xref: /openbmc/qemu/hw/acpi/nvdimm.c (revision 06d4c71f)
1 /*
2  * NVDIMM ACPI Implementation
3  *
4  * Copyright(C) 2015 Intel Corporation.
5  *
6  * Author:
7  *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
8  *
9  * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10  * and the DSM specification can be found at:
11  *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
12  *
13  * Currently, it only supports PMEM Virtualization.
14  *
15  * This library is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU Lesser General Public
17  * License as published by the Free Software Foundation; either
18  * version 2 of the License, or (at your option) any later version.
19  *
20  * This library is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  * Lesser General Public License for more details.
24  *
25  * You should have received a copy of the GNU Lesser General Public
26  * License along with this library; if not, see <http://www.gnu.org/licenses/>
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/uuid.h"
31 #include "hw/acpi/acpi.h"
32 #include "hw/acpi/aml-build.h"
33 #include "hw/acpi/bios-linker-loader.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/mem/nvdimm.h"
36 #include "qemu/nvdimm-utils.h"
37 
38 /*
39  * define Byte Addressable Persistent Memory (PM) Region according to
40  * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
41  */
42 static const uint8_t nvdimm_nfit_spa_uuid[] =
43       UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
44               0x18, 0xb7, 0x8c, 0xdb);
45 
46 /*
47  * NVDIMM Firmware Interface Table
48  * @signature: "NFIT"
49  *
50  * It provides information that allows OSPM to enumerate NVDIMM present in
51  * the platform and associate system physical address ranges created by the
52  * NVDIMMs.
53  *
54  * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
55  */
56 struct NvdimmNfitHeader {
57     ACPI_TABLE_HEADER_DEF
58     uint32_t reserved;
59 } QEMU_PACKED;
60 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
61 
62 /*
63  * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
64  * Interface Table (NFIT).
65  */
66 
67 /*
68  * System Physical Address Range Structure
69  *
70  * It describes the system physical address ranges occupied by NVDIMMs and
71  * the types of the regions.
72  */
73 struct NvdimmNfitSpa {
74     uint16_t type;
75     uint16_t length;
76     uint16_t spa_index;
77     uint16_t flags;
78     uint32_t reserved;
79     uint32_t proximity_domain;
80     uint8_t type_guid[16];
81     uint64_t spa_base;
82     uint64_t spa_length;
83     uint64_t mem_attr;
84 } QEMU_PACKED;
85 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
86 
87 /*
88  * Memory Device to System Physical Address Range Mapping Structure
89  *
90  * It enables identifying each NVDIMM region and the corresponding SPA
91  * describing the memory interleave
92  */
93 struct NvdimmNfitMemDev {
94     uint16_t type;
95     uint16_t length;
96     uint32_t nfit_handle;
97     uint16_t phys_id;
98     uint16_t region_id;
99     uint16_t spa_index;
100     uint16_t dcr_index;
101     uint64_t region_len;
102     uint64_t region_offset;
103     uint64_t region_dpa;
104     uint16_t interleave_index;
105     uint16_t interleave_ways;
106     uint16_t flags;
107     uint16_t reserved;
108 } QEMU_PACKED;
109 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
110 
111 #define ACPI_NFIT_MEM_NOT_ARMED     (1 << 3)
112 
113 /*
114  * NVDIMM Control Region Structure
115  *
116  * It describes the NVDIMM and if applicable, Block Control Window.
117  */
118 struct NvdimmNfitControlRegion {
119     uint16_t type;
120     uint16_t length;
121     uint16_t dcr_index;
122     uint16_t vendor_id;
123     uint16_t device_id;
124     uint16_t revision_id;
125     uint16_t sub_vendor_id;
126     uint16_t sub_device_id;
127     uint16_t sub_revision_id;
128     uint8_t reserved[6];
129     uint32_t serial_number;
130     uint16_t fic;
131     uint16_t num_bcw;
132     uint64_t bcw_size;
133     uint64_t cmd_offset;
134     uint64_t cmd_size;
135     uint64_t status_offset;
136     uint64_t status_size;
137     uint16_t flags;
138     uint8_t reserved2[6];
139 } QEMU_PACKED;
140 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
141 
142 /*
143  * NVDIMM Platform Capabilities Structure
144  *
145  * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
146  */
147 struct NvdimmNfitPlatformCaps {
148     uint16_t type;
149     uint16_t length;
150     uint8_t highest_cap;
151     uint8_t reserved[3];
152     uint32_t capabilities;
153     uint8_t reserved2[4];
154 } QEMU_PACKED;
155 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
156 
157 /*
158  * Module serial number is a unique number for each device. We use the
159  * slot id of NVDIMM device to generate this number so that each device
160  * associates with a different number.
161  *
162  * 0x123456 is a magic number we arbitrarily chose.
163  */
164 static uint32_t nvdimm_slot_to_sn(int slot)
165 {
166     return 0x123456 + slot;
167 }
168 
169 /*
170  * handle is used to uniquely associate nfit_memdev structure with NVDIMM
171  * ACPI device - nfit_memdev.nfit_handle matches with the value returned
172  * by ACPI device _ADR method.
173  *
174  * We generate the handle with the slot id of NVDIMM device and reserve
175  * 0 for NVDIMM root device.
176  */
177 static uint32_t nvdimm_slot_to_handle(int slot)
178 {
179     return slot + 1;
180 }
181 
182 /*
183  * index uniquely identifies the structure, 0 is reserved which indicates
184  * that the structure is not valid or the associated structure is not
185  * present.
186  *
187  * Each NVDIMM device needs two indexes, one for nfit_spa and another for
188  * nfit_dc which are generated by the slot id of NVDIMM device.
189  */
190 static uint16_t nvdimm_slot_to_spa_index(int slot)
191 {
192     return (slot + 1) << 1;
193 }
194 
195 /* See the comments of nvdimm_slot_to_spa_index(). */
196 static uint32_t nvdimm_slot_to_dcr_index(int slot)
197 {
198     return nvdimm_slot_to_spa_index(slot) + 1;
199 }
200 
201 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
202 {
203     NVDIMMDevice *nvdimm = NULL;
204     GSList *list, *device_list = nvdimm_get_device_list();
205 
206     for (list = device_list; list; list = list->next) {
207         NVDIMMDevice *nvd = list->data;
208         int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
209                                            NULL);
210 
211         if (nvdimm_slot_to_handle(slot) == handle) {
212             nvdimm = nvd;
213             break;
214         }
215     }
216 
217     g_slist_free(device_list);
218     return nvdimm;
219 }
220 
221 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
222 static void
223 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
224 {
225     NvdimmNfitSpa *nfit_spa;
226     uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
227                                              NULL);
228     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
229                                              NULL);
230     uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
231                                              NULL);
232     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
233                                        NULL);
234 
235     nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
236 
237     nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
238                                       Structure */);
239     nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
240     nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
241 
242     /*
243      * Control region is strict as all the device info, such as SN, index,
244      * is associated with slot id.
245      */
246     nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
247                                        management during hot add/online
248                                        operation */ |
249                                   2 /* Data in Proximity Domain field is
250                                        valid*/);
251 
252     /* NUMA node. */
253     nfit_spa->proximity_domain = cpu_to_le32(node);
254     /* the region reported as PMEM. */
255     memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
256            sizeof(nvdimm_nfit_spa_uuid));
257 
258     nfit_spa->spa_base = cpu_to_le64(addr);
259     nfit_spa->spa_length = cpu_to_le64(size);
260 
261     /* It is the PMEM and can be cached as writeback. */
262     nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
263                                      0x8000ULL /* EFI_MEMORY_NV */);
264 }
265 
266 /*
267  * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
268  * Structure
269  */
270 static void
271 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
272 {
273     NvdimmNfitMemDev *nfit_memdev;
274     NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
275     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
276                                              NULL);
277     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
278                                             NULL);
279     uint32_t handle = nvdimm_slot_to_handle(slot);
280 
281     nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
282 
283     nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
284                                          Range Map Structure*/);
285     nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
286     nfit_memdev->nfit_handle = cpu_to_le32(handle);
287 
288     /*
289      * associate memory device with System Physical Address Range
290      * Structure.
291      */
292     nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
293     /* associate memory device with Control Region Structure. */
294     nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
295 
296     /* The memory region on the device. */
297     nfit_memdev->region_len = cpu_to_le64(size);
298     /* The device address starts from 0. */
299     nfit_memdev->region_dpa = cpu_to_le64(0);
300 
301     /* Only one interleave for PMEM. */
302     nfit_memdev->interleave_ways = cpu_to_le16(1);
303 
304     if (nvdimm->unarmed) {
305         nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
306     }
307 }
308 
309 /*
310  * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
311  */
312 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
313 {
314     NvdimmNfitControlRegion *nfit_dcr;
315     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
316                                        NULL);
317     uint32_t sn = nvdimm_slot_to_sn(slot);
318 
319     nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
320 
321     nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
322     nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
323     nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
324 
325     /* vendor: Intel. */
326     nfit_dcr->vendor_id = cpu_to_le16(0x8086);
327     nfit_dcr->device_id = cpu_to_le16(1);
328 
329     /* The _DSM method is following Intel's DSM specification. */
330     nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
331                                              in ACPI 6.0 is 1. */);
332     nfit_dcr->serial_number = cpu_to_le32(sn);
333     nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
334                                          Byte addressable, no energy backed.
335                                          See ACPI 6.2, sect 5.2.25.6 and
336                                          JEDEC Annex L Release 3. */);
337 }
338 
339 /*
340  * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
341  */
342 static void
343 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
344 {
345     NvdimmNfitPlatformCaps *nfit_caps;
346 
347     nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
348 
349     nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
350     nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
351     nfit_caps->highest_cap = 31 - clz32(capabilities);
352     nfit_caps->capabilities = cpu_to_le32(capabilities);
353 }
354 
355 static GArray *nvdimm_build_device_structure(NVDIMMState *state)
356 {
357     GSList *device_list = nvdimm_get_device_list();
358     GArray *structures = g_array_new(false, true /* clear */, 1);
359 
360     for (; device_list; device_list = device_list->next) {
361         DeviceState *dev = device_list->data;
362 
363         /* build System Physical Address Range Structure. */
364         nvdimm_build_structure_spa(structures, dev);
365 
366         /*
367          * build Memory Device to System Physical Address Range Mapping
368          * Structure.
369          */
370         nvdimm_build_structure_memdev(structures, dev);
371 
372         /* build NVDIMM Control Region Structure. */
373         nvdimm_build_structure_dcr(structures, dev);
374     }
375     g_slist_free(device_list);
376 
377     if (state->persistence) {
378         nvdimm_build_structure_caps(structures, state->persistence);
379     }
380 
381     return structures;
382 }
383 
384 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
385 {
386     fit_buf->fit = g_array_new(false, true /* clear */, 1);
387 }
388 
389 static void nvdimm_build_fit_buffer(NVDIMMState *state)
390 {
391     NvdimmFitBuffer *fit_buf = &state->fit_buf;
392 
393     g_array_free(fit_buf->fit, true);
394     fit_buf->fit = nvdimm_build_device_structure(state);
395     fit_buf->dirty = true;
396 }
397 
398 void nvdimm_plug(NVDIMMState *state)
399 {
400     nvdimm_build_fit_buffer(state);
401 }
402 
403 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
404                               GArray *table_data, BIOSLinker *linker)
405 {
406     NvdimmFitBuffer *fit_buf = &state->fit_buf;
407     unsigned int header;
408 
409     acpi_add_table(table_offsets, table_data);
410 
411     /* NFIT header. */
412     header = table_data->len;
413     acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
414     /* NVDIMM device structures. */
415     g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
416 
417     build_header(linker, table_data,
418                  (void *)(table_data->data + header), "NFIT",
419                  sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
420 }
421 
422 #define NVDIMM_DSM_MEMORY_SIZE      4096
423 
424 struct NvdimmDsmIn {
425     uint32_t handle;
426     uint32_t revision;
427     uint32_t function;
428     /* the remaining size in the page is used by arg3. */
429     union {
430         uint8_t arg3[4084];
431     };
432 } QEMU_PACKED;
433 typedef struct NvdimmDsmIn NvdimmDsmIn;
434 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
435 
436 struct NvdimmDsmOut {
437     /* the size of buffer filled by QEMU. */
438     uint32_t len;
439     uint8_t data[4092];
440 } QEMU_PACKED;
441 typedef struct NvdimmDsmOut NvdimmDsmOut;
442 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
443 
444 struct NvdimmDsmFunc0Out {
445     /* the size of buffer filled by QEMU. */
446      uint32_t len;
447      uint32_t supported_func;
448 } QEMU_PACKED;
449 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
450 
451 struct NvdimmDsmFuncNoPayloadOut {
452     /* the size of buffer filled by QEMU. */
453      uint32_t len;
454      uint32_t func_ret_status;
455 } QEMU_PACKED;
456 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
457 
458 struct NvdimmFuncGetLabelSizeOut {
459     /* the size of buffer filled by QEMU. */
460     uint32_t len;
461     uint32_t func_ret_status; /* return status code. */
462     uint32_t label_size; /* the size of label data area. */
463     /*
464      * Maximum size of the namespace label data length supported by
465      * the platform in Get/Set Namespace Label Data functions.
466      */
467     uint32_t max_xfer;
468 } QEMU_PACKED;
469 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
470 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
471 
472 struct NvdimmFuncGetLabelDataIn {
473     uint32_t offset; /* the offset in the namespace label data area. */
474     uint32_t length; /* the size of data is to be read via the function. */
475 } QEMU_PACKED;
476 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
477 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
478                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
479 
480 struct NvdimmFuncGetLabelDataOut {
481     /* the size of buffer filled by QEMU. */
482     uint32_t len;
483     uint32_t func_ret_status; /* return status code. */
484     uint8_t out_buf[]; /* the data got via Get Namesapce Label function. */
485 } QEMU_PACKED;
486 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
487 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
488 
489 struct NvdimmFuncSetLabelDataIn {
490     uint32_t offset; /* the offset in the namespace label data area. */
491     uint32_t length; /* the size of data is to be written via the function. */
492     uint8_t in_buf[]; /* the data written to label data area. */
493 } QEMU_PACKED;
494 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
495 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
496                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
497 
498 struct NvdimmFuncReadFITIn {
499     uint32_t offset; /* the offset into FIT buffer. */
500 } QEMU_PACKED;
501 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
502 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
503                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
504 
505 struct NvdimmFuncReadFITOut {
506     /* the size of buffer filled by QEMU. */
507     uint32_t len;
508     uint32_t func_ret_status; /* return status code. */
509     uint8_t fit[]; /* the FIT data. */
510 } QEMU_PACKED;
511 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
512 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
513 
514 static void
515 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
516 {
517     NvdimmDsmFunc0Out func0 = {
518         .len = cpu_to_le32(sizeof(func0)),
519         .supported_func = cpu_to_le32(supported_func),
520     };
521     cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
522 }
523 
524 static void
525 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
526 {
527     NvdimmDsmFuncNoPayloadOut out = {
528         .len = cpu_to_le32(sizeof(out)),
529         .func_ret_status = cpu_to_le32(func_ret_status),
530     };
531     cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
532 }
533 
534 #define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
535 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
536 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
537 #define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
538 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
539 
540 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
541 
542 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
543 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
544                                      hwaddr dsm_mem_addr)
545 {
546     NvdimmFitBuffer *fit_buf = &state->fit_buf;
547     NvdimmFuncReadFITIn *read_fit;
548     NvdimmFuncReadFITOut *read_fit_out;
549     GArray *fit;
550     uint32_t read_len = 0, func_ret_status;
551     int size;
552 
553     read_fit = (NvdimmFuncReadFITIn *)in->arg3;
554     read_fit->offset = le32_to_cpu(read_fit->offset);
555 
556     fit = fit_buf->fit;
557 
558     nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
559                  read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
560 
561     if (read_fit->offset > fit->len) {
562         func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
563         goto exit;
564     }
565 
566     /* It is the first time to read FIT. */
567     if (!read_fit->offset) {
568         fit_buf->dirty = false;
569     } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
570         func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
571         goto exit;
572     }
573 
574     func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
575     read_len = MIN(fit->len - read_fit->offset,
576                    NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
577 
578 exit:
579     size = sizeof(NvdimmFuncReadFITOut) + read_len;
580     read_fit_out = g_malloc(size);
581 
582     read_fit_out->len = cpu_to_le32(size);
583     read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
584     memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
585 
586     cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
587 
588     g_free(read_fit_out);
589 }
590 
591 static void
592 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
593                                        NvdimmDsmIn *in, hwaddr dsm_mem_addr)
594 {
595     switch (in->function) {
596     case 0x0:
597         nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
598         return;
599     case 0x1 /* Read FIT */:
600         nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
601         return;
602     }
603 
604     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
605 }
606 
607 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
608 {
609     /*
610      * function 0 is called to inquire which functions are supported by
611      * OSPM
612      */
613     if (!in->function) {
614         nvdimm_dsm_function0(0 /* No function supported other than
615                                   function 0 */, dsm_mem_addr);
616         return;
617     }
618 
619     /* No function except function 0 is supported yet. */
620     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
621 }
622 
623 /*
624  * the max transfer size is the max size transferred by both a
625  * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
626  * function.
627  */
628 static uint32_t nvdimm_get_max_xfer_label_size(void)
629 {
630     uint32_t max_get_size, max_set_size, dsm_memory_size;
631 
632     dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
633 
634     /*
635      * the max data ACPI can read one time which is transferred by
636      * the response of 'Get Namespace Label Data' function.
637      */
638     max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
639 
640     /*
641      * the max data ACPI can write one time which is transferred by
642      * 'Set Namespace Label Data' function.
643      */
644     max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
645                    sizeof(NvdimmFuncSetLabelDataIn);
646 
647     return MIN(max_get_size, max_set_size);
648 }
649 
650 /*
651  * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
652  *
653  * It gets the size of Namespace Label data area and the max data size
654  * that Get/Set Namespace Label Data functions can transfer.
655  */
656 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
657 {
658     NvdimmFuncGetLabelSizeOut label_size_out = {
659         .len = cpu_to_le32(sizeof(label_size_out)),
660     };
661     uint32_t label_size, mxfer;
662 
663     label_size = nvdimm->label_size;
664     mxfer = nvdimm_get_max_xfer_label_size();
665 
666     nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
667 
668     label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
669     label_size_out.label_size = cpu_to_le32(label_size);
670     label_size_out.max_xfer = cpu_to_le32(mxfer);
671 
672     cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
673                               sizeof(label_size_out));
674 }
675 
676 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
677                                            uint32_t offset, uint32_t length)
678 {
679     uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
680 
681     if (offset + length < offset) {
682         nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
683                      length);
684         return ret;
685     }
686 
687     if (nvdimm->label_size < offset + length) {
688         nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
689                      offset + length, nvdimm->label_size);
690         return ret;
691     }
692 
693     if (length > nvdimm_get_max_xfer_label_size()) {
694         nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
695                      length, nvdimm_get_max_xfer_label_size());
696         return ret;
697     }
698 
699     return NVDIMM_DSM_RET_STATUS_SUCCESS;
700 }
701 
702 /*
703  * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
704  */
705 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
706                                       hwaddr dsm_mem_addr)
707 {
708     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
709     NvdimmFuncGetLabelDataIn *get_label_data;
710     NvdimmFuncGetLabelDataOut *get_label_data_out;
711     uint32_t status;
712     int size;
713 
714     get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
715     get_label_data->offset = le32_to_cpu(get_label_data->offset);
716     get_label_data->length = le32_to_cpu(get_label_data->length);
717 
718     nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
719                  get_label_data->offset, get_label_data->length);
720 
721     status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
722                                         get_label_data->length);
723     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
724         nvdimm_dsm_no_payload(status, dsm_mem_addr);
725         return;
726     }
727 
728     size = sizeof(*get_label_data_out) + get_label_data->length;
729     assert(size <= NVDIMM_DSM_MEMORY_SIZE);
730     get_label_data_out = g_malloc(size);
731 
732     get_label_data_out->len = cpu_to_le32(size);
733     get_label_data_out->func_ret_status =
734                             cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
735     nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
736                          get_label_data->length, get_label_data->offset);
737 
738     cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
739     g_free(get_label_data_out);
740 }
741 
742 /*
743  * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
744  */
745 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
746                                       hwaddr dsm_mem_addr)
747 {
748     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
749     NvdimmFuncSetLabelDataIn *set_label_data;
750     uint32_t status;
751 
752     set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
753 
754     set_label_data->offset = le32_to_cpu(set_label_data->offset);
755     set_label_data->length = le32_to_cpu(set_label_data->length);
756 
757     nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
758                  set_label_data->offset, set_label_data->length);
759 
760     status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
761                                         set_label_data->length);
762     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
763         nvdimm_dsm_no_payload(status, dsm_mem_addr);
764         return;
765     }
766 
767     assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
768                     set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
769 
770     nvc->write_label_data(nvdimm, set_label_data->in_buf,
771                           set_label_data->length, set_label_data->offset);
772     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
773 }
774 
775 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
776 {
777     NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
778 
779     /* See the comments in nvdimm_dsm_root(). */
780     if (!in->function) {
781         uint32_t supported_func = 0;
782 
783         if (nvdimm && nvdimm->label_size) {
784             supported_func |= 0x1 /* Bit 0 indicates whether there is
785                                      support for any functions other
786                                      than function 0. */ |
787                               1 << 4 /* Get Namespace Label Size */ |
788                               1 << 5 /* Get Namespace Label Data */ |
789                               1 << 6 /* Set Namespace Label Data */;
790         }
791         nvdimm_dsm_function0(supported_func, dsm_mem_addr);
792         return;
793     }
794 
795     if (!nvdimm) {
796         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
797                               dsm_mem_addr);
798         return;
799     }
800 
801     /* Encode DSM function according to DSM Spec Rev1. */
802     switch (in->function) {
803     case 4 /* Get Namespace Label Size */:
804         if (nvdimm->label_size) {
805             nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
806             return;
807         }
808         break;
809     case 5 /* Get Namespace Label Data */:
810         if (nvdimm->label_size) {
811             nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
812             return;
813         }
814         break;
815     case 0x6 /* Set Namespace Label Data */:
816         if (nvdimm->label_size) {
817             nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
818             return;
819         }
820         break;
821     }
822 
823     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
824 }
825 
826 static uint64_t
827 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
828 {
829     nvdimm_debug("BUG: we never read _DSM IO Port.\n");
830     return 0;
831 }
832 
833 static void
834 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
835 {
836     NVDIMMState *state = opaque;
837     NvdimmDsmIn *in;
838     hwaddr dsm_mem_addr = val;
839 
840     nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
841 
842     /*
843      * The DSM memory is mapped to guest address space so an evil guest
844      * can change its content while we are doing DSM emulation. Avoid
845      * this by copying DSM memory to QEMU local memory.
846      */
847     in = g_new(NvdimmDsmIn, 1);
848     cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
849 
850     in->revision = le32_to_cpu(in->revision);
851     in->function = le32_to_cpu(in->function);
852     in->handle = le32_to_cpu(in->handle);
853 
854     nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
855                  in->handle, in->function);
856 
857     if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
858         nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
859                      in->revision, 0x1);
860         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
861         goto exit;
862     }
863 
864     if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
865         nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
866         goto exit;
867     }
868 
869      /* Handle 0 is reserved for NVDIMM Root Device. */
870     if (!in->handle) {
871         nvdimm_dsm_root(in, dsm_mem_addr);
872         goto exit;
873     }
874 
875     nvdimm_dsm_device(in, dsm_mem_addr);
876 
877 exit:
878     g_free(in);
879 }
880 
881 static const MemoryRegionOps nvdimm_dsm_ops = {
882     .read = nvdimm_dsm_read,
883     .write = nvdimm_dsm_write,
884     .endianness = DEVICE_LITTLE_ENDIAN,
885     .valid = {
886         .min_access_size = 4,
887         .max_access_size = 4,
888     },
889 };
890 
891 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
892 {
893     if (dev->hotplugged) {
894         acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
895     }
896 }
897 
898 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
899                             struct AcpiGenericAddress dsm_io,
900                             FWCfgState *fw_cfg, Object *owner)
901 {
902     state->dsm_io = dsm_io;
903     memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
904                           "nvdimm-acpi-io", dsm_io.bit_width >> 3);
905     memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
906 
907     state->dsm_mem = g_array_new(false, true /* clear */, 1);
908     acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
909     fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
910                     state->dsm_mem->len);
911 
912     nvdimm_init_fit_buffer(&state->fit_buf);
913 }
914 
915 #define NVDIMM_COMMON_DSM       "NCAL"
916 #define NVDIMM_ACPI_MEM_ADDR    "MEMA"
917 
918 #define NVDIMM_DSM_MEMORY       "NRAM"
919 #define NVDIMM_DSM_IOPORT       "NPIO"
920 
921 #define NVDIMM_DSM_NOTIFY       "NTFI"
922 #define NVDIMM_DSM_HANDLE       "HDLE"
923 #define NVDIMM_DSM_REVISION     "REVS"
924 #define NVDIMM_DSM_FUNCTION     "FUNC"
925 #define NVDIMM_DSM_ARG3         "FARG"
926 
927 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
928 #define NVDIMM_DSM_OUT_BUF      "ODAT"
929 
930 #define NVDIMM_DSM_RFIT_STATUS  "RSTA"
931 
932 #define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
933 
934 static void nvdimm_build_common_dsm(Aml *dev,
935                                     NVDIMMState *nvdimm_state)
936 {
937     Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
938     Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
939     Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
940     Aml *whilectx, *offset;
941     uint8_t byte_list[1];
942     AmlRegionSpace rs;
943 
944     method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
945     uuid = aml_arg(0);
946     function = aml_arg(2);
947     handle = aml_arg(4);
948     dsm_mem = aml_local(6);
949     dsm_out_buf = aml_local(7);
950 
951     aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
952 
953     if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
954         rs = AML_SYSTEM_IO;
955     } else {
956         rs = AML_SYSTEM_MEMORY;
957     }
958 
959     /* map DSM memory and IO into ACPI namespace. */
960     aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
961                aml_int(nvdimm_state->dsm_io.address),
962                nvdimm_state->dsm_io.bit_width >> 3));
963     aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
964                AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
965 
966     /*
967      * DSM notifier:
968      * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
969      *                    emulate the access.
970      *
971      * It is the IO port so that accessing them will cause VM-exit, the
972      * control will be transferred to QEMU.
973      */
974     field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
975                       AML_PRESERVE);
976     aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
977                nvdimm_state->dsm_io.bit_width));
978     aml_append(method, field);
979 
980     /*
981      * DSM input:
982      * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
983      *                    happens on NVDIMM Root Device.
984      * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
985      * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
986      * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
987      *                  containing function-specific arguments.
988      *
989      * They are RAM mapping on host so that these accesses never cause
990      * VM-EXIT.
991      */
992     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
993                       AML_PRESERVE);
994     aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
995                sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
996     aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
997                sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
998     aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
999                sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
1000     aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
1001          (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
1002     aml_append(method, field);
1003 
1004     /*
1005      * DSM output:
1006      * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
1007      * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1008      *
1009      * Since the page is reused by both input and out, the input data
1010      * will be lost after storing new result into ODAT so we should fetch
1011      * all the input data before writing the result.
1012      */
1013     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1014                       AML_PRESERVE);
1015     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1016                sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1017     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1018        (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1019     aml_append(method, field);
1020 
1021     /*
1022      * do not support any method if DSM memory address has not been
1023      * patched.
1024      */
1025     unpatched = aml_equal(dsm_mem, aml_int(0x0));
1026 
1027     expected_uuid = aml_local(0);
1028 
1029     ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1030     aml_append(ifctx, aml_store(
1031                aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1032                /* UUID for NVDIMM Root Device */, expected_uuid));
1033     aml_append(method, ifctx);
1034     elsectx = aml_else();
1035     ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1036     aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1037                /* UUID for QEMU internal use */), expected_uuid));
1038     aml_append(elsectx, ifctx);
1039     elsectx2 = aml_else();
1040     aml_append(elsectx2, aml_store(
1041                aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1042                /* UUID for NVDIMM Devices */, expected_uuid));
1043     aml_append(elsectx, elsectx2);
1044     aml_append(method, elsectx);
1045 
1046     uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1047 
1048     unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1049 
1050     /*
1051      * function 0 is called to inquire what functions are supported by
1052      * OSPM
1053      */
1054     ifctx = aml_if(aml_equal(function, aml_int(0)));
1055     byte_list[0] = 0 /* No function Supported */;
1056     aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1057     aml_append(unsupport, ifctx);
1058 
1059     /* No function is supported yet. */
1060     byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1061     aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1062     aml_append(method, unsupport);
1063 
1064     /*
1065      * The HDLE indicates the DSM function is issued from which device,
1066      * it reserves 0 for root device and is the handle for NVDIMM devices.
1067      * See the comments in nvdimm_slot_to_handle().
1068      */
1069     aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1070     aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1071     aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1072 
1073     /*
1074      * The fourth parameter (Arg3) of _DSM is a package which contains
1075      * a buffer, the layout of the buffer is specified by UUID (Arg0),
1076      * Revision ID (Arg1) and Function Index (Arg2) which are documented
1077      * in the DSM Spec.
1078      */
1079     pckg = aml_arg(3);
1080     ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1081                    aml_int(4 /* Package */)) /* It is a Package? */,
1082                    aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1083                    NULL));
1084 
1085     pckg_index = aml_local(2);
1086     pckg_buf = aml_local(3);
1087     aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1088     aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1089     aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1090     aml_append(method, ifctx);
1091 
1092     /*
1093      * tell QEMU about the real address of DSM memory, then QEMU
1094      * gets the control and fills the result in DSM memory.
1095      */
1096     aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1097 
1098     dsm_out_buf_size = aml_local(1);
1099     /* RLEN is not included in the payload returned to guest. */
1100     aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1101                aml_int(4), dsm_out_buf_size));
1102 
1103     /*
1104      * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1105      * the Buffer Field <= to the size of an Integer (in bits), it will
1106      * be treated as an integer. Moreover, the integer size depends on
1107      * DSDT tables revision number. If revision number is < 2, integer
1108      * size is 32 bits, otherwise it is 64 bits.
1109      * Because of this CreateField() canot be used if RLEN < Integer Size.
1110      *
1111      * Also please note that APCI ASL operator SizeOf() doesn't support
1112      * Integer and there isn't any other way to figure out the Integer
1113      * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1114      * build dsm_out_buf byte by byte.
1115      */
1116     ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
1117     offset = aml_local(2);
1118     aml_append(ifctx, aml_store(aml_int(0), offset));
1119     aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
1120     aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
1121 
1122     whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
1123     /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1124     aml_append(whilectx, aml_store(aml_derefof(aml_index(
1125                                    aml_name(NVDIMM_DSM_OUT_BUF), offset)),
1126                                    aml_index(aml_name("TBUF"), aml_int(0))));
1127     aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
1128                                          dsm_out_buf));
1129     aml_append(whilectx, aml_increment(offset));
1130     aml_append(ifctx, whilectx);
1131 
1132     aml_append(ifctx, aml_return(dsm_out_buf));
1133     aml_append(method, ifctx);
1134 
1135     /* If RLEN >= Integer size, just use CreateField() operator */
1136     aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1137                                  dsm_out_buf_size));
1138     aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1139                aml_int(0), dsm_out_buf_size, "OBUF"));
1140     aml_append(method, aml_return(aml_name("OBUF")));
1141 
1142     aml_append(dev, method);
1143 }
1144 
1145 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1146 {
1147     Aml *method;
1148 
1149     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1150     aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1151                                   aml_arg(1), aml_arg(2), aml_arg(3),
1152                                   aml_int(handle))));
1153     aml_append(dev, method);
1154 }
1155 
1156 static void nvdimm_build_fit(Aml *dev)
1157 {
1158     Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1159     Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1160 
1161     buf = aml_local(0);
1162     buf_size = aml_local(1);
1163     fit = aml_local(2);
1164 
1165     aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1166 
1167     /* build helper function, RFIT. */
1168     method = aml_method("RFIT", 1, AML_SERIALIZED);
1169     aml_append(method, aml_name_decl("OFST", aml_int(0)));
1170 
1171     /* prepare input package. */
1172     pkg = aml_package(1);
1173     aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1174     aml_append(pkg, aml_name("OFST"));
1175 
1176     /* call Read_FIT function. */
1177     call_result = aml_call5(NVDIMM_COMMON_DSM,
1178                             aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1179                             aml_int(1) /* Revision 1 */,
1180                             aml_int(0x1) /* Read FIT */,
1181                             pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1182     aml_append(method, aml_store(call_result, buf));
1183 
1184     /* handle _DSM result. */
1185     aml_append(method, aml_create_dword_field(buf,
1186                aml_int(0) /* offset at byte 0 */, "STAU"));
1187 
1188     aml_append(method, aml_store(aml_name("STAU"),
1189                                  aml_name(NVDIMM_DSM_RFIT_STATUS)));
1190 
1191      /* if something is wrong during _DSM. */
1192     ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1193                        aml_name("STAU"));
1194     ifctx = aml_if(aml_lnot(ifcond));
1195     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1196     aml_append(method, ifctx);
1197 
1198     aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1199     aml_append(method, aml_subtract(buf_size,
1200                                     aml_int(4) /* the size of "STAU" */,
1201                                     buf_size));
1202 
1203     /* if we read the end of fit. */
1204     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1205     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1206     aml_append(method, ifctx);
1207 
1208     aml_append(method, aml_create_field(buf,
1209                             aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1210                             aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1211     aml_append(method, aml_return(aml_name("BUFF")));
1212     aml_append(dev, method);
1213 
1214     /* build _FIT. */
1215     method = aml_method("_FIT", 0, AML_SERIALIZED);
1216     offset = aml_local(3);
1217 
1218     aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1219     aml_append(method, aml_store(aml_int(0), offset));
1220 
1221     whilectx = aml_while(aml_int(1));
1222     aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1223     aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1224 
1225     /*
1226      * if fit buffer was changed during RFIT, read from the beginning
1227      * again.
1228      */
1229     ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1230                              aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1231     aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1232     aml_append(ifctx, aml_store(aml_int(0), offset));
1233     aml_append(whilectx, ifctx);
1234 
1235     elsectx = aml_else();
1236 
1237     /* finish fit read if no data is read out. */
1238     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1239     aml_append(ifctx, aml_return(fit));
1240     aml_append(elsectx, ifctx);
1241 
1242     /* update the offset. */
1243     aml_append(elsectx, aml_add(offset, buf_size, offset));
1244     /* append the data we read out to the fit buffer. */
1245     aml_append(elsectx, aml_concatenate(fit, buf, fit));
1246     aml_append(whilectx, elsectx);
1247     aml_append(method, whilectx);
1248 
1249     aml_append(dev, method);
1250 }
1251 
1252 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1253 {
1254     uint32_t slot;
1255 
1256     for (slot = 0; slot < ram_slots; slot++) {
1257         uint32_t handle = nvdimm_slot_to_handle(slot);
1258         Aml *nvdimm_dev;
1259 
1260         nvdimm_dev = aml_device("NV%02X", slot);
1261 
1262         /*
1263          * ACPI 6.0: 9.20 NVDIMM Devices:
1264          *
1265          * _ADR object that is used to supply OSPM with unique address
1266          * of the NVDIMM device. This is done by returning the NFIT Device
1267          * handle that is used to identify the associated entries in ACPI
1268          * table NFIT or _FIT.
1269          */
1270         aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1271 
1272         nvdimm_build_device_dsm(nvdimm_dev, handle);
1273         aml_append(root_dev, nvdimm_dev);
1274     }
1275 }
1276 
1277 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1278                               BIOSLinker *linker,
1279                               NVDIMMState *nvdimm_state,
1280                               uint32_t ram_slots)
1281 {
1282     Aml *ssdt, *sb_scope, *dev;
1283     int mem_addr_offset, nvdimm_ssdt;
1284 
1285     acpi_add_table(table_offsets, table_data);
1286 
1287     ssdt = init_aml_allocator();
1288     acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1289 
1290     sb_scope = aml_scope("\\_SB");
1291 
1292     dev = aml_device("NVDR");
1293 
1294     /*
1295      * ACPI 6.0: 9.20 NVDIMM Devices:
1296      *
1297      * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1298      * NVDIMM interface device. Platform firmware is required to contain one
1299      * such device in _SB scope if NVDIMMs support is exposed by platform to
1300      * OSPM.
1301      * For each NVDIMM present or intended to be supported by platform,
1302      * platform firmware also exposes an ACPI Namespace Device under the
1303      * root device.
1304      */
1305     aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1306 
1307     nvdimm_build_common_dsm(dev, nvdimm_state);
1308 
1309     /* 0 is reserved for root device. */
1310     nvdimm_build_device_dsm(dev, 0);
1311     nvdimm_build_fit(dev);
1312 
1313     nvdimm_build_nvdimm_devices(dev, ram_slots);
1314 
1315     aml_append(sb_scope, dev);
1316     aml_append(ssdt, sb_scope);
1317 
1318     nvdimm_ssdt = table_data->len;
1319 
1320     /* copy AML table into ACPI tables blob and patch header there */
1321     g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1322     mem_addr_offset = build_append_named_dword(table_data,
1323                                                NVDIMM_ACPI_MEM_ADDR);
1324 
1325     bios_linker_loader_alloc(linker,
1326                              NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
1327                              sizeof(NvdimmDsmIn), false /* high memory */);
1328     bios_linker_loader_add_pointer(linker,
1329         ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1330         NVDIMM_DSM_MEM_FILE, 0);
1331     build_header(linker, table_data,
1332         (void *)(table_data->data + nvdimm_ssdt),
1333         "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1334     free_aml_allocator();
1335 }
1336 
1337 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1338                        BIOSLinker *linker, NVDIMMState *state,
1339                        uint32_t ram_slots)
1340 {
1341     GSList *device_list;
1342 
1343     /* no nvdimm device can be plugged. */
1344     if (!ram_slots) {
1345         return;
1346     }
1347 
1348     nvdimm_build_ssdt(table_offsets, table_data, linker, state,
1349                       ram_slots);
1350 
1351     device_list = nvdimm_get_device_list();
1352     /* no NVDIMM device is plugged. */
1353     if (!device_list) {
1354         return;
1355     }
1356 
1357     nvdimm_build_nfit(state, table_offsets, table_data, linker);
1358     g_slist_free(device_list);
1359 }
1360