1 /* 2 * NVDIMM ACPI Implementation 3 * 4 * Copyright(C) 2015 Intel Corporation. 5 * 6 * Author: 7 * Xiao Guangrong <guangrong.xiao@linux.intel.com> 8 * 9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 10 * and the DSM specification can be found at: 11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf 12 * 13 * Currently, it only supports PMEM Virtualization. 14 * 15 * This library is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU Lesser General Public 17 * License as published by the Free Software Foundation; either 18 * version 2 of the License, or (at your option) any later version. 19 * 20 * This library is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * Lesser General Public License for more details. 24 * 25 * You should have received a copy of the GNU Lesser General Public 26 * License along with this library; if not, see <http://www.gnu.org/licenses/> 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/acpi/acpi.h" 31 #include "hw/acpi/aml-build.h" 32 #include "hw/acpi/bios-linker-loader.h" 33 #include "hw/nvram/fw_cfg.h" 34 #include "hw/mem/nvdimm.h" 35 36 static int nvdimm_plugged_device_list(Object *obj, void *opaque) 37 { 38 GSList **list = opaque; 39 40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) { 41 DeviceState *dev = DEVICE(obj); 42 43 if (dev->realized) { /* only realized NVDIMMs matter */ 44 *list = g_slist_append(*list, DEVICE(obj)); 45 } 46 } 47 48 object_child_foreach(obj, nvdimm_plugged_device_list, opaque); 49 return 0; 50 } 51 52 /* 53 * inquire plugged NVDIMM devices and link them into the list which is 54 * returned to the caller. 55 * 56 * Note: it is the caller's responsibility to free the list to avoid 57 * memory leak. 58 */ 59 static GSList *nvdimm_get_plugged_device_list(void) 60 { 61 GSList *list = NULL; 62 63 object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list, 64 &list); 65 return list; 66 } 67 68 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ 69 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \ 70 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \ 71 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) } 72 73 /* 74 * define Byte Addressable Persistent Memory (PM) Region according to 75 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. 76 */ 77 static const uint8_t nvdimm_nfit_spa_uuid[] = 78 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 79 0x18, 0xb7, 0x8c, 0xdb); 80 81 /* 82 * NVDIMM Firmware Interface Table 83 * @signature: "NFIT" 84 * 85 * It provides information that allows OSPM to enumerate NVDIMM present in 86 * the platform and associate system physical address ranges created by the 87 * NVDIMMs. 88 * 89 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) 90 */ 91 struct NvdimmNfitHeader { 92 ACPI_TABLE_HEADER_DEF 93 uint32_t reserved; 94 } QEMU_PACKED; 95 typedef struct NvdimmNfitHeader NvdimmNfitHeader; 96 97 /* 98 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware 99 * Interface Table (NFIT). 100 */ 101 102 /* 103 * System Physical Address Range Structure 104 * 105 * It describes the system physical address ranges occupied by NVDIMMs and 106 * the types of the regions. 107 */ 108 struct NvdimmNfitSpa { 109 uint16_t type; 110 uint16_t length; 111 uint16_t spa_index; 112 uint16_t flags; 113 uint32_t reserved; 114 uint32_t proximity_domain; 115 uint8_t type_guid[16]; 116 uint64_t spa_base; 117 uint64_t spa_length; 118 uint64_t mem_attr; 119 } QEMU_PACKED; 120 typedef struct NvdimmNfitSpa NvdimmNfitSpa; 121 122 /* 123 * Memory Device to System Physical Address Range Mapping Structure 124 * 125 * It enables identifying each NVDIMM region and the corresponding SPA 126 * describing the memory interleave 127 */ 128 struct NvdimmNfitMemDev { 129 uint16_t type; 130 uint16_t length; 131 uint32_t nfit_handle; 132 uint16_t phys_id; 133 uint16_t region_id; 134 uint16_t spa_index; 135 uint16_t dcr_index; 136 uint64_t region_len; 137 uint64_t region_offset; 138 uint64_t region_dpa; 139 uint16_t interleave_index; 140 uint16_t interleave_ways; 141 uint16_t flags; 142 uint16_t reserved; 143 } QEMU_PACKED; 144 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; 145 146 /* 147 * NVDIMM Control Region Structure 148 * 149 * It describes the NVDIMM and if applicable, Block Control Window. 150 */ 151 struct NvdimmNfitControlRegion { 152 uint16_t type; 153 uint16_t length; 154 uint16_t dcr_index; 155 uint16_t vendor_id; 156 uint16_t device_id; 157 uint16_t revision_id; 158 uint16_t sub_vendor_id; 159 uint16_t sub_device_id; 160 uint16_t sub_revision_id; 161 uint8_t reserved[6]; 162 uint32_t serial_number; 163 uint16_t fic; 164 uint16_t num_bcw; 165 uint64_t bcw_size; 166 uint64_t cmd_offset; 167 uint64_t cmd_size; 168 uint64_t status_offset; 169 uint64_t status_size; 170 uint16_t flags; 171 uint8_t reserved2[6]; 172 } QEMU_PACKED; 173 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; 174 175 /* 176 * Module serial number is a unique number for each device. We use the 177 * slot id of NVDIMM device to generate this number so that each device 178 * associates with a different number. 179 * 180 * 0x123456 is a magic number we arbitrarily chose. 181 */ 182 static uint32_t nvdimm_slot_to_sn(int slot) 183 { 184 return 0x123456 + slot; 185 } 186 187 /* 188 * handle is used to uniquely associate nfit_memdev structure with NVDIMM 189 * ACPI device - nfit_memdev.nfit_handle matches with the value returned 190 * by ACPI device _ADR method. 191 * 192 * We generate the handle with the slot id of NVDIMM device and reserve 193 * 0 for NVDIMM root device. 194 */ 195 static uint32_t nvdimm_slot_to_handle(int slot) 196 { 197 return slot + 1; 198 } 199 200 /* 201 * index uniquely identifies the structure, 0 is reserved which indicates 202 * that the structure is not valid or the associated structure is not 203 * present. 204 * 205 * Each NVDIMM device needs two indexes, one for nfit_spa and another for 206 * nfit_dc which are generated by the slot id of NVDIMM device. 207 */ 208 static uint16_t nvdimm_slot_to_spa_index(int slot) 209 { 210 return (slot + 1) << 1; 211 } 212 213 /* See the comments of nvdimm_slot_to_spa_index(). */ 214 static uint32_t nvdimm_slot_to_dcr_index(int slot) 215 { 216 return nvdimm_slot_to_spa_index(slot) + 1; 217 } 218 219 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) 220 { 221 NVDIMMDevice *nvdimm = NULL; 222 GSList *list, *device_list = nvdimm_get_plugged_device_list(); 223 224 for (list = device_list; list; list = list->next) { 225 NVDIMMDevice *nvd = list->data; 226 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, 227 NULL); 228 229 if (nvdimm_slot_to_handle(slot) == handle) { 230 nvdimm = nvd; 231 break; 232 } 233 } 234 235 g_slist_free(device_list); 236 return nvdimm; 237 } 238 239 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ 240 static void 241 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) 242 { 243 NvdimmNfitSpa *nfit_spa; 244 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP, 245 NULL); 246 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 247 NULL); 248 uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, 249 NULL); 250 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 251 NULL); 252 253 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); 254 255 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range 256 Structure */); 257 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); 258 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 259 260 /* 261 * Control region is strict as all the device info, such as SN, index, 262 * is associated with slot id. 263 */ 264 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for 265 management during hot add/online 266 operation */ | 267 2 /* Data in Proximity Domain field is 268 valid*/); 269 270 /* NUMA node. */ 271 nfit_spa->proximity_domain = cpu_to_le32(node); 272 /* the region reported as PMEM. */ 273 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, 274 sizeof(nvdimm_nfit_spa_uuid)); 275 276 nfit_spa->spa_base = cpu_to_le64(addr); 277 nfit_spa->spa_length = cpu_to_le64(size); 278 279 /* It is the PMEM and can be cached as writeback. */ 280 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 281 0x8000ULL /* EFI_MEMORY_NV */); 282 } 283 284 /* 285 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping 286 * Structure 287 */ 288 static void 289 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) 290 { 291 NvdimmNfitMemDev *nfit_memdev; 292 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP, 293 NULL); 294 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP, 295 NULL); 296 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 297 NULL); 298 uint32_t handle = nvdimm_slot_to_handle(slot); 299 300 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); 301 302 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address 303 Range Map Structure*/); 304 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); 305 nfit_memdev->nfit_handle = cpu_to_le32(handle); 306 307 /* 308 * associate memory device with System Physical Address Range 309 * Structure. 310 */ 311 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); 312 /* associate memory device with Control Region Structure. */ 313 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 314 315 /* The memory region on the device. */ 316 nfit_memdev->region_len = cpu_to_le64(size); 317 nfit_memdev->region_dpa = cpu_to_le64(addr); 318 319 /* Only one interleave for PMEM. */ 320 nfit_memdev->interleave_ways = cpu_to_le16(1); 321 } 322 323 /* 324 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. 325 */ 326 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) 327 { 328 NvdimmNfitControlRegion *nfit_dcr; 329 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 330 NULL); 331 uint32_t sn = nvdimm_slot_to_sn(slot); 332 333 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); 334 335 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); 336 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); 337 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); 338 339 /* vendor: Intel. */ 340 nfit_dcr->vendor_id = cpu_to_le16(0x8086); 341 nfit_dcr->device_id = cpu_to_le16(1); 342 343 /* The _DSM method is following Intel's DSM specification. */ 344 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported 345 in ACPI 6.0 is 1. */); 346 nfit_dcr->serial_number = cpu_to_le32(sn); 347 nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter 348 2: NVDIMM Device Specific Method 349 (DSM) in DSM Spec Rev1.*/); 350 } 351 352 static GArray *nvdimm_build_device_structure(GSList *device_list) 353 { 354 GArray *structures = g_array_new(false, true /* clear */, 1); 355 356 for (; device_list; device_list = device_list->next) { 357 DeviceState *dev = device_list->data; 358 359 /* build System Physical Address Range Structure. */ 360 nvdimm_build_structure_spa(structures, dev); 361 362 /* 363 * build Memory Device to System Physical Address Range Mapping 364 * Structure. 365 */ 366 nvdimm_build_structure_memdev(structures, dev); 367 368 /* build NVDIMM Control Region Structure. */ 369 nvdimm_build_structure_dcr(structures, dev); 370 } 371 372 return structures; 373 } 374 375 static void nvdimm_build_nfit(GSList *device_list, GArray *table_offsets, 376 GArray *table_data, BIOSLinker *linker) 377 { 378 GArray *structures = nvdimm_build_device_structure(device_list); 379 unsigned int header; 380 381 acpi_add_table(table_offsets, table_data); 382 383 /* NFIT header. */ 384 header = table_data->len; 385 acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); 386 /* NVDIMM device structures. */ 387 g_array_append_vals(table_data, structures->data, structures->len); 388 389 build_header(linker, table_data, 390 (void *)(table_data->data + header), "NFIT", 391 sizeof(NvdimmNfitHeader) + structures->len, 1, NULL, NULL); 392 g_array_free(structures, true); 393 } 394 395 struct NvdimmDsmIn { 396 uint32_t handle; 397 uint32_t revision; 398 uint32_t function; 399 /* the remaining size in the page is used by arg3. */ 400 union { 401 uint8_t arg3[4084]; 402 }; 403 } QEMU_PACKED; 404 typedef struct NvdimmDsmIn NvdimmDsmIn; 405 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096); 406 407 struct NvdimmDsmOut { 408 /* the size of buffer filled by QEMU. */ 409 uint32_t len; 410 uint8_t data[4092]; 411 } QEMU_PACKED; 412 typedef struct NvdimmDsmOut NvdimmDsmOut; 413 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096); 414 415 struct NvdimmDsmFunc0Out { 416 /* the size of buffer filled by QEMU. */ 417 uint32_t len; 418 uint32_t supported_func; 419 } QEMU_PACKED; 420 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; 421 422 struct NvdimmDsmFuncNoPayloadOut { 423 /* the size of buffer filled by QEMU. */ 424 uint32_t len; 425 uint32_t func_ret_status; 426 } QEMU_PACKED; 427 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; 428 429 struct NvdimmFuncGetLabelSizeOut { 430 /* the size of buffer filled by QEMU. */ 431 uint32_t len; 432 uint32_t func_ret_status; /* return status code. */ 433 uint32_t label_size; /* the size of label data area. */ 434 /* 435 * Maximum size of the namespace label data length supported by 436 * the platform in Get/Set Namespace Label Data functions. 437 */ 438 uint32_t max_xfer; 439 } QEMU_PACKED; 440 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; 441 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096); 442 443 struct NvdimmFuncGetLabelDataIn { 444 uint32_t offset; /* the offset in the namespace label data area. */ 445 uint32_t length; /* the size of data is to be read via the function. */ 446 } QEMU_PACKED; 447 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; 448 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + 449 offsetof(NvdimmDsmIn, arg3) > 4096); 450 451 struct NvdimmFuncGetLabelDataOut { 452 /* the size of buffer filled by QEMU. */ 453 uint32_t len; 454 uint32_t func_ret_status; /* return status code. */ 455 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */ 456 } QEMU_PACKED; 457 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; 458 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096); 459 460 struct NvdimmFuncSetLabelDataIn { 461 uint32_t offset; /* the offset in the namespace label data area. */ 462 uint32_t length; /* the size of data is to be written via the function. */ 463 uint8_t in_buf[0]; /* the data written to label data area. */ 464 } QEMU_PACKED; 465 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; 466 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + 467 offsetof(NvdimmDsmIn, arg3) > 4096); 468 469 static void 470 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) 471 { 472 NvdimmDsmFunc0Out func0 = { 473 .len = cpu_to_le32(sizeof(func0)), 474 .supported_func = cpu_to_le32(supported_func), 475 }; 476 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); 477 } 478 479 static void 480 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) 481 { 482 NvdimmDsmFuncNoPayloadOut out = { 483 .len = cpu_to_le32(sizeof(out)), 484 .func_ret_status = cpu_to_le32(func_ret_status), 485 }; 486 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); 487 } 488 489 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 490 { 491 /* 492 * function 0 is called to inquire which functions are supported by 493 * OSPM 494 */ 495 if (!in->function) { 496 nvdimm_dsm_function0(0 /* No function supported other than 497 function 0 */, dsm_mem_addr); 498 return; 499 } 500 501 /* No function except function 0 is supported yet. */ 502 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 503 } 504 505 /* 506 * the max transfer size is the max size transferred by both a 507 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' 508 * function. 509 */ 510 static uint32_t nvdimm_get_max_xfer_label_size(void) 511 { 512 uint32_t max_get_size, max_set_size, dsm_memory_size = 4096; 513 514 /* 515 * the max data ACPI can read one time which is transferred by 516 * the response of 'Get Namespace Label Data' function. 517 */ 518 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); 519 520 /* 521 * the max data ACPI can write one time which is transferred by 522 * 'Set Namespace Label Data' function. 523 */ 524 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - 525 sizeof(NvdimmFuncSetLabelDataIn); 526 527 return MIN(max_get_size, max_set_size); 528 } 529 530 /* 531 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). 532 * 533 * It gets the size of Namespace Label data area and the max data size 534 * that Get/Set Namespace Label Data functions can transfer. 535 */ 536 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) 537 { 538 NvdimmFuncGetLabelSizeOut label_size_out = { 539 .len = cpu_to_le32(sizeof(label_size_out)), 540 }; 541 uint32_t label_size, mxfer; 542 543 label_size = nvdimm->label_size; 544 mxfer = nvdimm_get_max_xfer_label_size(); 545 546 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer); 547 548 label_size_out.func_ret_status = cpu_to_le32(0 /* Success */); 549 label_size_out.label_size = cpu_to_le32(label_size); 550 label_size_out.max_xfer = cpu_to_le32(mxfer); 551 552 cpu_physical_memory_write(dsm_mem_addr, &label_size_out, 553 sizeof(label_size_out)); 554 } 555 556 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, 557 uint32_t offset, uint32_t length) 558 { 559 uint32_t ret = 3 /* Invalid Input Parameters */; 560 561 if (offset + length < offset) { 562 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset, 563 length); 564 return ret; 565 } 566 567 if (nvdimm->label_size < offset + length) { 568 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n", 569 offset + length, nvdimm->label_size); 570 return ret; 571 } 572 573 if (length > nvdimm_get_max_xfer_label_size()) { 574 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n", 575 length, nvdimm_get_max_xfer_label_size()); 576 return ret; 577 } 578 579 return 0 /* Success */; 580 } 581 582 /* 583 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). 584 */ 585 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 586 hwaddr dsm_mem_addr) 587 { 588 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 589 NvdimmFuncGetLabelDataIn *get_label_data; 590 NvdimmFuncGetLabelDataOut *get_label_data_out; 591 uint32_t status; 592 int size; 593 594 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; 595 le32_to_cpus(&get_label_data->offset); 596 le32_to_cpus(&get_label_data->length); 597 598 nvdimm_debug("Read Label Data: offset %#x length %#x.\n", 599 get_label_data->offset, get_label_data->length); 600 601 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, 602 get_label_data->length); 603 if (status != 0 /* Success */) { 604 nvdimm_dsm_no_payload(status, dsm_mem_addr); 605 return; 606 } 607 608 size = sizeof(*get_label_data_out) + get_label_data->length; 609 assert(size <= 4096); 610 get_label_data_out = g_malloc(size); 611 612 get_label_data_out->len = cpu_to_le32(size); 613 get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */); 614 nvc->read_label_data(nvdimm, get_label_data_out->out_buf, 615 get_label_data->length, get_label_data->offset); 616 617 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); 618 g_free(get_label_data_out); 619 } 620 621 /* 622 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). 623 */ 624 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, 625 hwaddr dsm_mem_addr) 626 { 627 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); 628 NvdimmFuncSetLabelDataIn *set_label_data; 629 uint32_t status; 630 631 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; 632 633 le32_to_cpus(&set_label_data->offset); 634 le32_to_cpus(&set_label_data->length); 635 636 nvdimm_debug("Write Label Data: offset %#x length %#x.\n", 637 set_label_data->offset, set_label_data->length); 638 639 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, 640 set_label_data->length); 641 if (status != 0 /* Success */) { 642 nvdimm_dsm_no_payload(status, dsm_mem_addr); 643 return; 644 } 645 646 assert(sizeof(*in) + sizeof(*set_label_data) + set_label_data->length <= 647 4096); 648 649 nvc->write_label_data(nvdimm, set_label_data->in_buf, 650 set_label_data->length, set_label_data->offset); 651 nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr); 652 } 653 654 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) 655 { 656 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); 657 658 /* See the comments in nvdimm_dsm_root(). */ 659 if (!in->function) { 660 uint32_t supported_func = 0; 661 662 if (nvdimm && nvdimm->label_size) { 663 supported_func |= 0x1 /* Bit 0 indicates whether there is 664 support for any functions other 665 than function 0. */ | 666 1 << 4 /* Get Namespace Label Size */ | 667 1 << 5 /* Get Namespace Label Data */ | 668 1 << 6 /* Set Namespace Label Data */; 669 } 670 nvdimm_dsm_function0(supported_func, dsm_mem_addr); 671 return; 672 } 673 674 if (!nvdimm) { 675 nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */, 676 dsm_mem_addr); 677 return; 678 } 679 680 /* Encode DSM function according to DSM Spec Rev1. */ 681 switch (in->function) { 682 case 4 /* Get Namespace Label Size */: 683 if (nvdimm->label_size) { 684 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); 685 return; 686 } 687 break; 688 case 5 /* Get Namespace Label Data */: 689 if (nvdimm->label_size) { 690 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); 691 return; 692 } 693 break; 694 case 0x6 /* Set Namespace Label Data */: 695 if (nvdimm->label_size) { 696 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); 697 return; 698 } 699 break; 700 } 701 702 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 703 } 704 705 static uint64_t 706 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) 707 { 708 nvdimm_debug("BUG: we never read _DSM IO Port.\n"); 709 return 0; 710 } 711 712 static void 713 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 714 { 715 NvdimmDsmIn *in; 716 hwaddr dsm_mem_addr = val; 717 718 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr); 719 720 /* 721 * The DSM memory is mapped to guest address space so an evil guest 722 * can change its content while we are doing DSM emulation. Avoid 723 * this by copying DSM memory to QEMU local memory. 724 */ 725 in = g_new(NvdimmDsmIn, 1); 726 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); 727 728 le32_to_cpus(&in->revision); 729 le32_to_cpus(&in->function); 730 le32_to_cpus(&in->handle); 731 732 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision, 733 in->handle, in->function); 734 735 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { 736 nvdimm_debug("Revision %#x is not supported, expect %#x.\n", 737 in->revision, 0x1); 738 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr); 739 goto exit; 740 } 741 742 /* Handle 0 is reserved for NVDIMM Root Device. */ 743 if (!in->handle) { 744 nvdimm_dsm_root(in, dsm_mem_addr); 745 goto exit; 746 } 747 748 nvdimm_dsm_device(in, dsm_mem_addr); 749 750 exit: 751 g_free(in); 752 } 753 754 static const MemoryRegionOps nvdimm_dsm_ops = { 755 .read = nvdimm_dsm_read, 756 .write = nvdimm_dsm_write, 757 .endianness = DEVICE_LITTLE_ENDIAN, 758 .valid = { 759 .min_access_size = 4, 760 .max_access_size = 4, 761 }, 762 }; 763 764 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io, 765 FWCfgState *fw_cfg, Object *owner) 766 { 767 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, 768 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN); 769 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr); 770 771 state->dsm_mem = g_array_new(false, true /* clear */, 1); 772 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); 773 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, 774 state->dsm_mem->len); 775 } 776 777 #define NVDIMM_COMMON_DSM "NCAL" 778 #define NVDIMM_ACPI_MEM_ADDR "MEMA" 779 780 static void nvdimm_build_common_dsm(Aml *dev) 781 { 782 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *result_size; 783 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; 784 Aml *pckg, *pckg_index, *pckg_buf; 785 uint8_t byte_list[1]; 786 787 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); 788 uuid = aml_arg(0); 789 function = aml_arg(2); 790 handle = aml_arg(4); 791 dsm_mem = aml_name(NVDIMM_ACPI_MEM_ADDR); 792 793 /* 794 * do not support any method if DSM memory address has not been 795 * patched. 796 */ 797 unpatched = aml_equal(dsm_mem, aml_int(0x0)); 798 799 expected_uuid = aml_local(0); 800 801 ifctx = aml_if(aml_equal(handle, aml_int(0x0))); 802 aml_append(ifctx, aml_store( 803 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") 804 /* UUID for NVDIMM Root Device */, expected_uuid)); 805 aml_append(method, ifctx); 806 elsectx = aml_else(); 807 aml_append(elsectx, aml_store( 808 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") 809 /* UUID for NVDIMM Devices */, expected_uuid)); 810 aml_append(method, elsectx); 811 812 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); 813 814 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); 815 816 /* 817 * function 0 is called to inquire what functions are supported by 818 * OSPM 819 */ 820 ifctx = aml_if(aml_equal(function, aml_int(0))); 821 byte_list[0] = 0 /* No function Supported */; 822 aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); 823 aml_append(unsupport, ifctx); 824 825 /* No function is supported yet. */ 826 byte_list[0] = 1 /* Not Supported */; 827 aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); 828 aml_append(method, unsupport); 829 830 /* 831 * The HDLE indicates the DSM function is issued from which device, 832 * it reserves 0 for root device and is the handle for NVDIMM devices. 833 * See the comments in nvdimm_slot_to_handle(). 834 */ 835 aml_append(method, aml_store(handle, aml_name("HDLE"))); 836 aml_append(method, aml_store(aml_arg(1), aml_name("REVS"))); 837 aml_append(method, aml_store(aml_arg(2), aml_name("FUNC"))); 838 839 /* 840 * The fourth parameter (Arg3) of _DSM is a package which contains 841 * a buffer, the layout of the buffer is specified by UUID (Arg0), 842 * Revision ID (Arg1) and Function Index (Arg2) which are documented 843 * in the DSM Spec. 844 */ 845 pckg = aml_arg(3); 846 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), 847 aml_int(4 /* Package */)) /* It is a Package? */, 848 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, 849 NULL)); 850 851 pckg_index = aml_local(2); 852 pckg_buf = aml_local(3); 853 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); 854 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); 855 aml_append(ifctx, aml_store(pckg_buf, aml_name("ARG3"))); 856 aml_append(method, ifctx); 857 858 /* 859 * tell QEMU about the real address of DSM memory, then QEMU 860 * gets the control and fills the result in DSM memory. 861 */ 862 aml_append(method, aml_store(dsm_mem, aml_name("NTFI"))); 863 864 result_size = aml_local(1); 865 aml_append(method, aml_store(aml_name("RLEN"), result_size)); 866 aml_append(method, aml_store(aml_shiftleft(result_size, aml_int(3)), 867 result_size)); 868 aml_append(method, aml_create_field(aml_name("ODAT"), aml_int(0), 869 result_size, "OBUF")); 870 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"), 871 aml_arg(6))); 872 aml_append(method, aml_return(aml_arg(6))); 873 aml_append(dev, method); 874 } 875 876 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) 877 { 878 Aml *method; 879 880 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 881 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), 882 aml_arg(1), aml_arg(2), aml_arg(3), 883 aml_int(handle)))); 884 aml_append(dev, method); 885 } 886 887 static void nvdimm_build_nvdimm_devices(GSList *device_list, Aml *root_dev) 888 { 889 for (; device_list; device_list = device_list->next) { 890 DeviceState *dev = device_list->data; 891 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, 892 NULL); 893 uint32_t handle = nvdimm_slot_to_handle(slot); 894 Aml *nvdimm_dev; 895 896 nvdimm_dev = aml_device("NV%02X", slot); 897 898 /* 899 * ACPI 6.0: 9.20 NVDIMM Devices: 900 * 901 * _ADR object that is used to supply OSPM with unique address 902 * of the NVDIMM device. This is done by returning the NFIT Device 903 * handle that is used to identify the associated entries in ACPI 904 * table NFIT or _FIT. 905 */ 906 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); 907 908 nvdimm_build_device_dsm(nvdimm_dev, handle); 909 aml_append(root_dev, nvdimm_dev); 910 } 911 } 912 913 static void nvdimm_build_ssdt(GSList *device_list, GArray *table_offsets, 914 GArray *table_data, BIOSLinker *linker, 915 GArray *dsm_dma_arrea) 916 { 917 Aml *ssdt, *sb_scope, *dev, *field; 918 int mem_addr_offset, nvdimm_ssdt; 919 920 acpi_add_table(table_offsets, table_data); 921 922 ssdt = init_aml_allocator(); 923 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); 924 925 sb_scope = aml_scope("\\_SB"); 926 927 dev = aml_device("NVDR"); 928 929 /* 930 * ACPI 6.0: 9.20 NVDIMM Devices: 931 * 932 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root 933 * NVDIMM interface device. Platform firmware is required to contain one 934 * such device in _SB scope if NVDIMMs support is exposed by platform to 935 * OSPM. 936 * For each NVDIMM present or intended to be supported by platform, 937 * platform firmware also exposes an ACPI Namespace Device under the 938 * root device. 939 */ 940 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); 941 942 /* map DSM memory and IO into ACPI namespace. */ 943 aml_append(dev, aml_operation_region("NPIO", AML_SYSTEM_IO, 944 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN)); 945 aml_append(dev, aml_operation_region("NRAM", AML_SYSTEM_MEMORY, 946 aml_name(NVDIMM_ACPI_MEM_ADDR), sizeof(NvdimmDsmIn))); 947 948 /* 949 * DSM notifier: 950 * NTFI: write the address of DSM memory and notify QEMU to emulate 951 * the access. 952 * 953 * It is the IO port so that accessing them will cause VM-exit, the 954 * control will be transferred to QEMU. 955 */ 956 field = aml_field("NPIO", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE); 957 aml_append(field, aml_named_field("NTFI", 958 sizeof(uint32_t) * BITS_PER_BYTE)); 959 aml_append(dev, field); 960 961 /* 962 * DSM input: 963 * HDLE: store device's handle, it's zero if the _DSM call happens 964 * on NVDIMM Root Device. 965 * REVS: store the Arg1 of _DSM call. 966 * FUNC: store the Arg2 of _DSM call. 967 * ARG3: store the Arg3 of _DSM call. 968 * 969 * They are RAM mapping on host so that these accesses never cause 970 * VM-EXIT. 971 */ 972 field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE); 973 aml_append(field, aml_named_field("HDLE", 974 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); 975 aml_append(field, aml_named_field("REVS", 976 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); 977 aml_append(field, aml_named_field("FUNC", 978 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); 979 aml_append(field, aml_named_field("ARG3", 980 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); 981 aml_append(dev, field); 982 983 /* 984 * DSM output: 985 * RLEN: the size of the buffer filled by QEMU. 986 * ODAT: the buffer QEMU uses to store the result. 987 * 988 * Since the page is reused by both input and out, the input data 989 * will be lost after storing new result into ODAT so we should fetch 990 * all the input data before writing the result. 991 */ 992 field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE); 993 aml_append(field, aml_named_field("RLEN", 994 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); 995 aml_append(field, aml_named_field("ODAT", 996 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); 997 aml_append(dev, field); 998 999 nvdimm_build_common_dsm(dev); 1000 1001 /* 0 is reserved for root device. */ 1002 nvdimm_build_device_dsm(dev, 0); 1003 1004 nvdimm_build_nvdimm_devices(device_list, dev); 1005 1006 aml_append(sb_scope, dev); 1007 aml_append(ssdt, sb_scope); 1008 1009 nvdimm_ssdt = table_data->len; 1010 1011 /* copy AML table into ACPI tables blob and patch header there */ 1012 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); 1013 mem_addr_offset = build_append_named_dword(table_data, 1014 NVDIMM_ACPI_MEM_ADDR); 1015 1016 bios_linker_loader_alloc(linker, 1017 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea, 1018 sizeof(NvdimmDsmIn), false /* high memory */); 1019 bios_linker_loader_add_pointer(linker, 1020 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), 1021 NVDIMM_DSM_MEM_FILE, 0); 1022 build_header(linker, table_data, 1023 (void *)(table_data->data + nvdimm_ssdt), 1024 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM"); 1025 free_aml_allocator(); 1026 } 1027 1028 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, 1029 BIOSLinker *linker, GArray *dsm_dma_arrea) 1030 { 1031 GSList *device_list; 1032 1033 /* no NVDIMM device is plugged. */ 1034 device_list = nvdimm_get_plugged_device_list(); 1035 if (!device_list) { 1036 return; 1037 } 1038 nvdimm_build_nfit(device_list, table_offsets, table_data, linker); 1039 nvdimm_build_ssdt(device_list, table_offsets, table_data, linker, 1040 dsm_dma_arrea); 1041 g_slist_free(device_list); 1042 } 1043