + length < offset) { 657 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset, 658 length); 659 return ret; 660 } 661 662 if (nvdimm->label_size < offset + length) { 663 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n", 664 offset + length, nvdimm->label_size); 665 return ret; 666 } 667 668 if (length > nvdimm_get_max_xfer_label_size()) { 669 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n", 670 length, nvdimm_get_max_xfer_label_size()); 671 return ret; 672 } 673 674 return 0 /* Success */; 675 } 676 677 /* 678 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). 679 */ 680 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 681 hwaddr dsm_mem_addr) 682 { 683 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 684 NvdimmFuncGetLabelDataIn *get_label_data; 685 NvdimmFuncGetLabelDataOut *get_label_data_out; 686 uint32_t status; 687 int size; 688 689 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; 690 le32_to_cpus(&get_label_data->offset); 691 le32_to_cpus(&get_label_data->length); 692 693 nvdimm_debug("Read Label Data: offset %#x length %#x.\n", 694 get_label_data->offset, get_label_data->length); 695 696 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, 697 get_label_data->length); 698 if (status != 0 /* Success */) { 699 nvdimm_dsm_no_payload(status, dsm_mem_addr); 700 return; 701 } 702 703 size = sizeof(*get_label_data_out) + get_label_data->length; 704 assert(size <= 4096); 705 get_label_data_out = g_malloc(size); 706 707 get_label_data_out->len = cpu_to_le32(size); 708 get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */); 709 nvc->read_label_data(nvdimm, get_label_data_out->out_buf, 710 get_label_data->length, get_label_data->offset); 711 712 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); 713 g_free(get_label_data_out); 714 } 715 716 /* 717 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). 718 */ 719 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 720 hwaddr dsm_mem_addr) 721 { 722 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 723 NvdimmFuncSetLabelDataIn *set_label_data; 724 uint32_t status; 725 726 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; 727 728 le32_to_cpus(&set_label_data->offset); 729 le32_to_cpus(&set_label_data->length); 730 731 nvdimm_debug("Write Label Data: offset %#x length %#x.\n", 732 set_label_data->offset, set_label_data->length); 733 734 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, 735 set_label_data->length); 736 if (status != 0 /* Success */) { 737 nvdimm_dsm_no_payload(status, dsm_mem_addr); 738 return; 739 } 740 741 assert(offsetof(NvdimmDsmIn, arg3) + 742 sizeof(*set_label_data) + set_label_data->length <= 4096); 743 744 nvc->write_label_data(nvdimm, set_label_data->in_buf, 745 set_label_data->length, set_label_data->offset); 746 nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr); 747 } 748 749 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 750 { 751 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); 752 753 /* See the comments in nvdimm_dsm_root(). */ 754 if (!in->function) { 755 uint32_t supported_func = 0; 756 757 if (nvdimm && nvdimm->label_size) { 758 supported_func |= 0x1 /* Bit 0 indicates whether there is 759 support for any functions other 760 than function 0. */ | 761 1 << 4 /* Get Namespace Label Size */ | 762 1 << 5 /* Get Namespace Label Data */ | 763 1 << 6 /* Set Namespace Label Data */; 764 } 765 nvdimm_dsm_function0(supported_func, dsm_mem_addr); 766 return; 767 } 768 769 if (!nvdimm) { 770 nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */, 771 dsm_mem_addr); 772 return; 773 } 774 775 /* Encode DSM function according to DSM Spec Rev1. */ 776 switch (in->function) { 777 case 4 /* Get Namespace Label Size */: 778 if (nvdimm->label_size) { 779 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); 780 return; 781 } 782 break; 783 case 5 /* Get Namespace Label Data */: 784 if (nvdimm->label_size) { 785 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); 786 return; 787 } 788 break; 789 case 0x6 /* Set Namespace Label Data */: 790 if (nvdimm->label_size) { 791 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); 792 return; 793 } 794 break; 795 } 796 797 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 798 } 799 800 static uint64_t 801 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) 802 { 803 nvdimm_debug("BUG: we never read _DSM IO Port.\n"); 804 return 0; 805 } 806 807 static void 808 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 809 { 810 AcpiNVDIMMState *state = opaque; 811 NvdimmDsmIn *in; 812 hwaddr dsm_mem_addr = val; 813 814 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr); 815 816 /* 817 * The DSM memory is mapped to guest address space so an evil guest 818 * can change its content while we are doing DSM emulation. Avoid 819 * this by copying DSM memory to QEMU local memory. 820 */ 821 in = g_new(NvdimmDsmIn, 1); 822 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); 823 824 le32_to_cpus(&in->revision); 825 le32_to_cpus(&in->function); 826 le32_to_cpus(&in->handle); 827 828 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision, 829 in->handle, in->function); 830 831 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { 832 nvdimm_debug("Revision %#x is not supported, expect %#x.\n", 833 in->revision, 0x1); 834 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 835 goto exit; 836 } 837 838 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { 839 nvdimm_dsm_reserved_root(state, in, dsm_mem_addr); 840 goto exit; 841 } 842 843 /* Handle 0 is reserved for NVDIMM Root Device. */ 844 if (!in->handle) { 845 nvdimm_dsm_root(in, dsm_mem_addr); 846 goto exit; 847 } 848 849 nvdimm_dsm_device(in, dsm_mem_addr); 850 851 exit: 852 g_free(in); 853 } 854 855 static const MemoryRegionOps nvdimm_dsm_ops = { 856 .read = nvdimm_dsm_read, 857 .write = nvdimm_dsm_write, 858 .endianness = DEVICE_LITTLE_ENDIAN, 859 .valid = { 860 .min_access_size = 4, 861 .max_access_size = 4, 862 }, 863 }; 864 865 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) 866 { 867 if (dev->hotplugged) { 868 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); 869 } 870 } 871 872 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io, 873 FWCfgState *fw_cfg, Object *owner) 874 { 875 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, 876 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN); 877 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr); 878 879 state->dsm_mem = g_array_new(false, true /* clear */, 1); 880 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); 881 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, 882 state->dsm_mem->len); 883 884 nvdimm_init_fit_buffer(&state->fit_buf); 885 } 886 887 #define NVDIMM_COMMON_DSM "NCAL" 888 #define NVDIMM_ACPI_MEM_ADDR "MEMA" 889 890 #define NVDIMM_DSM_MEMORY "NRAM" 891 #define NVDIMM_DSM_IOPORT "NPIO" 892 893 #define NVDIMM_DSM_NOTIFY "NTFI" 894 #define NVDIMM_DSM_HANDLE "HDLE" 895 #define NVDIMM_DSM_REVISION "REVS" 896 #define NVDIMM_DSM_FUNCTION "FUNC" 897 #define NVDIMM_DSM_ARG3 "FARG" 898 899 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" 900 #define NVDIMM_DSM_OUT_BUF "ODAT" 901 902 #define NVDIMM_DSM_RFIT_STATUS "RSTA" 903 904 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" 905 906 static void nvdimm_build_common_dsm(Aml *dev) 907 { 908 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; 909 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; 910 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; 911 uint8_t byte_list[1]; 912 913 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); 914 uuid = aml_arg(0); 915 function = aml_arg(2); 916 handle = aml_arg(4); 917 dsm_mem = aml_local(6); 918 dsm_out_buf = aml_local(7); 919 920 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); 921 922 /* map DSM memory and IO into ACPI namespace. */ 923 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO, 924 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN)); 925 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, 926 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); 927 928 /* 929 * DSM notifier: 930 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to 931 * emulate the access. 932 * 933 * It is the IO port so that accessing them will cause VM-exit, the 934 * control will be transferred to QEMU. 935 */ 936 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, 937 AML_PRESERVE); 938 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, 939 sizeof(uint32_t) * BITS_PER_BYTE)); 940 aml_append(method, field); 941 942 /* 943 * DSM input: 944 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call 945 * happens on NVDIMM Root Device. 946 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. 947 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. 948 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package 949 * containing function-specific arguments. 950 * 951 * They are RAM mapping on host so that these accesses never cause 952 * VM-EXIT. 953 */ 954 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 955 AML_PRESERVE); 956 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, 957 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); 958 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, 959 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); 960 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, 961 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); 962 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, 963 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); 964 aml_append(method, field); 965 966 /* 967 * DSM output: 968 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. 969 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. 970 * 971 * Since the page is reused by both input and out, the input data 972 * will be lost after storing new result into ODAT so we should fetch 973 * all the input data before writing the result. 974 */ 975 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, 976 AML_PRESERVE); 977 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, 978 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); 979 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, 980 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); 981 aml_append(method, field); 982 983 /* 984 * do not support any method if DSM memory address has not been 985 * patched. 986 */ 987 unpatched = aml_equal(dsm_mem, aml_int(0x0)); 988 989 expected_uuid = aml_local(0); 990 991 ifctx = aml_if(aml_equal(handle, aml_int(0x0))); 992 aml_append(ifctx, aml_store( 993 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") 994 /* UUID for NVDIMM Root Device */, expected_uuid)); 995 aml_append(method, ifctx); 996 elsectx = aml_else(); 997 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); 998 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID 999 /* UUID for QEMU internal use */), expected_uuid)); 1000 aml_append(elsectx, ifctx); 1001 elsectx2 = aml_else(); 1002 aml_append(elsectx2, aml_store( 1003 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") 1004 /* UUID for NVDIMM Devices */, expected_uuid)); 1005 aml_append(elsectx, elsectx2); 1006 aml_append(method, elsectx); 1007 1008 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); 1009 1010 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); 1011 1012 /* 1013 * function 0 is called to inquire what functions are supported by 1014 * OSPM 1015 */ 1016 ifctx = aml_if(aml_equal(function, aml_int(0))); 1017 byte_list[0] = 0 /* No function Supported */; 1018 aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); 1019 aml_append(unsupport, ifctx); 1020 1021 /* No function is supported yet. */ 1022 byte_list[0] = 1 /* Not Supported */; 1023 aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); 1024 aml_append(method, unsupport); 1025 1026 /* 1027 * The HDLE indicates the DSM function is issued from which device, 1028 * it reserves 0 for root device and is the handle for NVDIMM devices. 1029 * See the comments in nvdimm_slot_to_handle(). 1030 */ 1031 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); 1032 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); 1033 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION))); 1034 1035 /* 1036 * The fourth parameter (Arg3) of _DSM is a package which contains 1037 * a buffer, the layout of the buffer is specified by UUID (Arg0), 1038 * Revision ID (Arg1) and Function Index (Arg2) which are documented 1039 * in the DSM Spec. 1040 */ 1041 pckg = aml_arg(3); 1042 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), 1043 aml_int(4 /* Package */)) /* It is a Package? */, 1044 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, 1045 NULL)); 1046 1047 pckg_index = aml_local(2); 1048 pckg_buf = aml_local(3); 1049 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); 1050 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); 1051 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); 1052 aml_append(method, ifctx); 1053 1054 /* 1055 * tell QEMU about the real address of DSM memory, then QEMU 1056 * gets the control and fills the result in DSM memory. 1057 */ 1058 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); 1059 1060 dsm_out_buf_size = aml_local(1); 1061 /* RLEN is not included in the payload returned to guest. */ 1062 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), 1063 aml_int(4), dsm_out_buf_size)); 1064 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), 1065 dsm_out_buf_size)); 1066 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), 1067 aml_int(0), dsm_out_buf_size, "OBUF")); 1068 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"), 1069 dsm_out_buf)); 1070 aml_append(method, aml_return(dsm_out_buf)); 1071 aml_append(dev, method); 1072 } 1073 1074 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) 1075 { 1076 Aml *method; 1077 1078 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 1079 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), 1080 aml_arg(1), aml_arg(2), aml_arg(3), 1081 aml_int(handle)))); 1082 aml_append(dev, method); 1083 } 1084 1085 static void nvdimm_build_fit(Aml *dev) 1086 { 1087 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; 1088 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; 1089 1090 buf = aml_local(0); 1091 buf_size = aml_local(1); 1092 fit = aml_local(2); 1093 1094 aml_append(dev, aml_create_dword_field(aml_buffer(4, NULL), 1095 aml_int(0), NVDIMM_DSM_RFIT_STATUS)); 1096 1097 /* build helper function, RFIT. */ 1098 method = aml_method("RFIT", 1, AML_SERIALIZED); 1099 aml_append(method, aml_create_dword_field(aml_buffer(4, NULL), 1100 aml_int(0), "OFST")); 1101 1102 /* prepare input package. */ 1103 pkg = aml_package(1); 1104 aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); 1105 aml_append(pkg, aml_name("OFST")); 1106 1107 /* call Read_FIT function. */ 1108 call_result = aml_call5(NVDIMM_COMMON_DSM, 1109 aml_touuid(NVDIMM_QEMU_RSVD_UUID), 1110 aml_int(1) /* Revision 1 */, 1111 aml_int(0x1) /* Read FIT */, 1112 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); 1113 aml_append(method, aml_store(call_result, buf)); 1114 1115 /* handle _DSM result. */ 1116 aml_append(method, aml_create_dword_field(buf, 1117 aml_int(0) /* offset at byte 0 */, "STAU")); 1118 1119 aml_append(method, aml_store(aml_name("STAU"), 1120 aml_name(NVDIMM_DSM_RFIT_STATUS))); 1121 1122 /* if something is wrong during _DSM. */ 1123 ifcond = aml_equal(aml_int(0 /* Success */), aml_name("STAU")); 1124 ifctx = aml_if(aml_lnot(ifcond)); 1125 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1126 aml_append(method, ifctx); 1127 1128 aml_append(method, aml_store(aml_sizeof(buf), buf_size)); 1129 aml_append(method, aml_subtract(buf_size, 1130 aml_int(4) /* the size of "STAU" */, 1131 buf_size)); 1132 1133 /* if we read the end of fit. */ 1134 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1135 aml_append(ifctx, aml_return(aml_buffer(0, NULL))); 1136 aml_append(method, ifctx); 1137 1138 aml_append(method, aml_store(aml_shiftleft(buf_size, aml_int(3)), 1139 buf_size)); 1140 aml_append(method, aml_create_field(buf, 1141 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ 1142 buf_size, "BUFF")); 1143 aml_append(method, aml_return(aml_name("BUFF"))); 1144 aml_append(dev, method); 1145 1146 /* build _FIT. */ 1147 method = aml_method("_FIT", 0, AML_SERIALIZED); 1148 offset = aml_local(3); 1149 1150 aml_append(method, aml_store(aml_buffer(0, NULL), fit)); 1151 aml_append(method, aml_store(aml_int(0), offset)); 1152 1153 whilectx = aml_while(aml_int(1)); 1154 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); 1155 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); 1156 1157 /* 1158 * if fit buffer was changed during RFIT, read from the beginning 1159 * again. 1160 */ 1161 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), 1162 aml_int(0x100 /* fit changed */))); 1163 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); 1164 aml_append(ifctx, aml_store(aml_int(0), offset)); 1165 aml_append(whilectx, ifctx); 1166 1167 elsectx = aml_else(); 1168 1169 /* finish fit read if no data is read out. */ 1170 ifctx = aml_if(aml_equal(buf_size, aml_int(0))); 1171 aml_append(ifctx, aml_return(fit)); 1172 aml_append(elsectx, ifctx); 1173 1174 /* update the offset. */ 1175 aml_append(elsectx, aml_add(offset, buf_size, offset)); 1176 /* append the data we read out to the fit buffer. */ 1177 aml_append(elsectx, aml_concatenate(fit, buf, fit)); 1178 aml_append(whilectx, elsectx); 1179 aml_append(method, whilectx); 1180 1181 aml_append(dev, method); 1182 } 1183 1184 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) 1185 { 1186 uint32_t slot; 1187 1188 for (slot = 0; slot < ram_slots; slot++) { 1189 uint32_t handle = nvdimm_slot_to_handle(slot); 1190 Aml *nvdimm_dev; 1191 1192 nvdimm_dev = aml_device("NV%02X", slot); 1193 1194 /* 1195 * ACPI 6.0: 9.20 NVDIMM Devices: 1196 * 1197 * _ADR object that is used to supply OSPM with unique address 1198 * of the NVDIMM device. This is done by returning the NFIT Device 1199 * handle that is used to identify the associated entries in ACPI 1200 * table NFIT or _FIT. 1201 */ 1202 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); 1203 1204 nvdimm_build_device_dsm(nvdimm_dev, handle); 1205 aml_append(root_dev, nvdimm_dev); 1206 } 1207 } 1208 1209 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, 1210 BIOSLinker *linker, GArray *dsm_dma_arrea, 1211 uint32_t ram_slots) 1212 { 1213 Aml *ssdt, *sb_scope, *dev; 1214 int mem_addr_offset, nvdimm_ssdt; 1215 1216 acpi_add_table(table_offsets, table_data); 1217 1218 ssdt = init_aml_allocator(); 1219 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); 1220 1221 sb_scope = aml_scope("\\_SB"); 1222 1223 dev = aml_device("NVDR"); 1224 1225 /* 1226 * ACPI 6.0: 9.20 NVDIMM Devices: 1227 * 1228 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root 1229 * NVDIMM interface device. Platform firmware is required to contain one 1230 * such device in _SB scope if NVDIMMs support is exposed by platform to 1231 * OSPM. 1232 * For each NVDIMM present or intended to be supported by platform, 1233 * platform firmware also exposes an ACPI Namespace Device under the 1234 * root device. 1235 */ 1236 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); 1237 1238 nvdimm_build_common_dsm(dev); 1239 1240 /* 0 is reserved for root device. */ 1241 nvdimm_build_device_dsm(dev, 0); 1242 nvdimm_build_fit(dev); 1243 1244 nvdimm_build_nvdimm_devices(dev, ram_slots); 1245 1246 aml_append(sb_scope, dev); 1247 aml_append(ssdt, sb_scope); 1248 1249 nvdimm_ssdt = table_data->len; 1250 1251 /* copy AML table into ACPI tables blob and patch header there */ 1252 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); 1253 mem_addr_offset = build_append_named_dword(table_data, 1254 NVDIMM_ACPI_MEM_ADDR); 1255 1256 bios_linker_loader_alloc(linker, 1257 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea, 1258 sizeof(NvdimmDsmIn), false /* high memory */); 1259 bios_linker_loader_add_pointer(linker, 1260 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), 1261 NVDIMM_DSM_MEM_FILE, 0); 1262 build_header(linker, table_data, 1263 (void *)(table_data->data + nvdimm_ssdt), 1264 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM"); 1265 free_aml_allocator(); 1266 } 1267 1268 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, 1269 BIOSLinker *linker, AcpiNVDIMMState *state, 1270 uint32_t ram_slots) 1271 { 1272 GSList *device_list; 1273 1274 /* no nvdimm device can be plugged. */ 1275 if (!ram_slots) { 1276 return; 1277 } 1278 1279 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem, 1280 ram_slots); 1281 1282 device_list = nvdimm_get_plugged_device_list(); 1283 /* no NVDIMM device is plugged. */ 1284 if (!device_list) { 1285 return; 1286 } 1287 1288 nvdimm_build_nfit(state, table_offsets, table_data, linker); 1289 g_slist_free(device_list); 1290 } 1291